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Asymptotic and Bootstrap Inference for AR(o) Processes
with Conditional Heteroskedasticity*

Silvia Gongalvesf, Lutz Kilian®

Résumé / Abstract

La contribution de ce papier est double. Premieérement, nous dérivons les propriétés
asymptotiques (convergence et normalité asymptotique) des estimateurs de moindre carrés
ordinaires des parameétres autoregressifs dans le cadre de modeles autoregressifs d'ordre infini
dont les innovations sont des différences de martingale possiblement hétéroscédastiques.
Deuxieémement, nous démontrons la validité asymptotique d'une méthode de bootstrap dans ce
contexte. Nos résultats justifient théoriquement I'utilisation de la loi asymptotique ou
l'utilisation de la distribution de bootstrap comme méthodes d'inférence pour les paramétres
autoregressifs ou les fonctions de ceux-ci.

Mots clés : autoregression d'ordre infini, hétéroscédasticité conditionnelle,
wild bootstrap, bootstrap par couples.

The main contribution of this paper is twofold. First, we derive the consistency and
asymptotic normality of the estimated autoregressive sieve parameters when the data are
generated by a stationary linear process with martingale difference errors that are possibly
subject to conditional heteroskedasticity of unknown form. To the best of our knowledge, the
asymptotic distribution of the least-squares estimator has not been derived under these
conditions. Second, we show that a suitably constructed bootstrap estimator will have the
same limit distribution as the OLS estimator. Our results provide theoretical justification for
the use of either the conventional asymptotic approximation or the bootstrap approximation
of the distribution of smooth functions of autoregressive parameters.

Keywords: infinite autoregression, conditional heteroskedasticity, wild
bootstrap, pairwise bootstrap.

* Part of this research was conducted while the second author was serving as an advisor to the European Central
Bank.
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1. Introduction

Much applied work relies on linear autoregressions for the purpose of estimation and inference in time
series analysis (see, e.g., Canova 1995; Stock and Watson 2001). Standard methods of inference for linear
autoregressions are based on the presumption that the data generating process can be represented as
a finite-order autoregression. This assumption is clearly unrealistic. It is more plausible to think of
the autoregressive model as a rough approximation to the underlying data generating process. In
response to this problem, there has been increasing interest in developing an alternative asymptotic
theory for inference in linear autoregressions under the presumption that the data are generated by a
possibly infinite-order autoregression. The thought experiment is that the researcher fits a sequence of
finite-order autoregressions, the lag order of which is assumed to increase with the sample size. The
fitted autorcgression is thus viewed as an approximation to the possibly infinite-order autoregression,
the quality of which improves with the sample size. Such methods are commonly referred to as sieve
methods in the literature (see, e.g., Grenander 1981; Geman and Hwang 1982; Biihlmann 1995, 1997).

In the literature on sieve approximations of autoregressions it is typically postulated that the data
generating process can be represented as an infinite-order autoregression with i.i.d. innovations. Al-
though this model is substantially less restrictive than the conventional finite-lag order autoregressive
model, for many applications in finance and economics the i.i.d. error assumption appears too restric-
tive. In particular, the i.i.d. error assumption rules out conditional heteroskedasticity, of which there
is evidence in many economic time series. In this paper, we relax this i.i.d. assumption. Instead we
postulate that the innovations driving the lincar AR{oo) process follow a martingale difference sequence
subject to possible conditional heteroskedasticity of unknown form. Our analysis covers data generating
processes that belong to the stationary linear AR(oo) class. This class includes finite-order stationary
ARMA processes as a special case.

The main contribution of this paper is twofold. First, we derive the consistency and asymptotic
normality of the estimated autoregressive sicve parameters under weak conditions on the form of condi-
tional heteroskedasticity. To the best of our knowledge, the asymptotic distribution of the least-squares

estimator has not been derived under these conditions. Our analysis shows that the asymptotic dis-



tribution of estimated autoregressive parameters derived under the assumption of an AR(oc) data
generating process with i.i.d. errors does not apply when the errors are conditionally heteroskedastic.
In particular, the form of the asymptotic covariance matrix of the estimated parameters is affected by
conditional heteroskedasticity. In contrast, the asymptotic results derived in this paper enable applied
users to conduct inference that is robust to conditional heteroskedasticity of unknown form. The use of
the asymptotic normal approximation in practice requires a consistent estimator of the variance of the
autoregressive parameter. We provide sufficient conditions for the consistency of a version of the Eicker-
White heteroskedasticity-robust covariance matrix estimator in the context of sieve approximations to
AR(o0) processes (see Eicker 1963; White 1980, and Nicholls and Pagan 1983).

The second main contribution of this paper is to extend the application of the bootstrap to AR{oo)
processes with possible conditional heteroskedasticity. We show that suitably constructed bootstrap
estimators will have the same limit distribution as the ordinary least-squares (OLS) estimator. In
related work, bootstrap methods for inference on univariate infinite-order autoregressions with i.i.d.
innovations have been studied by Kreiss (1997), Bithlmann (1997), and Choi and Hall (2000), among
others. Extensions to the multivariate case are discussed in Paparoditis (1996) and in Inoue and Kilian
(2002). The sieve bootstrap considered by these papers resamples randomly the residuals of an estimated
truncated autoregression, the order of which is assumed to grow with the sample size at an appropriate
rate. The bootstrap data are generated recursively from the fitted autoregressive model, given the
resampled residuals and appropriate initial conditions. Given that the residuals are conditionally i.i.d.
by construction, this sieve bootstrap method is not valid for AR (o0) with conditional heteroskedasticity.

