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1 Introduction

Merton’s (1973) ICAPM suggests that the conditional expected excess return on the stock

market should vary positively with the market’s conditional variance:

Et[Rt+1] = µ + γVart[Rt+1], (1)

where γ is the coefficient of relative risk aversion of the representative agent and, according

to the model, µ should be equal to zero. This risk-return tradeoff is so fundamental in

financial economics that it could well be described as the “first fundamental law of finance.”1

Unfortunately, the tradeoff has been hard to find in the data. The relation between risk and

return has often been found insignificant, and sometimes even negative.

Baillie and DeGennaro (1990), French, Schwert, and Stambaugh (1987), Chou (1992), and

Campbell and Hentschel (1992) do find a positive albeit mostly insignificant relation between

the conditional variance and the conditional expected return. In contrast, Campbell (1987)

and Nelson (1991) find a significantly negative relation. Glosten, Jagannathan, and Runkle

(1993), Harvey (2001), and Turner, Startz, and Nelson (1989) find both a positive and a

negative relation depending on the method used.2 The main difficulty in testing the ICAPM

relation is that the conditional variance of the market is not observable and must be filtered

from past returns.3 The conflicting findings of the above studies are mostly due to differences

in the approach to modeling the conditional variance.

In this paper, we take a new look at the risk-return tradeoff by introducing a new estimator

of the conditional variance. Our Mixed Data Sampling, or MIDAS, estimator forecasts the

monthly variance as a weighted average of lagged daily squared returns. We use a flexible

functional form to parameterize the weight given to each lagged daily squared return and

show that a parsimonious weighting scheme with only three parameters to estimate works

quite well. We estimate the coefficients of the conditional variance process jointly with µ

1However, Abel (1988), Backus and Gregory (1993), and Gennotte and Marsh (1993) offer models where
a negative relation between return and variance is consistent with equilibrium. Campbell (1993) discusses
general conditions under which the risk-return relation holds as an approximation.

2See also Chan, Karolyi, and Stulz (1992), Lettau and Ludvigson (2002), Merton (1980), and Pindyck
(1984). Goyal and Santa-Clara (2002) find a positive tradeoff between market return and average stock
variance.

3We could think of using option implied volatilities as do Santa-Clara and Yan (2001) to make variance
“observable.” Unfortunately, option prices are only available since the early 1980’s which is insufficient to
reliably make inferences about the conditional mean of the stock market.
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and γ from the expected return equation (1) using quasi-maximum likelihood.

Using monthly and daily market return data from the post-WWII period (1946-2000) and

with MIDAS as a model of the conditional variance, we find a positive and statistically

significant relation between risk and return. The estimate of γ is about four, which lines

up well with economic intuition about a reasonable level of risk aversion. The MIDAS

estimator explains more than eight percent of the variation of realized variance in the next

month, which compares favorably with other models of conditional variance such as GARCH.

The estimated weights on the lagged squared daily returns decay slowly, thus capturing the

persistence in the conditional variance process. More impressive still is the fact that, in

the ICAPM risk-return relation, the MIDAS estimator of conditional variance explains 2.4

percent of the variation of next month’s stock market returns. This is quite substantial given

previous results about forecasting the stock market return.4 Finally, the above results are

qualitatively similar when we split the sample into two subsamples of approximately equal

sizes, 1946-1972 and 1973-2000, or when we exclude the October 1987 crash from the full

sample.

The success of the MIDAS estimator in forecasting the stock market variance and explaining

the risk-return tradeoff resides in the use of high-frequency data to estimate the conditional

variance and the flexible parameterization of the weights on the lagged squared daily

returns. In particular, the weight function determines the persistence of the conditional

variance process and the statistical precision with which variances are estimated. To better

understand MIDAS and its success in testing the ICAPM risk-return tradeoff, we compare

our approach to previously used models of conditional variance. French, Schwert, and

Stambaugh (1987) propose a simple and intuitive rolling-windows estimator of the monthly

variance. They forecast monthly variance by the sum of daily squared returns in the previous

month. Their method is similar to ours in that it uses daily returns to forecast monthly

variance. However, when French, Schwert, and Stambaugh use that method to test the

ICAPM, they find a negative γ coefficient. We replicate their results but also find something

rather interesting and new. When the length of the rolling window is increased from one

month to a longer period of three or four months, we again obtain a positive and statistically

significant estimate of γ. This nicely illustrates the point that the window length plays a

crucial role in forecasting variances and detecting the tradeoff between risk and return. By

4For instance, the forecasting power of the dividend yield for the market return does not exceed 1.5
percent (see Campbell, Lo, and MacKinlay (1997) and references therein).
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optimally choosing the weights on lagged squared returns, MIDAS implicitly selects the

optimal window size to forecast the variance, and that in turn leads to a positive test of the

ICAPM equation.

The ICAPM risk-return relation has also been tested using several variations of GARCH-

in-mean models. However, the evidence from that literature is inconclusive and sometimes

conflicting. Using simple GARCH models, we confirm the finding of French, Schwert, and

Stambaugh (1987) and Glosten, Jagannathan, and Runkle (1993), among others, of a positive

but insignificant γ coefficient in the risk-return tradeoff. Actually, except for the lack of

significance, the estimated γ in these tests are similar to our MIDAS results. The absence

of statistical significance comes undoubtedly from GARCH’s use of monthly return data in

estimating the conditional variance process. The use of daily data in the MIDAS estimator

provides the power needed to find statistical significance in the risk-return tradeoff.

It has long been recognized that volatility tends to react more to negative returns than to

positive returns. Nelson (1991) and Engle and Ng (1993) show that GARCH models that

incorporate this asymmetry perform better in forecasting the market variance. However,

Glosten, Jagannathan, and Runkle (1993) show that when such asymmetric GARCH

models are used in testing the risk-return tradeoff, the γ coefficient is estimated to be

negative (sometimes significantly so). This stands in sharp contrast with the positive and

insignificant γ obtained with symmetric GARCH models and creates a puzzle to researchers.

To investigate this issue, we extend the MIDAS approach to capture asymmetries in the

dynamics of conditional variance by allowing lagged positive and negative daily squared

returns to have different weights in the estimator. Contrary to the asymmetric GARCH

results, we still find a large positive estimate of γ that is statistically significant. This

discrepancy between the asymmetric MIDAS and asymmetric GARCH tests of the ICAPM

turns out to be quite interesting.

We find that what matters for the tests of the risk-return tradeoff is not so much the

asymmetry in the conditional variance process but rather the persistence of that process. In

this respect, asymmetric GARCH and asymmetric MIDAS models prove to be very different.

Consistent with the GARCH literature, negative shocks have a larger immediate impact on

the MIDAS conditional variance estimator than do positive shocks. However, we find that the

impact of negative returns on variance is only temporary and lasts no more than one month.

Positive returns, on the other hand, have an extremely persistent impact on the variance

process. In other words, while short-term fluctuations in the conditional variance are mostly
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due to negative shocks, the persistence of the variance process is primarily due to positive

shocks. This is an intriguing finding about the dynamics of variance. Although asymmetric

GARCH models allow for a different response of the conditional variance to positive and

negative shocks, they constrain the persistence of both types of shocks to be the same.