As our results show, this problem may be solved by considering a fixed-design bootstrap method
that applies the wild bootstrap (WB) to the regression residuals of the autoregressive sieve. Bootstrap
observations on the dependent variable are generated by adding the WB residuals to the fitted values
of the autoregressive sieve. These pseudo-observations are then regressed on the original regressor
matrix. Thus, the fixed-design WB treats the regressors as fixed in repeated sampling, even though
the regressors are lagged dependent variables. The fixed-design WB was originally suggested by Kreiss

(1997), building on work by Wu (1986), Mammen (1993), and Liu (1988) who studied the WB in the



cross-sectional context. A similar “fixed-regressor bootstrap” has been proposed by Hansen (2000)
in the context of testing for structural change in regression models. Here we prove the asymptotic
validity of the fixed-design WB for inference on AR(oo) processes with martingale difference errors
that are possibly subject to conditional heteroskedasticity, which to the best of our knowledge has not
been done elsewhere. We also study the validity of an alternative bootstrap proposal that involves
resampling pairs (or tuples) of the dependent and the explanatory variables. This pairwise bootstrap
was originally suggested by Freedman (1981) in the cross-sectional context. Both bootstrap proposals
have been studied in the context of finitc-order autoregressions by Gongalves and Kilian (2003).

In this paper, we establish the asymptotic validity of these two bootstrap proposals for sieve au-
toregressions under weak conditions on the form of conditional heteroskedasticity. We do not pursue
more conventional recursive-design bootstrap methods, such as the recursive-design WB discussed in
Kreiss (1997) and in Gongalves and Kilian (2003), because such methods are more restrictive than the
fixed-design WIB and the pairwise bootstrap. Specifically, as shown by Gongalves and Kilian (2003), the
recursive-design method requires more stringent assumptions on the form of conditional heteroskedas-
ticity than the two methods discussed in this paper. These restrictions run counter to the aim of
imposing as little parametric structure as possible in bootstrap inference for linear stationary processes.
In addition, the standard results of Paparoditis (1996) and Inoue and Kilian (2002) require exponential
decay of the coefficients of the moving average representation of the underlying process. The results
for the fixed-design bootstrap and the pairwise bootstrap, in contrast, only require a polynomial rate
of decay.

The remainder of the paper is organized as follows. In section 2 we present the main theoretical
results for the OLS estimator. In section 3, we develop the theoretical results for the corresponding
bootstrap estimator. In section 4, we extend the results to smooth functions of autoregressive parame-
ters. In section 5, we discuss implications of our results for a number of research areas. Details of the

proofs are provided in the appendix.



2. Asymptotic Theory for the OLS Estimator

Our analysis in this section builds on work by Berk (1974), Bhansali (1978) and Lewis and Reinsel
(1985). Berk (1974) in a seminal paper establishes the consistency and asymptotic normality of the
spectral density estimator for linear processes with i.i.d. innovations. Based on Berk’s results, Bhansali
(1978) derives explicitly the limiting distribution of the estimated autoregressive coefficients. Lewis
and Reinsel (1985) provide a multivariate extension of Bhansali’s (1978) results in a form more suitable
for econometric analysis. Here we generalize the analysis of Lewis and Reinsel (1985) by allowing
for conditionally heteroskedastic martingale difference sequence errors. We use these modified results
to study the asymptotic properties of the OLS estimator of the autoregressive slope parameters and
of smooth functions of those parameters. For concreteness, we focus on univariate autoregressions.
Multivariate generalizations of our results should be possible at the cost of more complicated notation.
Let the time series {y,;, t € Z} be generated from
o0
ye=_ by +en (2.1)
j=1

where ¢ (z) = 1-37%2, ¢,z # 0 for all |z] <1, and > i1 1¢;l < oo. The AR(co) data generating
process (2.1) includes the class of stationary invertible ARMA (p, ¢) processes as a special case. Instead of
the usual i.i.d. assumption, we postulate that {e;} is a possibly conditionally heteroskedastic martingale
difference sequence. We further restrict the temporal dependence of {e;} by controlling the behavior
of its high order cumulants. For j € N, let k. (0,/1,...,1;_1) denote the 4" order joint cumulant of
(50,5l1, ... ,elj_l) (see Brillinger, 1981, p. 19), where ly,...,l;_ are integers. We make the following

assumption:

Assumption 1. (i) {&;} is strictly stationary and ergodic such that E (4| F;—1) = 0, a.s., where Fy;_1 =
o (€1-1,€1-2,...) is the o-field generated by {e;_1,e¢_9,...}; (i) E (¢7) = 0? < oo; and (iii)

ZZO:_OO Z?j:—oo E?::_oo ‘Hs (0,[1,[2,13) | < Q.

Assumption 1 allows for conditional heteroskedasticity of unknown form in ¢; and can be verified for

ARCH, GARCH, and stochastic volatility models, provided that E (5?) < 00, which typically requires



additional restrictions on the innovation distribution and on the parameters defining these processes
(cf. Kuersteiner, 2001 and 2002).

Assumption 1 (iil) imposes a summability condition on the fourth-order joint cumulants of &,
ke (0,11,12,13). By stationarity of &;, these are a function only of l1,ls and I3, and not of ¢, i.c.
Ke (8t + 11, t + 1o, + 13) = ke (0,11, 12,13) for all £. The mean zero assumption on &; implies . (0,11, l2,13)
E (ereinctr,6041s) — B (ei80q0y) B (epi,6011,) — B (e18041,) B (S €011y) — B (e160113) B (€t1,8041,) - If
¢ is i.id., then k. (0,11,l2,13) = FE (5?) -3 (E (5%))2 for 1 = I = [3 = 0 and zero otherwise. With
higher-order dependence of &;, the fourth-order cumulants have a more complicated structure. The
summability assumption on k. (0,11, 1, l3) restricts the dependence in the error process. This assump-
tion is standard in the time series literature (see Andrews, 1991, pp. 823-824, and the references
therein); it is implied by an a-mixing plus a (fourth order) moment condition on &; (see, e.g., Lemma
1 of Andrews, 1991, or Remark A.1 of Kiinsch, 1989).

Under these assumptions, it follows that y; has a causal infinite-order moving average representation

o
Y=Y e,
i=0

where ¢y = 1, ¢ (2) = 1/¢ (2) = 3272, W, > 520 ;| < oo (see Bithlmann 1995).

Let ¢ (k) = (¢y,...,¢;) denote the first k autoregressive coefficients in the AR(oco) represen-
tation. Given a realization {yi,...,yn} of (2.1), we estimate an approximating AR(k) model by
minimizing (n — k)™ Siern (e — B (k‘)'Yt_l,k)2, by choice of B(k) = (B1,...,5;), where Y;_j =
(Y1, - - -, Yi—k) . This yields the OLS estimators

¢ (k) = (&51,1“ s Py k)l =0Ty,

2
where

Te=(n—k~" Z YiaxY{ 1y and Tgy=(n—k)~"' Z Y1 kvt
t=1+k t=1+k

The population analogues of fk and f‘k,l arel', = F (Y,/,L/CY]L1 k) andI'y 1 = E (Yi—1,1yt), respectively.

As in Lewis and Reinsel (1985), we impose the following conditions on k:



k2

Assumption 2. k is chosen as a function of n such that (i) 7

j=k+1

0as k,n— oo.

Assumption 2 requires that k¥ — oo as n — o0o. Assumption 2 (i) stipulates that, nevertheless, k

should not increase at a rate faster than nl/2

. Assumption 2 (ii) imposes a lower bound condition on
k. In particular, k should be large enough as to ensure that the ¢; are effectively zero for all j > &, for

some k. This assumption allows us to approximate the AR(oc) process by a finite-order AR model.

Our first result is as follows:

Theorem 2.1. Let {y;} satisfy (2.1) and assume Assumptions 1 and 2 hold. Then Hg}ﬁ (k) —¢ (k)H =
or (57).

Here and throughout the paper, for an arbitrary vector a we let ||a|| = (a a)l/ ? denote the Euclidean
norm of a; similarly, for any matrix A, we let || A|| denote the matrix norm defined by ||A||* = tr(A’A).

Theorem 2.1 implies the consistency of ¢ (k) for ¢ (k) , since % — 0 under Assumption 2. Tt is a
univariate extension of Theorem 2.1 of Paparoditis (1996) to the conditionally heteroskedastic AR (o0)
case. For the multivariate context, Lewis and Reinsel’s (1985) Theorem 1 contains the weaker result that
H&S (k) — ¢ (k) H = 0p (1) when ¢; is i.i.d. and k is chosen such that k2/n — 0 and k'/? Z;’in ‘qu‘ — 0.
The latter condition imposes a lower bound on k that is less restrictive than our Assumption 2 (ii).
This lower bound condition is satisfied by any {y;} generated by (2.1), provided that ‘(ﬁj‘ — 0 at a
geometric rate as j — oo, independently of the rate at which k increases with n. In particular, all
stationary and invertible ARMA(p, q) processes will satisfy this condition, if & — oo. Here, we impose
the stronger Assumption 2 (i) to ensure consistency of ¢ (k) for ¢ (k) at rate %, which will prove
useful for establishing our bootstrap results in the next section. Assumption 2 (ii) is standard in the
literature (cf. Berk, 1974, Theorem 2, Lewis and Reinsel, 1985, Theorem 4). It is also used below to
obtain the limiting distribution of (a linear combination of) v/n — k (g}ﬁ (k) —¢ (k)) As Ng and Perron
(1995) remark, Assumption 2 (ii) amounts to requiring that k grow at least at a polynomial rate with n,
as opposed to the rate log (n), for example. Ng and Perron (1995) discuss implications of this condition

for the choice of k based on alternative lag-order selection criteria.