Since the asymmetric GARCH models “load” heavily on negative shocks and these have

little persistence, the estimated conditional variance process shows almost no persistence at

all.5 In contract, by allowing positive and negative shocks to have different persistence,

the asymmetric MIDAS model still obtains high persistence for the overall conditional

variance process. Since only persistent variables can capture variation in expected returns,

the difference in persistence of asymmetric MIDAS and asymmetric GARCH conditional

variance estimators explains their success and lack thereof in finding a risk-return tradeoff.

Campbell (1987) and Scruggs (1998) point out that the difficulty in measuring a positive

risk-return relation might be due to misspecification of equation (1). Following Merton

(1973), they argue that if changes in the investment opportunity set are captured by state

variables in addition to the conditional variance itself, then those variables must be included

in the equation of expected returns. In parallel, an extensive literature on the predictability

of the stock market finds that variables that capture business cycle fluctuations are also

good forecasters of market returns (see Campbell (1991), Campbell and Shiller (1988),

Fama (1990), Fama and French (1988, 1989), Ferson and Harvey (1991), and Keim and

Stambaugh (1986), among many others). We include business cycle variables together with

both the symmetric and asymmetric MIDAS estimators of conditional variance in the ICAPM

equation and find that the tradeoff between risk and return is virtually unchanged. Indeed,

the explanatory power of the conditional variance for expected returns is orthogonal to the

other predictive variables.

We conclude that the ICAPM is alive and well.

The rest of the paper is structured as follows. Section 2 explains the MIDAS model and

details the main results. Section 3 offers a comparison of MIDAS with rolling-window and

GARCH models of conditional variance. In Section 4, we discuss the asymmetric MIDAS

model and use it to test the ICAPM. In Section 5, we include several often-used predictive

variables as controls in the risk-return relation. Section 6 concludes the paper.

5The only exception is the two-component GARCH model of Engle and Lee (1999) who report findings
similar to our asymmetric MIDAS model. They obtain persistent estimates of conditional variance while
still capturing an asymmetric reaction of the conditional variance to positive and negative shocks.
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2 MIDAS Tests of the Risk-Return Tradeoff

In this section, we introduce the Mixed Data Sampling, or MIDAS, estimator of conditional

variance and use it to test the ICAPM between risk and return of the stock market.

2.1 Methodology

The MIDAS approach mixes daily and monthly data to estimate the conditional variance of

stock market returns. The returns on the “left-hand side” of equation (1) are measured at

monthly intervals since a higher frequency would be too noisy to use in a study of conditional

means. On the other hand, we use daily returns in the variance estimator to exploit the

advantages of high-frequency data in the estimation of second moments due to the well-

known continuous-record argument of Merton (1980).6 Furthermore, we allow the estimator

to load on a large number of past daily squared returns with optimally chosen weights.

The MIDAS estimator of the conditional variance of monthly returns, Vart[Rt+1], is based

on prior daily squared return data:

V MIDAS

t = 22
∞∑

d=1

wdr
2
t−d (2)

where wd is the weight given to the squared return of day t − d. We use the lower case r to

denote daily returns, which should be distinguished from the upper case R used for monthly

returns; the corresponding subscript t− d stands for the date t minus d days. With weights

that sum up to one, the factor 22 insures that the variance is expressed in monthly units

(since there are typically 22 trading days in a month). We postulate a flexible form for the

weight given to the squared return on day t − d:

wd(κ0, κ1, κ2) =
exp{κ0 + κ1d + κ2d

2}∑∞
i=1 exp{κ0 + κ1i + κ2i2} (3)

This scheme has several advantages. First, the specification (3) guarantees that the weights

are positive which in turn ensures that the conditional variance in (2) is also positive. Second,

6Recently, various authors, including Andersen, Bollerslev, Diebold, and Ebens (2001), Andreou and
Ghysels (2002), Barndorff-Nielsen and Shephard (2002), and Taylor and Xu (1997) suggest using higher-
frequency intra-daily data to estimate variances. Alizadeh, Brandt, and Diebold (2002) propose an
alternative measure of realized variance using the daily range of the stock index.
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the weights add up to one. Third, the functional form in (3) can produce a wide variety

of shapes for the weights for different values of the parameters. Fourth, the specification is

parsimonious, with only three parameters to be estimated. Fifth, as long as the coefficient

κ2 is negative, the weights go to zero as the lag length increases. The speed with which the

weights decay controls the effective number of observations used to estimate the conditional

variance. Finally, we can increase the order of the polynomial in (3) or consider other

functional forms. For instance, all the results shown below are robust to parameterizing the

weights as a Beta function instead of the exponential form in (3).7 As a practical matter, the

infinite sum in (2) and (3) needs to be truncated at a finite lag. In all the results that follow,

we use 260 days (which corresponds to roughly one year of trading days) as the maximum

lag length. Extensive experimentation shows that the results are not sensitive to increasing

the maximum lag length beyond one year.

The weights of the MIDAS variance estimator capture implicitly the dynamics of the

conditional variance since the number of past returns effectively used in the estimator

determines the persistence of the conditional variance process. The weighting function

also determines the amount of data effectively used to estimate the conditional variance

thereby controlling the statistical precision of the variance estimator. When the function

decays slowly, a large number of observations enter in the forecast of the variance and the

measurement error is low. Conversely, a fast decay corresponds to using a small number

of daily returns to forecast the variance with potentially large measurement error. To

some extent there is a tension between capturing the dynamics of variance and minimizing

measurement error. Since variance changes through time, and given the persistence of the

process, we would like to use more recent observations to forecast the level of variance in

the next month. However, to the extent that measuring variance precisely requires a large

number of daily observations, the estimator may still place significant weight on more distant

observations.

We estimate the parameters in the weight function (3) to maximize the likelihood of monthly

returns. We use the variance estimator (2) with the weight function (3) in the ICAPM

relation (1) and estimate the parameters κ0, κ1, and κ2 jointly with µ and γ by maximizing

7See Ghysels, Santa-Clara, and Valkanov (2002) for a general discussion of the functional form of the
weights.
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the likelihood function, assuming that the conditional distribution of returns is normal:8

Rt+1 ∼ N (µ + γV MIDAS

t , V MIDAS

t ) (4)

Since the true conditional distribution of returns may depart from a normal, our estimator

really is only quasi-maximum likelihood. The parameter estimators are nevertheless

consistent and asymptotically normally distributed. Their variance covariance matrix

is estimated using the Newey-West approach with twelve monthly lags to account for

heteroskedasticity and serial correlation.

2.2 Empirical Analysis

We estimate the ICAPM with the MIDAS approach using excess returns on the stock market

in the post-WWII period, from January of 1946 to December of 2000. We use the CRSP

value-weighted portfolio as a proxy for the stock market and the yield of the three-month

Treasury bill as the risk-free interest rate. The daily market returns are obtained from CRSP

for the period 1963 to 2000, and from William G. Schwert’s website for the period 1946 to

1962. The daily risk-free rate is constructed by assuming that the Treasury bill rates stay

constant within the month and suitably compounding them. Monthly returns are obtained

by compounding the daily returns. In what follows, we refer to excess returns simply as

returns.

Table 1 displays summary statistics for the monthly returns and the monthly realized

variance of returns computed from within-month daily data (as explained in equation (5)

below). We show the summary statistics for the full 1946-2000 sample and, for robustness, we

also analyze three subsamples. We consider two subsamples of approximately equal length,

1946 to 1972 and 1973 to 2000, and a sample that excludes the crash of 1987, which is simply

the full sample period excluding the months of October and November of 1987. The October

1987 crash was the largest stock market decline since the Great Depression, and it is likely

to have had a unique impact on market volatility and the risk-return tradeoff.

The monthly market return has a mean of about 0.7 percent and a standard deviation of

4.12 percent (variance of 0.174 × 102). Market returns are negatively skewed and slightly

8Alternatively, we could use GMM for more flexibility in the relative weighting of the conditional moments
in the objective function.
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leptokurtic. The first order autoregressive coefficient of monthly market returns is negligible,

at 0.029. The summary statistics of the entire sample of 660 observations are similar to those

obtained in the sub-samples. The average market return during 1946-1972 is slightly lower

than that observed during 1973-2000. The returns in the second sub-period are also slightly

more skewed and leptokurtic. The monthly variance is higher and exhibits more skewness

and kurtosis in the second sub-period, while it seems to be more serially correlated in the

first sub-period. This is largely due to the October 1987 crash, as can be seen from the last

sample. Excluding the two months around the 1987 crash increases average market returns

significantly, lowers their variance, and decreases dramatically the skewness and kurtosis

of both series. The results from these summary statistics are well-known in the empirical

finance literature.

Table 2 contains the main result of the paper, the estimation of the risk-return tradeoff

equation with the MIDAS estimator of conditional variance. The estimated ICAPM

coefficient of the risk-return tradeoff γ is 4.007 in the full sample, with a highly significant

t-statistic (corrected for heteroskedasticity and serial correlation with the Newey and West

method) of 2.647. Most importantly, the magnitude of γ lines up well with the theory.

According to the ICAPM, γ is the coefficient of relative risk aversion of the representative

investor and a risk aversion coefficient of four matches a variety of empirical studies (see

Hall (1988) and references therein). The significance of γ is robust in the subsamples, with

estimated values of 8.397 and 1.428, both statistically significant. The lower value in the

second subsample is largely due to the 1987 crash. Indeed, the estimate of γ in the no-crash

sample is 4.254 with a t-statistic of 2.950. The estimated magnitude and significance of the

γ coefficient in the ICAPM relation are remarkable in light of the ambiguity of previous

results. The intercept µ is always significant, which, in the framework of the ICAPM, may

capture compensation for covariance of the market return with other state variables (which

we address in section 5) or compensation for jump risk (Pan (2002)).

Table 2 also reports the estimated parameters of the MIDAS weight function (3). We should

point out that some of the coefficients are not individually significant. However, a likelihood

ratio test of their joint significance, κ0 = κ1 = κ2 = 0, has a p-value of 0.000. Since the

restriction κ0 = κ1 = κ2 = 0 corresponds to placing equal weights on all lagged squared

daily returns, we conclude that the estimated weight function is statistically different from

a simple equally-weighted scheme. We cannot interpret the magnitudes of the coefficients

κ0, κ1, and κ2 individually but only jointly in the weighting function (3). In Figure 1, we
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plot the estimated weights, wd(κ0, κ1, κ2), of the conditional variance on the lagged daily

squared returns, for the full sample and the subsamples. For the full sample, we observe

that the weights are a slowly declining function of the lag length. For example, only 26

percent of the weight is put on the first lagged month of daily data (22 days), 46 percent on

the first two months, and it takes more than four months for the cumulative weight to reach

75 percent. The weight profiles for the subsamples are very similar. We thus conclude that

it takes a substantial amount of daily return data to accurately forecast the variance of the

stock market. This result stands in contrast with the common view that one month of daily

returns is sufficient to reliably estimate the variance.

To assess the predictive power of the MIDAS variance estimator for the market return we

run a regression of the realized return in month t + 1, Rt+1, on the forecasted variance

for that month, V MIDAS
t (which uses only daily returns up to time t). The coefficient of

determination for the regression using the entire sample, R2
R, is 2.4 percent, which is a

reasonably high value for a predictive regression of returns at monthly frequency. Similar

coefficients of determination obtain in the first two sub-samples, but we notice sizeable

forecasting improvement if the 1987 crash is eliminated from the full sample.

We also examine the ability of the MIDAS estimator to forecast realized variance. We

estimate realized variance from within-month daily returns as:

σ2
t+1 =

22∑
d=1

r2
t+1−d (5)

Table 2 reports the coefficient of determination, R2
σ2, from regressing the realized variance,

σ2
t+1, on the MIDAS forecasted variance, V MIDAS

t . MIDAS explains over eight percent of the

fluctuations of the realized variance in the entire sample. Given that σ2
t+1 in (5) is only a

noisy proxy for the true variance in the month, the R2
σ2 obtained is actually quite high.9 If

we eliminate the 1987 crash from the sample, the R2
σ2 jumps to an impressive 0.251. Figure

2 displays the realized variance together with the MIDAS forecast for the entire sample. We

see that the estimator does a remarkable job of forecasting next month’s variance.

9The high standard deviation of the realized variance and the relatively low persistence of the process,
shown in Table 1, indicate a high degree of measurement error.
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3 Why MIDAS Works: Comparison with Other Tests

To understand why tests based on the MIDAS approach support the ICAPM so strongly

when the extant literature offers conflicting results, we compare the MIDAS estimator with

previously used estimators of conditional variance. We focus our attention on rolling windows

and GARCH estimators of conditional variance. For conciseness, we focus on the entire

sample, but the conclusion also hold in the subsamples.

3.1 Rolling Window Tests

As an example of the rolling window approach, French, Schwert, and Stambaugh (1987) use

within-month daily squared returns to forecast the variance:

V RW

t = 22
D∑

d=1

1

D
r2
t−d (6)

where D is the number of days used in the estimation of variance.10 (Again, daily squared

returns are multiplied by 22 to measure the variance in monthly units.) French, Schwert,

and Stambaugh choose the window size to be one month, or D = 22. Besides its simplicity,

this approach has a number of advantages. First, as with the MIDAS approach, the use

of daily data increases the precision of the variance estimator. Second, the stock market

variance is very persistent (see Officer (1973) and Schwert (1989)), so the realized variance

on a given month ought to be a good forecast of next month’s variance.

However, it is not clear that we should confine ourselves to using data from the last month

only to estimate the conditional variance. We may want to use a larger window size D in

equation (6), corresponding to more than one month worth of daily data. Interestingly, this

choice has a large impact on the estimate of γ.