— 0as k,n — oo and (ii) n'/2 3.2 ‘¢j‘_>



To derive the asymptotic distribution of the estimated autoregressive parameters we impose an
additional summability condition on the eighth-order cumulants of £;, thus further restricting the de-
pendence in the error process. We also impose a stronger upper bound condition on &, similar to Lewis

and Reinsel (1985). Thus, we strengthen Assumption 1 (iii) and Assumption 2 (i) as follows:
Assumption 1. (iif') 3700 > ke (0,11, ,17) | < oo,
Assumption 2. (i') k is chosen as a function of n such that % — 0 as k,n — oo.

Theorem 2.2. Let {y;} satisfy (2.1) and assume Assumptions 1 and 2 hold, strengthened by Assump-
tions 1 (i) and 2 (i'). Let £ (k) be an arbitrary sequence of k x 1 vectors satisfying 0 < My < ||£(k)||* <
M; < 00, and let v} = € (k) T Byl '€ (k), with T = B (Yi 14Y{_y ) and By = B (Vi1 kY, 7).

va,% > 0 for all k, then
k) V=K ((K) = & (R)) Joe = N (0,1),

where = denotes convergence in distribution.

Theorem 2.2 extends (the univariate version of) Theorem 4 of Lewis and Reinsel (1985) to the
martingale difference sequence case, given the same lower and upper bounds on the rate of growth of k.

As in Berk (1974) and Lewis and Reinsel (1985), we show in the Appendix (cf. Lemma A.3) that
(k)Y Vn—k (g}ﬁ (k) —¢ (k)) is asymptotically equivalent to £ (k) T';? ((n — k)12 itk Yt—l,k€t>-
We then apply a CLT for martingale difference sequences to é(k:)’F,;l ((n — k)_l/2 PV Yt—1,k€t>-
In particular, we prove that S = (n — k)_1 itk ()Q,17k}/t’71’k5% - FE ()Q_MYt’_l’kte%)) vanishes in
probability by applying a mean square convergence argument (i.e. we show E ||Sk||2 — 0). This explains
the need to introduce Assumption 1 (iii’).

According to Theorem 2.2, under our assumptions the asymptotic variance of
0k Vn—k ({b (k) — ¢(k)) is v2 = ¢ (k) Ty ByI; ¢ (k), as opposed to o2/ (k) Ty ¢ (k) in the iid.
case (cf. Lewis and Reinsel, 1985, Theorem 4). Thus, the presence of conditional heteroskedasticity
invalidates the usual OLS inference for AR(oc) processes.

To characterize further the asymptotic covariance matrix of the estimated autoregressive coefficients

of the sieve approximation to (2.1) it is useful to define oy, 4, = F (€t_l1€t_l2€%), for {1, =1,2,....



We note that «y, j, is closely related to the fourth-order joint cumulants of ¢;. More specifically, for
l1,l2 > 1, we have that ay, ;, = ke (0, =11, —l2,0) when Iy # I3, and oy, 4, = ke (0,11, —l2,0) + o' when
[y =l>. In the ii.d. case o, 4, are equal to 0 when [; # I, and they are equal to o* when l; = l5. As
we will see next, By, depends on the fourth order cumulants, or the closely related «y, ;,, whose form is
affected by the conditional heteroskedasticity. Let b;j = (¢j_1, NN k)', with ¢; =0 for j <0, and
note that Y;_ , = Zji] bjreir—j. This implies

0o o0 0o o0

Br = > bjali kB (er—jer—iei) = D > biwbl g,

j=1i=1 j=1i=1
given the definition of «; ;. Under conditional homoskedasticity (or the stronger i.i.d. assumption),
@i j = o'l (i = j), where 1 (-) is the indicator function. Thus, in this case, By = o D bl = o?T,
implying that v? simplifies to o4 (k)’ F,;lli (k), the asymptotic variance of the estimated autoregressive
coefficients in the i.i.d. case.

In practice, v = ¢ (k) I’,;lBkI’gllZ (k) is unknown and needs to be consistently estimated for the
normal approximation result of Theorem 2.2 to be useful in applications. Under our assumptions, a con-
sistent estimator of I'y, is given by I'y = (n — k)" D1tk Y;‘/—l,kYtI—l,k (see Lemma A.2 in the Appendix).
In the possible presence of conditional heteroskedasticity of unknown form, consistent estimation of By,
requires the use of a heteroskedasticity-robust estimator. Here we use a version of the Eicker-White
estimator, specifically, By = (n — k)™ Dotk YFLkYrLLkéikv where &, =y — Y;’_17k$ (k) is the OLS
residual of the autoregressive sieve. Our next result shows that 92 = ¢ (k)'f‘,;llékfglﬁ (k) is a consis-
tent estimator of v,% under the same assumptions on £; as in Theorem 2.2, but with a slightly tighter
upper bound on the rate of growth of k. In particular, we now require k*/n — 0 instead of the weaker

condition k3/n — 0 needed for asymptotic normality.

Theorem 2.3. Under the assumptions of Theorem 2.2, if in addition k satisfies k — oo as n — o0

such that k*/n — 0, then ‘@,% - v,%‘ =op ().