We estimate the parameters µ and γ of the risk-return tradeoff (1) with maximum likelihood

using the rolling window estimator (6) for the conditional variance. Table 3 reports the

10French, Schwert, and Stambaugh (1987) include a correction for serial correlation in the returns that we
ignore for now. We follow their example and do not adjust the measure of variance by the squared mean
return as this is likely to have only a minor impact with daily data. Additionally, French, Schwert, and
Stambaugh actually use the fitted value of an ARMA process for the one-month rolling window estimator to
model the conditional variance. This does not change the results substantially due to the high persistence
of the variance process. See Goyal (2000).
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estimates of the risk-return tradeoff for different sizes D of the window used to estimate the

conditional variance. The first line corresponds to using daily data from the previous month

only and is similar to the one reported in French, Schwert, and Stambaugh (1987). The

estimate of γ is negative and insignificant. The parameter we estimate, -0.342, is actually

almost identical to the value estimated by French, Schwert, and Stambaugh (1987), of -0.349.

(Their t-statistic is lower than ours due to their smaller sample size.) However, as we increase

the window size to two through six months, the sign of γ becomes positive and significant

and the R2
R increases substantially. In fact, the estimated coefficient is negative only when

the variance estimator uses a single month of data.11 Finally, as the window size increases

beyond six months (not shown in the table), the magnitude of the estimated γ decreases as

does the likelihood value. This suggests that there is an optimal window size to estimate

the risk-return tradeoff.

These results are quite striking. They confirm our MIDAS finding, namely, that there is

a positive and significant tradeoff between risk and return. Indeed, the rolling window

approach can be thought of as a robust check of the MIDAS regressions since it is such a

simple estimator of conditional variance with no parameters to estimate. Moreover, Table 3

helps us reconcile the MIDAS results with the findings of French, Schwert, and Stambaugh

(1987) using the rolling-window approach. That paper missed out on the tradeoff by using

too small a window size (one month) to estimate the variance. One month worth of daily

data simply is not enough to reliably estimate the conditional variance and to measure its

impact on expected returns.

The maximum likelihood across window sizes is obtained with a four-month window. This

window size implies a constant weight of 0.0114 in the lagged daily squared returns of the

previous four months. Of the different window lengths we analyze, these weighs are closest

to the optimal MIDAS weights shown in Figure 1, which puts roughly three quarters of the

weight in those first four months of past daily squared returns.

The rolling window estimator is similar to MIDAS in its use of daily squared returns to

forecast monthly variance. But it differs from MIDAS in that it constrains the weights to be

11These findings are consistent with Brandt and Kang (2003), Harrison and Zhang (1999), and Whitelaw
(1994) who report a lagged relation between the conditional variance and the conditional mean. Brandt and
Kang (2003) use a latent VAR approach and find the relation between conditional mean and conditional
variance to be negative contemporaneously but positive with a lag. Whitelaw (1994) argues that the lags in
the relation between conditional mean and conditional variance are due to the different sensitivity of both
conditional moments to the phase of the business cycle.
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constant and inversely proportional to the window length. This constraint on the weights

affects the performance of the rolling window estimator compared to MIDAS. For instance,

the rolling window estimator does not perform as well as the MIDAS estimator in forecasting

realized returns or realized variance. The coefficient of determination for realized returns is

less than one percent compared to 2.4 percent for MIDAS, and for realized variance it is 6.2

percent which is lower than the 8.2 percent obtained with MIDAS. Similarly, the MIDAS

estimate of γ is 4.0 which is substantially higher than the estimate of 2.4 obtained with the

rolling-window approach.

3.2 GARCH Tests

By far the most popular approach to study the ICAPM risk-return relation has been

with GARCH-in-mean models estimated with monthly return data (French, Schwert, and

Stambaugh (1987), Campbell and Hentschel (1992), Glosten, Jagannathan, and Runkle

(1993), among others). The simplest model in this family can be written as:12

V GARCH

t = ω + αε2
t + βV GARCH

t−1 (7)

where εt = Rt − µ − γV GARCH
t−1 . The squared innovations ε2

t in the variance estimator play a

role similar to the monthly squared return in the MIDAS or rolling window approaches and,

numerically, they are very similar (since the squared average return is an order of magnitude

smaller than the average of squared returns). For robustness, we also estimate an absolute

GARCH model, ABS-GARCH:

(V ABSGARCH

t )1/2 = ω + α |εt| + β(V ABSGARCH

t−1 )1/2 (8)

As a further robustness check, we estimated higher order GARCH(p,q) models (not shown for

brevity), with p = 1 . . . 3 and q = 1 . . . 3, and the estimates of γ remain virtually unchanged

and are still insignificant.

12For simplicity, we restrict our attention to GARCH(1,1) models, including only one autoregressive term
and one moving average term.
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Note that the GARCH model (7) can be rewritten as:

V GARCH

t =
ω

1 − β
+ α

∞∑
i=0

βiε2
t−i (9)

The GARCH conditional variance model is thus approximately a weighted average of past

monthly squared returns. Compared to MIDAS, the GARCH model uses monthly rather

than daily squared returns. Moreover, the functional form of the weights implied by the

dynamics of variance in GARCH models exhibits less flexibility than the MIDAS weighting

function.

Table 4 shows the coefficient estimates of the GARCH models which are also estimated

with quasi-maximum likelihood. Both models yield similar results, so we concentrate on the

simple GARCH model. For that model, the estimate of γ is large, 6.968, but insignificant,

with a t-statistic of only 0.901.13 This result is similar to French, Schwert, and Stambaugh

(1987) who, in a sample similar to ours, obtain an estimate of γ of 7.809, which they also find

to be statistically insignificant. Using a symmetric GARCH model, Glosten, Jagannathan,

and Runkle (1993) estimate γ to be 5.926 and insignificant with. Although GARCH models

find an estimate of γ with a magnitude similar to the MIDAS tests, they lack the power to

find statistical significance for the coefficient.

The success of MIDAS relative to GARCH in finding a significant risk-return tradeoff resides

in the extra power that MIDAS obtains from the use of daily data in the conditional variance

estimator. Put differently, MIDAS has more power than GARCH because it estimates the

same number of parameters with a lot more observations. Also, relative to GARCH, MIDAS

has a more flexible functional form for the weights on past squared returns. These two

differences explain the much higher t-statistics obtained by MIDAS. Also, the coefficients

of determination from predicting returns, R2
R, and realized variances, R2

σ2, are 1.0 and 7.0

percent, respectively, for the GARCH models, which appear low when compared with the

coefficients of 2.4 and 8.2 percent obtained with MIDAS.

It may seem unfair to compare MIDAS with GARCH tests since the former uses daily data

while the latter uses only monthly data. Presumably, if we estimate a daily GARCH model

and then use the estimated process for daily variance to compute the variance over the next

13As a further robustness check, we estimated higher order GARCH(p,q) models (not shown for brevity),
with p = 1 . . . 3 and q = 1 . . . 3, and the estimates of γ remain virtually unchanged and are still insignificant.
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month in a multi-step ahead forecast, we might obtain a result similar to MIDAS.14 However,

our point is that the lack of significance of tests of the ICAPM in the literature is due to the

use of GARCH models estimated with monthly data.