3. Asymptotic Theory for the Bootstrap OLS Estimator

In this section we study the theoretical properties of bootstrap methods for AR(oo) processes subject

to conditional heteroskedasticity of unknown form in the error term.

3.1. Fixed-design Wild Bootstrap for Sieve Autoregressions
The fixed-design WB consists of the following steps:
Step 1 Estimate an approximating AR(k) model by OLS and obtain OLS residuals
B =yt — Y/ 14, (k) fort=1+Fk .. .,n,
where ¢ (k) = ((}51,,6, ey (}S,ﬁ,ﬂ)I is the vector of OLS estimators.
Step 2 Generate WB residuals according to
&g =Eipmy, fort=1+k,...,n,

with 7, ~ 1.i.d.(0,1) and E* |n,[* < A < 0. One possible choice is 7, ~ iid. N(0,1). Other

choices have been discussed by Liu (1988) and Mammen (1993), among others.
Step 3 Given &S(k:) and éf’k, generate bootstrap data for the dependent variable y; according to

y; = 1’,5'_1,k<§5(/<:) +étg, fort=1+4+k .. ,n

~ % ~ % ~ % ! .
Step 4 Compute ¢, (k) = ((ﬁfwb,]_,k, NN qﬁfwb’k’k) by regressing yf on Y;_j 4.

According to the previous algorithm, &;wb (k) = f‘,:lf”]iwb,k,l, where T'; is defined as before and
f‘}wb’k’l = (n— k)" %14k Yio1,94, with y} as described in Step 3. Next, we show that the conditional
distribution of £ (k) v/n — k ((Aﬁ;wb (k) — ¢ (k)) can be used to approximate the true but unknown finite-
sample distribution of £ (k) vn — k ((Aﬁ (k) —¢ (k))

Our main result is as follows:



Theorem 3.1. Under the assumptions of Theorem 2.2, if in addition k satisfies k — oo as n — o0

such that k*/n — 0, then
L) Vi = ($pun (K) = & () ) foe = N (0,1),
under P* with probability approaching one, and for any § > 0

P {sup P [e (kY Vo —k (qz;'zwb (k) — Qp(k)) < x] -pr [e(k)’ Vn—k ({b (k) — ¢ (k:)) < x] ‘ > 5} -0,

z€R

where P* is the probability measure induced by the fixed-design WB.

Remark 1. Under the conditions of Theorem 3.1, the (conditional) asymptotic distribution of the
fixed-design WB OLS estimators is identical to the asymptotic distribution of the OLS estimators
evaluated on the original data. Thus, Theorem 3.1 establishes the first-order asymptotic validity of the
fixed-design WB for the autoregressive parameters of AR(oco) processes subject to possible conditional

heteroskedasticity of unknown form.

Remark 2. The assumptions underlying the bootstrap approximation in Theorem 3.1 are the same
as those needed to apply the asymptotic normal approximation based on Theorem 2.3. Note that the
bootstrap population variance, vi? = é(k)'Fglﬁkfglé(k)', depends on the same heteroskedasticity-
robust covariance matrix estimator of By, as the estimator 13,% in Theorem 2.3. In both cases, the same

upper bound on the rate of increase of k is needed to ensure consistency for v,%.

3.2. Pairwise Bootstrap for Sieve Autoregressions

The pairwise bootstrap consists of the following steps:

Step 1 For given k, let Z = {(yt,Y;’_l,k> =14k, ... ,n} be the set of all “pairs” (or tuples) of

data.

Step 2 Generate a bootstrap sample Z* = {(yz‘, t*—/l,k> =14k, ... ,n} by resampling with re-

placement the “pairs” of data from Z.
~ % ~ % ~ % ! .
Step 3 Compute ¢, (k) = <¢pb,1,k7 . ,gbpb’k’k,) by regressing y; on Y;" ;..

10



: 0 * P — 17 I —1 x5 * [k
Accordingly, let ¢,, (k) = I‘pb?,iI‘pb,kj17 where F;b,k = n—k)" > 1@*_1,,61/;_’17,6 and I, | =
(n— k)_l Z?:l-i—k Y;/*_l,kyf, and define 5;1]@ =yi — Y{k_ll,k‘ls (k) é;tk,k =yi — Y{k_ll,k& (k) and &, = yt —

Yt’~1,k$ (k). Our main result is as follows:

Theorem 3.2. Under the assumptions of Theorem 2.2, if in addition k satisfies k — oo as n — o0

such that k*/n — 0, then
C(R) V= (b (k) = 6 (B)) fox = N (0,1),
under P* with probability approaching one, and for any § > 0

P {sup P [ﬁ k) Vo —k (&5;‘,,, (k) — Zp(k)) < x] _p [e(k)’ Vn—k ({b (k) — ¢(k)> < x] ‘ > 5} -0,

z€R

where P* is the probability measure induced by the pairwise bootstrap.

It is useful to differentiate the pairwise bootstrap from the blocks-of-blocks (BOB) bootstrap, as
discussed in Gongalves and White (2002). Let r denote the first-stage block size and s the second-stage
block size of the BOB bootstrap. The pairwise bootstrap for AR(oco) processes emerges as a special
case of the BOB bootstrap with » = p+ 1 and s = 1. Note that under our assumptions choosing s > 1

given r = p + 1 would be inefficient.