4 Asymmetries in the Conditional Variance

In this section, we present a simple and natural extension of the MIDAS specification

that allows positive and negative returns to have not only an asymmmetric impact on the

conditional variance, but also to exhibit different persistence. We compare the asymmetric

MIDAS model to previously used asymmetric GARCH models in tests of the ICAPM. Our

results shed light on the puzzling results in the literature.

4.1 Asymmetric MIDAS Tests

It has long been recognized that volatility is persistent and increases more following negative

shocks than positive shocks.15 Using asymmetric GARCH models, Nelson (1991) and Engle

and Ng (1993) confirm that volatility reacts asymmetrically to positive and negative return

shocks. Following that idea, Glosten, Jagannathan, and Runkle (1993) use an asymmetric

GARCH-in-mean formulation to capture the differential impact of negative and positive

lagged returns on the conditional variance and use it to test the relation between the

conditional mean and the conditional variance of returns.16 They find that the sign of

the tradeoff changes from insignificantly positive to significantly negative when asymmetries

are included in GARCH models of the conditional variance. This result is quite puzzling

and below we explain its provenance.

To examine whether the risk-return tradeoff is robust to the inclusion of asymmetric effects

14Although the results in French, Schwert, and Stambaugh (1987) are not very encouraging in that respect.
Also, the multi-step ahead forecast of variances is not easy for GARCH models other than the simple GARCH.
Even for the ABSGARCH model, this exercise is not trivial.

15This is the so-called “feedback effect,” based on the time-variability of the risk-premium induced by
changes in variance. See French, Schwert, and Stambaugh (1987), Pindyck (1984) and Campbell and
Hentschel (1992). Alternatively, Black (1976) and Christie (1982) justify the negative correlation between
returns and innovations to the variance by the “leverage” effect. Bekaert and Wu (2000) conclude that the
feedback effect dominates the leverage effect.

16See also Campbell and Hentschel (1992) for an examination of the risk-return tradeoff with asymmetric
variance effects.
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in the conditional variance, we introduce the asymmetric MIDAS estimator:

V ASYMIDAS

t = 22

[
φ

∞∑
d=1

wd(κ
−
0 , κ−

1 , κ−
2 )1−

t−dr
2
t−d + (2 − φ)

∞∑
d=1

wd(κ
+
0 , κ+

1 , κ+
2 )1+

t−dr
2
t−d

]
(10)

where 1+
t−d denotes the indicator function for {rt−d ≥ 0}, 1−

t−d denotes the indicator function

for {rt−d < 0}, and φ is in the interval (0, 2). This formulation allows for a differential impact

of positive and negative shocks on the conditional variance. The coefficient φ controls the

total weight of negative shocks in the conditional variance. A coefficient φ between zero and

two ensures that the total weights sum up to one since the indicator functions are mutually

exclusive and each of the positive and negative weight functions adds up to one. A value of φ

equal to one places equal weight on positive and negative shocks. The two sets of parameters

{κ−
0 , κ−

1 , κ−
2 } and {κ+

0 , κ+
1 , κ+

2 } characterize the time profile of the weights from negative

and positive shocks, respectively.

Table 5 reports the estimates of the risk-return tradeoff (1) with the conditional variance

estimator in equation (10). The estimated coefficient γ is 3.314 and highly significant in the

entire sample. In contrast to the findings of Glosten, Jagannathan, and Runkle (1993) with

asymmetric GARCH models, in the MIDAS framework, allowing the conditional variance

to respond asymmetrically to positive and negative shocks does not change the sign of the

risk-return tradeoff. Hence, asymmetries in the conditional variance are consistent with a

positive coefficient γ in the ICAPM relation.

In agreement with previous studies, we find that asymmetries play an important role in

driving the conditional variance. The statistical significance of the asymmetries can easily be

tested using a likelihood ratio. The restricted likelihood function under the null hypothesis of

no asymmetries is presented in Table 2, whereas the unrestricted likelihood with asymmetries

appears in Table 5. The null of no asymmetries, which is a joint test of κ+
0 =κ−

0 , κ+
1 =κ−

1 ,

κ+
2 =κ−

2 , and φ = 1, is easily rejected with a p-value of 0.001.

The κ coefficients are of interest only because they parameterize the weight functions

wd(κ
−
0 , κ−

1 , κ−
2 ) and wd(κ

+
0 , κ+

1 , κ+
2 ). We plot these weight functions in Figure 3. Interestingly,

the weight profiles of negative and positive shocks are markedly different. All the weight of

negative shocks (dash-dot line) on the conditional variance is concentrated in the first 30

daily lags. In other words, negative shocks have a strong impact on the conditional variance,

but that impact is transitory. It disappears after only one month. In contrast, positive
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returns (dash-dash line) have a much smaller immediate impact, but their effect persists up

to a year after the shock. This decay is much slower than the usual exponential rate of decay

obtained in the case of GARCH and ARMA models.

We find that the estimated value of φ is less than one. Since φ measures the total impact

of negative shocks on the conditional variance, our finding implies that positive shocks have

overall a greater weight on the conditional variance than do negative shocks. This asymmetry

is statistically significant. A t-test of the null hypothesis of φ = 1 is rejected with a p-value

of 0.028. The combined effect of positive and negative shocks, weighted by φ, is plotted as a

thick solid line in Figure 3 (the symmetric weight is also plotted for reference as a thin solid

line). In the short run, negative returns actually have a higher impact on the conditional

variance since their estimated weight in the first month is so much larger than the weight

on positive shocks in the same period. For longer lag lengths, the coefficient φ determines

that positive shocks actually become more important.

We thus find that the asymmetry in the response of the conditional variance to positive

and negative returns is more complex than previously documented. Negative shocks have

a higher immediate impact but are ultimately dominated by positive shocks. Also, there is

a clear asymmetry in the persistence of positive and negative shocks, with positive shocks

being responsible for the persistence of the conditional variance process beyond one month.

Our results are consistent with a recent literature on multi-factor variance models (Alizadeh,

Brandt, and Diebold (2002), Chacko and Viceira (2003), Chernov, Gallant, Ghysels, and

Tauchen (2003), Engle and Lee (1999) and Gallant, Hsu, and Tauchen (1999), among others)

which finds reliable support for the existence of two factors driving the conditional variance.

The first factor is found to have high persistence and low volatility, whereas the second

factor is transitory and highly volatile. The evidence from estimating jump-diffusions with

stochastic volatility points in a similar direction. For example, Chernov, Gallant, Ghysels,

and Tauchen (2003) show that the first factor, the diffusive component, is highly persistent

and has low variance, whereas the second factor, the jump component, is by definition not

persistent.