4. Extensions to Smooth Functions of Autoregressive Parameters

Typically, in applied work interest focuses not on the autoregressive coefficients themselves, but on
smooth functions of autoregressive parameters. A leading example are coefficients of impulse responses,
which can be written as nonlinear functions of the autoregressive coeflicients. Other examples include
the half-life of deviations from the unconditional mean or cumulative impulse response coeflicients. In
this section we establish the validity of the two bootstrap methods analyzed in the previous section for
smooth functions of ¢ (k). Extensions to other functions of interest in applied work are discussed in
Inoue and Kilian (2002). Specifically, we let g (¢ (k)) denote the parameter of interest and g (d} (k)) its
estimator. In addition, we postulate that ¢ is a smooth function from R* to R satisfying Assumption

3 below, where Vg (z) = 0g/0z for any = € RF.

11



Assumption 3. (i) 0 < M; < ||[Vg (¢ (k)| < My < oo ; (ii) Vg satisfies a Lipschitz condition, i.c.

there exists M < oo such that ||Vg (z) — Vg (y)|| < M ||z — y| for all z,y € R*.

With the additional Assumption 3, the following corollary to Theorems 3.1 and 3.2 is true. To
conserve space, we let &5* (k) denote the OLS estimator obtained with either of the two bootstrap

schemes studied in the previous section.

Corollary 4.1. Let {y;} satisfy (2.1) and assume that Assumptions 1 and 2 hold, strengthened by

Assumptions 1 (iif' ) and 2 (7). If in addition Assumption 3 holds and k satisfies k — oo as n — oo such

that k*/n — 0, then for any § > 0

P{sup P va=F (g (8" W) =g (#)) <] = P [Va=F (s (8®) — g (6 (W) <] | > a} -0,
z€R

where éﬁ* (k) denotes either the fixed-design WB or the pairwise bootstrap OLS estimator.

5. Discussion

A large number of papers in the time series literature has relied on the work of Berk (1974), Bhansali
(1978) and Lewis and Reinsel (1985) in establishing theoretical results based on autoregressive sieve
approximations. Our analysis is likely to be useful in extending these results to the case of models
with martingale difference errors subject to possible conditional heteroskedasticity of unknown form.
Of particular relevance are problems of inference both in the univariate and in the multivariate context.

For example, Ng and Perron (1995) study problems of lag order selection for sieve autoregressions by
sequential ¢-tests. Diebold and Kilian (2001) and Galbraith (2003) consider inference about measures of
predictability based on autoregressive sieves. Liitkepohl (1988a) derives the asymptotic distribution of
the estimated dynamic multipliers. Liitkepohl and Poskitt (1991) extend these results to orthogonalized
impulse response estimates and forecast error decompositions. Liitkepohl and Poskitt (1996) propose
tests of Granger causality in the context of infinite-order autoregressions. Liitkepohl (1988b) investi-
gates tests of structural instability for autoregressive sieves. All these studies are based on asymptotic
distributions derived under the i.i.d. error assumption that is invalidated by the possible presence of

conditional heteroskedasticity. Our asymptotic results provide the basis for developing robust methods
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of inference for these problems. Alternatively, appropriate inference may be conducted based on the
robust bootstrap methods discussed in this paper. Using asymptotic approximations based on the delta
method requires the evaluation of the gradient of the function of interest, which can be cumbersome.
An attractive feature of the bootstrap approach in this context is that it dispenses with the need to
derive closed-form formulae for the standard errors of each statistic of interest. An interesting extension
of this paper would be a study of the relative accuracy of the first order asymptotic approximation and
of the bootstrap approximation.

Although we focused on stationary linear processes our results will also be useful in the context
of studying cointegrated processes, building on the framework developed by Saikkonen (1992) who
proposed to approximate cointegrated linear systems with i.i.d. innovations via autoregressive sieves

(also see Saikkonen and Liitkepohl 1996; Liitkepohl and Saikkonen 1997).

A. Appendix

Throughout this Appendix, the scalar C denotes a generic constant independent of n. For an m x 1
vector a, let ||a|| denote the Euclidean norm i.c. ||a||? = a’a. Given an m x n matrix A, let || A denote
the Schur’s matrix norm defined by ||A|*> = #r (A’A), and let ||A||, = sup,zo{[|Az|| /[|z[|} denote the
subordinated matrix norm associated with the Euclidean norm (the so-called spectral norm). Then,
|A]l; = max{V/X : X is an eigenvalue of A’A}, i.c. ||A||? is the largest eigenvalue of A’A (if A is

symmetric, then || A[|? is the square of the largest, in absolute value, eigenvalue of A). The following

inequalities relating ||-|| and ||-||; are used below:
IAIIF < J|AJI7, and (A.1)
IABI* <|IAIF1BI*  and  [ABI* < |IBII Al (A.2)

for any two compatible matrices A and B (cf. Horn and Johnson (1985), p. 314 for (A.2) and p. 313
for (A.1)).
For any bootstrap statistic 7,; we write T.¢ L probability when lim,,_,o P [P* (|Tx| > 6) > 6] =0

for any § > 0, i.e. P*(|T| > &) = op (1). We write T = Op+ (n") in probability when for all § > 0
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there exists a My < oo such that lim,_o P [P* (‘n_)‘T;[‘ > Mj;) > 6] = 0. We write Tj; =97 D, in
probability, for any distribution D, when weak convergence under the bootstrap probability measure
occurs in a set with probability converging to one.

Lemma A.1 below proves the absolute summability of the fourth order joint cumulants of
(Yts Yttly > Yttlss Yt+ls ), given the absolute summability of the fourth order joint cumulants of
(€t €ttty s Ettlys Ettls)- We will let Cum (-, ..., -) denote the joint cumulant of the set of random variables
involved. Lemma A.1 follows from Theorem 2.8.1 of Brillinger (1981, p. 19) under our Assumption 1.
Lemma A.2 is an extension of Berk’s (1974) Lemma 3 for AR(oc) processes with i.i.d. errors to the

case of AR(o0) processes with m.d.s. errors satisfying Assumption 1. Its proof uses Lemma A.1.

Lemma A.1l. Let {y;:} be generated from (2.1) and assume that Assumption 1 holds. Then

Z Z Z |y (0,11,12,13) | < o0,

h=—o0lsa=—0ls=—

where ry (0,11,12,13) is the fourth order joint cumulant of (yi, Yet1, s Ytstos Yetis) -

Lemma A.2. Let {y:} be generated from (2.1) and assume Assumption 1 holds. Then, if k,n — oo

such that k*/n — 0,
Hf,;l . r,jHl —op (1). (A.3)

If instead k3 /n — 0,
k12 Hf,;l - r,;lH —op (1). (A4)

1

The next lemma is useful for deriving the agsymptotic distribution of the estimated autoregressive

parameters. For the univariate case it is the martingale difference sequence extension of Lewis and

Reinsel’s (1985) Theorem 2.

Lemma A.3. Let {y;} satisfy (2.1) and assume that Assumptions 1 and Assumption 2 () and (ii)

hold. Let £ (k) be an arbitrary sequence of k x 1 vectors satisfying 0 < M, < ||£ (k)||* < Ms < oc. Then

Vi — kb (k) ({b (k) — ¢ (k)) — V= ke (k) T} <(n —nt Y Yt_l,ket> — op (1).

t=14+k
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The following results are the bootstrap (fixed-design WB and pairwise bootstrap) analogues of

Lemma A.3.
Lemma A.4. Under the assumptions of Lemma A.3,

k) V= (B (B) = & (B)) for = (n—B) ™12 3 (R T 0p 'Y kg + T

t=1+k

where 7, = op« (1) in probability, i.e. P* (

r}wb‘ > 5) =op (1) for any § > 0.
Lemma A.5. Under the assumptions of Lemma A.3,

£ VAT (B (B) = 300 Jor = (= B2 £ T 0 g+ 7

t=1+k

where ry, = op- (1) in probability, i.e. P* ( Tpb

) =op (1) for any § > 0.
Proof of Theorem 2.1. We follow Lewis and Reinsel’s (1985) proof of their Theorem 1. Let g; =

yr — Y/ | 19 (k). We write

~

b (k) — ¢ (k) =T (D — Tuep (k)

T
=T (n—k Z Yo (g — Y8 (k) =T3 (n— k)7 Z Y1 k€
t=k+1 t=k+1
=" (n—k) Zytlk(ﬁ—&tk)-i-r ZYtlk&
t=k+1 t=k+1

Using (A.1), we have

) = o )| < [B5" | 0wl + £ 10l (A.5)
where
Uin=(n—k Z Yioix (et — enk) (A.6)
t=k+1
and
Uz = (n—k Z Yio1 k€t (A.7)
t=h+1

Next, we prove: (a) Hf‘;lHl = Op (1), (b) U] = Op( 1/2), and (c¢) ||Uanll = Op (%) For (a),

note that Hf,;lHl < HI‘;IHI + Hf’,;l - I‘,;lHl. As in Berk (1974, cf. equations (2.14) and (2.18)), under
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our conditions the spectral density of y; is bounded above and bounded away from zero, implying that
|ITx]|, and HI‘;IHI are bounded uniformly in k. From Lemma A.2 we have that Hf‘,:l -t Hl = op (1)
provided k% /n — 0, which proves (a). Next, we prove (b). By the triangle inequality for vector norms

first, and the Cauchy-Schwartz inequality second, we get

O O 1/2 1/2
E(Unl) < (=07 3 Blliip (e =)l = (0= k)7 S (BIVicaall?) ™ (Ble —enl?) "
t=k+1 t=k+1