Using the asymmetric MIDAS specification, we are able to identify the first factor with

lagged positive returns and the second factor with lagged negative returns.17 Indeed, if we

decompose the conditional variance estimated with equation (10) into its two components,

17Engle and Lee (1999) have a similar finding using a two-component asymmetric GARCH model.
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φ
∑∞

d=1 wd(κ
−
0 , κ−

1 , κ−
2 )1−

t−dr
2
t−d and (2−φ)

∑∞
d=1 wd(κ

+
0 , κ+

1 , κ+
2 )1+

t−dr
2
t−d, we verify that their

time series properties match the results in the literature. More precisely, the positive

shock component is very persistent, with an AR(1) coefficient of 0.981, whereas the

negative shock component is temporary, with an AR(1) coefficient of only 0.129. Also,

the standard deviation of the negative component is twice the standard deviation of the

positive component. (These results are robust in the subsamples.) The results from the

asymmetric MIDAS model are thus consistent with the literature on two-factor models of

variance.

4.2 Asymmetric GARCH Tests

For comparison, we estimate three different asymmetric GARCH-in-mean models:

asymmetric GARCH, exponential GARCH, and quadratic GARCH. For conciseness, we

use the acronyms ASYGARCH, EGARCH, and QGARCH to refer to these models. The

ASYGARCH and EGARCH formulations are widely used to model asymmetries in the

conditional variance. We use the specifications of Glosten, Jagannathan, and Runkle (1993)

(without seasonal dummies) for these two models. The QGARCH model was introduced by

Engle (1990) and is used in the risk-return tradeoff literature by Campbell and Hentschel

(1992).

The ASYGARCH model is specified as:

V ASYGARCH

t = ω + αε2
t + λε2

t1
+
t + βV ASYGARCH

t−1 (11)

where εt = Rt − µ − γV ASYGARCH
t−1 and 1+

t is an index function that equals to one when εt is

positive and zero otherwise. The coefficient λ captures the asymmetry in the reaction of the

conditional variance to positive and negative returns. A negative λ indicates that negative

returns have a stronger impact on the conditional variance. When λ = 0, the ASYGARCH

reduces to a simple GARCH.

The EGARCH process is similar in nature, but imposes an exponential form on the dynamics

of the conditional variance as a more convenient way of imposing positiveness. It is specified

as:

ln(V EGARCH

t ) = ω + αut + λut1
+
t + β ln(V EGARCH

t−1 ) (12)
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where ut = (Rt − µ − γV EGARCH
t−1 )/(V EGARCH

t−1 )1/2 are the normalized innovations and 1+
t is

equal to one when ut is positive. Again, when λ is negative, the variance reacts more to

negative returns.

The QGARCH model incorporates asymmetries as:18

V QGARCH

t = ω + α(εt + λ)2 + βV QGARCH

t−1 (13)

where εt = Rt − µ − γV QGARCH

t−1 . For λ = 0, the QGARCH model collapses into the simple

GARCH specification.

The estimated coefficients of the three asymmetric GARCH models are shown in Table 6.

We confirm the finding in Glosten, Jagannathan, and Runkle (1993) that asymmetries in the

ASYGARCH and EGARCH produce a negative, albeit statistically insignificant, estimate

of the risk-return tradeoff parameter γ. In fact, our estimates of the model are similar

to the ones reported in Glosten, Jagannathan, and Runkle (1993). The QGARCH model

also produces a negative and statistically insignificant estimate of γ, which is comparable

(although slightly lower in absolute terms) to the negative and statistically insignificant

estimates obtained in Campbell and Hentschel (1992).19 In all three models, the estimates

of λ are negative and statistically different from zero, indicating that the asymmetries are

important and that, in asymmetric GARCH models, negative shocks tend to have a higher

impact on the conditional variance than positive shocks. Finally, if we compare the R2
σ2

from Tables 4 and 6, we notice that the asymmetric GARCH models produce forecasts of

the realized variance that are slightly better than those from the symmetric GARCH models.

The improvement in the forecasting power of returns is negligible to non-existent.

The persistence of the conditional variance in the above asymmetric GARCH models is driven

by the β parameter. It is important to note that the asymmetric GARCH specifications do

not allow for differences in the persistence of positive and negative shocks. In other words,

both positive and negative shocks decay at the same rate, determined by β. Furthermore,

the estimated conditional variance in such asymmetric GARCH processes loads heavily on

negative shocks, which we know from the MIDAS results (Figure 3) have a strong immediate

18The formulation of Campbell and Hentschel (1992) has a negative sign in front of the λ term. We write
the QGARCH model differently to maintain the interpretation of a negative λ corresponding to a higher
impact of negative shocks on the conditional variance.

19In addition to this result, Campbell and Hentschel (1992) estimate the risk-return tradeoff imposing a
constraint from a dividend-discount model. In that case, they obtain a positive and significant estimate of
γ.
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impact on volatility. However, we have also seen that the impact of negative shocks on

variance is transitory. Hence, it is not surprising that the estimates of the persistence

parameter β in the asymmetric GARCH models shown in Table 6 (similar to Glosten,

Jagannathan, and Runkle (1993)) are much lower than in the symmetric GARCH models.20

This implicit restriction leads Glosten, Jagannathan, and Runkle to conclude that “the

conditional volatility of the monthly excess return is not highly persistent.” In contract,

the asymmetric MIDAS model allows the persistence of positive and negative shocks to be

different, resulting in overall higher persistence of the variance process.

To demonstrate the implications of the asymmetric GARCH restriction on the persistence

of positive and negative shocks, we can compute the AR(1) coefficient of the filtered

variance processes. The AR(1) coefficients of the ASYGARCH, EGARCH, and QGARCH

estimated conditional variance processes are only -0.091, 0.004, and 0.100, respectively.

These coefficients are surprisingly low given what we know about the persistence of variance

(Officer (1973) and Schwert (1989)). The constraint that asymmetric GARCH models place

on the equality of persistence of positive and negative shocks imposes a heavy toll on the

overall persistence of the forecasted variance process. In contrast, the AR(1) coefficient of the

symmetric GARCH and the symmetric MIDAS conditional variance estimators are 0.91 and

0.88, respectively. It is worth noting that the lack of persistence is not due to the asymmetry

in the variance process. The AR(1) coefficient of the asymmetric MIDAS variance process is

still high at 0.85, showing that the conditional variance process can have both asymmetries

and high persistence.

Given the lack of persistence of the asymmetric GARCH models, it is not surprising to

find that their estimated conditional variance processes are incapable of explaining expected

returns in the ICAPM relation.21 The persistence of symmetric GARCH and both symmetric

and asymmetric MIDAS estimators allows them to capture the relation between risk and

return in the ICAPM. This explains the puzzling findings of Glosten, Jagannathan, and

Runkle (1993) that the risk-return tradeoff turns negative when we take into account

asymmetries in the conditional variance. Their results are not driven by the asymmetries.

Instead, they depend on the lack of persistence in the conditional variance induced by the

20This constraint can be relaxed in the GARCH framework. Using a two-component GARCH model,
Engle and Lee (1999) show that only the persistent component of variance has explanatory power for stock
market returns.

21Indeed, Poterba and Summers (1986) show that persistence in the variance process is crucial for it to
have any economically meaningful impact on stock prices.
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restriction in the GARCH processes. To adequately capture the dynamics of variance, we

need both asymmetry in the reaction to negative and positive shocks and a different degree

of persistence of those shocks. When we model the conditional variance in this way, the

ICAPM continues to hold.

5 The Risk-Return Tradeoff with Additional

Predictive Variables

In this section, we extend the ICAPM relation between risk and return to include other

predictive variables. Specifically, we modify the ICAPM equation (1) as:

Et[Rt+1] = µ + γVart[Rt+1] + θ�Zt (14)

where Zt is a vector of variables known to predict the return on the market and θ is a

conforming vector of coefficients. The variables in Zt are known at the beginning of the

return period, but they might be observed at various frequencies (monthly, weekly, daily).

Campbell (1991), Campbell and Shiller (1988), Chen, Roll, and Ross (1986), Fama (1990),

Fama and French (1988, 1989), Ferson and Harvey (1991), and Keim and Stambaugh (1986),

among many others, find evidence that the stock market can be predicted by variables related

to the business cycle. At the same time, Schwert (1989, 1990) shows that the variance of

the market is highly counter-cyclical. Therefore, our findings about the risk-return tradeoff

could simply be due to the market variance proxying for business cycle fluctuations. To test

this “proxy” hypothesis, we examine the relation between the expected return on the stock

market and the conditional variance using macro variables as controls for business cycle

fluctuations.

Alternatively, the specification (14) can be understood as a version of the ICAPM with

additional state variables. When the investment opportunity set changes through time,

Merton shows that:

Et[Rt+1] = µ + γVart[Rt+1] + π�Covt[Rt+1, St+1], (15)

where the term Covt[Rt+1, St+1] denotes a vector of covariances of the market return with
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innovations to the state variables, S, conditional on information known at date t. If the

relevant information to compute these conditional covariances consists of the variables in

the vector Zt, we can interprete the term θ�Zt in (14) as an estimate of the conditional

covariance, πCovt[Rt+1, St+1] in (15).22

The predictive variables that we study are the dividend-price ratio, the relative Treasury bill

rate, and the default spread (all available at monthly frequency). The dividend-price ratio is

calculated as the difference between the log of the last twelve month dividends and the log

of the current level of the CRSP value-weighted index. The three-month Treasury bill rate

is obtained from Ibbotson Associates. The relative Treasury bill stochastically detrends the

raw series by taking the difference between the interest rate and its twelve-month moving

average. The default spread is calculated as the difference between the yield on BAA- and

AAA-rated corporate bonds, obtained from the FRED database. We standardize these three

macro variables (subtracting the mean and dividing by the standard deviation) to ensure

comparability of the µ coefficients in equations (1) and (14).

Once the effect of the control variables in the conditional expected return is removed, γ

shows the magnitude of the risk-return tradeoff, while the MIDAS weight coefficients still

determine the lag structure of conditional covariance. Table 7 presents the results from

estimating equation (14) with both the simple MIDAS weights (3) and the asymmetric

MIDAS weights (10). The results strongly suggest that business cycle fluctuations do not

account for our findings. Indeed, the coefficients of the risk-return relation with controls

are remarkably similar to those estimated without controls (shown in Tables 2 and 5). The

estimates of µ and γ are almost identical in the two tables across all four sample periods.

This indicates that the explanatory power of the forecasted variance for returns is largely

orthogonal to the additional macro predictive variables. Moreover, the estimates of κ0, κ1,

and κ2 are also very similar, implying that the weights the conditional variance places on

past squared returns are not changed.

The three macro variables enter significantly in the ICAPM conditional mean either in the

sample or in the subsamples. A likelihood ratio test of their joint significance in the entire

sample has a p-value of 0.002. The coefficient of determination of the regression of realized

returns on the conditional variance and the macro variables, R2
R, is 4.7 percent in the full

22Scruggs (1998) emphasizes this version of the ICAPM, which predicts only a partial relation between the
conditional mean and the conditional variance after controlling for the other covariance terms. Scruggs uses
the covariance between stock market returns and returns on long bonds as a control and finds a significantly
positive risk-return tradeoff.
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sample. This is significantly higher than the corresponding coefficient without the macro

variables, which is only 2.4 percent. The coefficient R2
σ2 is unchanged by the inclusion of the

macro predictive variables.

We conclude that the risk-return tradeoff is largely unaffected by including extra predictive

variables in the ICAPM equation and the forecasting power of the conditional variance is

not merely proxying for the business cycle.

6 Conclusion

This paper takes a new look at Merton’s ICAPM, focusing on the tradeoff between

conditional variance and conditional mean of the stock market return. In support of the

ICAPM, we find a positive and significant relation between risk and return. This relation

is robust in subsamples, does not change when the conditional variance is allowed to react

asymmetrically to positive and negative returns, and is not affected by the inclusion of other

predictive variables.

Our results are more conclusive than those from previous studies due to the added power

obtained from the new MIDAS estimator of conditional variance. This estimator is a

weighted average of past daily squared returns, where the average is taken over an extended

window of time, and the weights are parameterized with a flexible functional form. We find

that the MIDAS estimator is a better forecaster of the stock market variance than rolling

window or GARCH estimators, which is the reason why our tests of the ICAPM can robustly

find the ICAPM’s risk-return tradeoff.

We obtain new results about the asymmetric reaction of volatility to positive and negative

return shocks. We find that, compared to negative shocks, positive shocks: (i) have a bigger

impact overall on the conditional mean of returns; (ii) are slower to be incorporated into the

conditional variance; and (iii) are much more persistent and indeed account for the persistent

nature of the conditional variance process. Quite surprisingly, negative shocks have a large

initial, but very temporary effect on the variance of returns. This feature of conditional

variance has not been detected in previous studies.

The MIDAS estimator offers a powerful and flexible way of estimating economic models

by taking advantage of data sampled at various frequencies. While the advantages of the
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MIDAS approach have been demonstrated in the estimation of the ICAPM and conditional

volatility, the method itself is quite general in nature and can be used to tackle several other

important questions.
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Table 1: Summary Statistics of Returns and Realized Variance

This table shows summary statistics of monthly excess returns Rt of the stock market, and realized monthly
variance computed from within-month daily data, σ2

t . The proxy for the stock market is the CRSP value-
weighted portfolio and the risk-free rate is the yield on the three-month Treasury bill. The table shows
the mean, variance, skewness, kurtosis, and first-order serial correlation for each of the two variables. The
statistics are shown for the full sample, two subsamples of approximately equal length, and a sample without
the months of October and November 1987.

Panel A: Monthly Returns (Rt)

Sample Mean Variance Skewness Kurtosis AR(1) T
(×102) (×102)

1946:01-2000:12 0.692 0.174 -0.562 5.121 0.039 660
1946:01-1972:12 0.839 0.136 -0.395 3.142 0.055 324
1973:01-2000:12 0.660 0.208 -0.599 5.657 0.021 336
1946:01-2000:12 0.741 0.165 -0.341 4.024 0.018 658
(No 1987 Crash)

Panel B: Monthly Realized Variances (σ2
t )

Sample Mean Variance Skewness Kurtosis AR(1) T
(×102) (×104)

1946:01-2000:12 0.144 0.063 14.559 292.628 0.285 660
1946:01-1972:12 0.104 0.013 4.098 25.793 0.392 324
1973:01-2000:12 0.181 0.110 12.144 185.491 0.234 336
1946:01-2000:12 0.136 0.021 3.339 17.938 0.564 658
(No 1987 Crash)
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Table 2: MIDAS Tests of the Risk-Return Tradeoff

This table shows estimates of the risk-return tradeoff (1) with the MIDAS estimator of conditional variance
in equations (2) and (3). The coefficients and corresponding t-statistics (in brackets) are shown for the full
sample and the three subsamples. R2

R and R2
σ2 quantify the explanatory power of the MIDAS variance

estimator in predictive regressions for realized returns and variances, respectively. LLF is the log-likelihood
value. The t-statistics are computed using Newey-West robust standard errors with a kernel of 12 monthly
lags.

Sample µ γ k0 k1 k2 R2
R R2

σ2 LLF
(×103) (×105) (×102) (×109)

1946.01-2000.12 4.800 4.007 -4.363 -1.353 -3.984 0.024 0.082 1221.837
[2.419] [2.647] [-0.004] [-1.903] [-0.092]

1946.01-1972.12 1.565 8.397 -2.819 -1.445 -2.273 0.029 0.101 624.008
[0.766] [3.598] [-0.002] [-2.397] [-0.110]

1973.01-2000.12 9.050 1.428 -1.001 -0.922 -2.183 0.022 0.056 580.097
[2.100] [1.981] [-0.001] [-0.454] [-0.098]

1946.01-2000.12 4.809 4.254 -3.960 -1.402 -3.293 0.041 0.251 1239.100
(No 1987 Crash) [2.515] [2.950] [-0.002] [-1.959] [-0.011]
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Table 3: Rolling Window Tests of the Risk-Return Tradeoff

This table shows estimates of the risk-return tradeoff (1) with the rolling windows estimators of conditional
variance (6). The coefficients and corresponding t-statistics (in brackets) are shown for the full sample and
the three subsamples. R2

R and R2
σ2 quantify the explanatory power of the MIDAS variance estimator in

predictive regressions for realized returns and variances, respectively. LLF is the log-likelihood value. The
t-statistics are computed using Newey-West robust standard errors, with a kernel equal to the horizon (and
the overlap) in the regression.

Horizon µ γ R2
R R2

σ2 LLF
(Months) (×103)

1 10.719 -0.342 0.001 0.072 1090.701
[5.693] [-0.537]

2 8.520 1.233 0.003 0.079 1113.584
[4.215] [1.504]

3 7.291 2.033 0.007 0.076 1118.392
[3.431] [2.173]

4 6.689 2.410 0.009 0.062 1119.985
[3.027] [2.360]

5 6.628 2.441 0.007 0.057 1118.402
[2.888] [2.208]

6 6.781 2.384 0.006 0.058 1116.664
[2.861] [2.027]
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Table 4: GARCH Tests of the Risk-Return Tradeoff

This table shows estimates of the risk-return tradeoff (1) with the GARCH estimators of conditional variance
(7) and (8). The t-statistics (in brackets) are shown below the coefficient estimates. R2

R and R2
σ2 quantify

the explanatory power of the MIDAS variance estimator in predictive regressions for realized returns and
variances, respectively. LLF is the log-likelihood value. The t-statistics are computed using Newey-West
robust standard errors with a kernel of 12 monthly lags.

Model µ γ ω α β R2
R R2

σ2 LLF
(×103) (×103)

GARCH(1,1)-M -0.740 6.968 0.125 0.069 0.860 0.010 0.070 1152.545
[-0.370] [0.901] [0.244] [1.398] [18.323]

ABS-GARCH(1,1)-M 1.727 6.013 2.751 0.099 0.858 0.010 0.071 1156.142
[0.424] [0.873] [0.947] [1.764] [17.323]
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Table 6: Asymmetric GARCH Tests of the Risk-Return Tradeoff

The table shows estimates of the risk-return tradeoff in equation (1) with the asymmetric GARCH estimators
of conditional variance in (11), (12), and (13). The coefficients and corresponding t-statistics (in brackets)
are shown for the full sample and the three subsamples. R2

R and R2
σ2 quantify the explanatory power of

the MIDAS variance estimator in predictive regressions for realized returns and variances, respectively. LLF
is the log-likelihood value. The t-statistics are computed using Newey-West robust standard errors with a
kernel of 12 monthly lags.

Model µ γ ω α β λ R2
R R2

σ2 LLF
(×103) (×102) (×102)

EGARCH(1,1)-M 14.978 -2.521 -640.708 -0.325 0.497 -3.339 0.011 0.071 1159.102
[6.277] [-1.285] [-1.790] [-2.977] [5.938] [-2.206]

ASYGARCH(1,1)-M 1.117 -3.248 0.056 0.018 0.609 -28.723 0.010 0.077 1164.023
[0.913] [-1.811] [0.202] [1.980] [7.842] [-2.131]

QGARCH(1,1)-M 13.970 -1.994 0.060 0.086 0.145 -9.320 0.010 0.072 1161.173
[2.378] [-0.171] [0.356] [3.565] [3.269] [-7.188]
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Figure 1: MIDAS Weights

This figure plots the weights that the MIDAS estimator (2) and (3) places on lagged squared returns. The
weights are calculated by substituting the estimated values of κ0, κ1, and κ2 into the weight function (3).
The exact estimates of κ0, κ1, and κ2 are shown in Table 2. The figure displays the weights for the entire
sample and for the three subsamples.
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Figure 2: MIDAS Forecasted and Realized Variance

This figure plots the forecasted variance with the MIDAS estimator (2) and (3) and compares it with the
realized variance (5). The parameter values are shown in Table 2 (1946-2000 sample). The realized variance
in October of 1987 has been truncated. The actual value is 0.05.
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Figure 3: Asymmetric MIDAS Weights

This figure plots the weights, estimated from the entire sample, that the Asymmetric MIDAS estimator (10)
and (3) places on lagged squared returns conditional on the sign of the returns. The weights on the negative
shocks (r < 0) are calculated by substituting the estimated values of κ−

0 , κ−
1 , and κ−

2 into (3). Similarly, the
weights on the positive shocks (r ≥ 0) are calculated by substituting the estimated values of κ+

0 , κ+
1 , and κ+

2

into (3). The total asymmetric weights, plotted using equation (10), take into account the overall impact
of asymmetries on the conditional variance through the parameter φ. The exact estimates of all parameters
are shown in Table 5. The symmetric weights from Figure 1 are also plotted for comparison.
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