Now, E ||Y;— 1k|| =F (Zj N J> = Z?ZlE (yf_j> < Ck, given that E (yf_j> =02y X PI<C<

oo uniformly in j under our conditions. Observing that e; — e;p = — Z;’ik 41 ®jYt—j, by Minkowski’s
inequality,
2\ 1/2
1/2 s = 5 N1/2 =
(Bley —egl?) " = | E|- Z biYi—j < Z ;1 (Elyi_;1) " < C Z 651, (A.8)
j:k‘—l‘l j=k+1 j=k+1

implying that E (|Ur,]|) < Ck'/? > 7 ki1 |#;]. Thus, by the Markov inequality, for any é > 0,
nl/? 1 n1/2 C |h =
P (W Ol > 5) < 5 B0 < So'2 37 19,1 >0,
j=k+1
. . kl/2 k1/2
by Assumption 2 (ii). Thus, ||Ui,|| = op (W) and therefore Op (m) Lastly, we show (c). We can
write

(HUQnH ) 22 Z Z E (yt—jys—jeres) = QZ Z E yt ]5t (A.9)

J=1t=14+k s=1+k j=1t=1+k

since F (ys—jys—jeres) = 0 for t # 5. Also, using the MA(oco) representation of y;,

X 2 X o0
E (th—j‘g?) = FE (Z ¢l€t—j—l) 5? = Z Z YL E (5t—j—l15t—j—l25%)
1=0

11=01>=0

oo 00 2
- Z Z 1/)l11/)l2a11+J,l2+J <C <Z f‘bl) < o0,

11=013=0 =0

given that oy, 1 j,+; is uniformly bounded under Assumption 1 (iii) and that > ;2 |¢;| < oo. Thus,

E <||U2n||2> < Cnﬁlw implying ||Usy|| = Op (’;3;) by the Markov inequality. H
Proof of Theorem 2.2. First, note that v = ¢ (k) T'; ' By, ¢ (k) is bounded above and bounded

away from zero, given our assumptions. In particular, v,% > 0 holds by assumption. The fact that
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v? < oo follows from our assumptions. It suffices to show that (i) ||€ (k)| < My < oo; (ii) HI‘,;IH1 <
Cy < 00, and (iii) ||Bgll; < D2 < o0. (i) holds by assumption and (ii) follows by Brockwell and Davis’
(1991) Proposition 4.5.3. under our assumptions. To obtain (iii), write Y;_; ; = Z;’il bj k€¢—j, where
bjr = (¢j_1, e ,d)j_k)l with 1; = 0 for j < 0 and 9, = 1. It follows that
ox ox ox ox
By = E (Yi_14Yim14ef) = Z Z kb h B (t—igt—s€7) = Z Z bj kb i
Jj=11i=1 j=14=1
where «; ; = k. (0, —i, —4,0) for i # j and o j = o + k. (0, —i, —j,0) for i = j. Using these expressions
for «; ; and the fact that we can write I'y = o? Z]oil ijcb;-,k, we obtain
o o
1Belly < o® ITklly + D2 D [[bseblel, 1= (0, ~i,~4,0)].
j=1i=1
Given (ii), it suffices to show that the second term is bounded to establish that || B||; is bounded. Note
1/2
that Hbj’kb;’kHl < Hbj,kb;’k,H = (tr (bi,kb;’kbj,kb;k)) < "0 ¥ < oo. This together with Assumption
1 (iil) implies the desired result.

Thus, to show £(k) v — Fv; " ({b (k) — ¢ (k)) ~  N(0,1) it suffices that
(n— k)42 Sk LK) T 'Yio1ket/vi, = N (0,1), given Lemma A.3 and the Asymptotic Equivalence
Lemma, (cf. White 2000, Lemma 4.7). Let z,; = £ (k) F;lYt_l,ket/vk. To prove that (n — k)_1/2 Z?:Hk Znt =
N (0,1) we apply a CLT for m.d.s. (cf. Davidson, 1994, p. 383) since E (znt|et—1,€4-2,...) =
¢(k) Ty Y1405 L E (etlet—1,€t-2,...) = 0 under Assumption 1. Hence we need to show that (a)

—-1/2

(n—k) 0 p 22 — 1 50, and (b) maxyperan (0 — k)7 |20 5 0. We start with (a). Note

that Var (zqt) = £ (k)' T ' By, ' (k) /v? = 1, with By, = E (Yt—l K ks,) We can write

1 < _ _ R _
n—k Z =1 = Ukz {g(k)’rkl <n & Z Yt—l,kYtl—l,kgz? - K (Yt—l,kYt/—l,kg%)> Fklg(k)}

t=1+k t=1+k
v 2 {e(k)' T 1S T (k)Y

with the obvious definition of S;. Because v,% > 0, 11,;2 is bounded, and it suffices to show

(k) T ST 0 (k) 5 0. We have that

|€ (k) TSk e (R) | < I R)H|TR ] 1Skl [T ] e R < M2C3 1Skl
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since |4 (k)||*> < M, and HI‘,;IHI < C uniformly in k. Next we show that ||Si||;, = op (1). By the

Markov inequality it suffices to show that E ||Sk||? — 0 or, by (A.1), that E|Sg||* = 0. We have

kE k k k
IS < BISH? = Y3 B(Si2) = =3 Y (0K E(SE)

i=1 j=1 i=1 j=1

where [Sy]; ; denotes element (7, 7) of Sy,. Below we use Assumption 1 (iii’) to bound

2
n
=R B () =008 | (007 3 (et~ Bl | a0
t=1+k
by a constant C, independent of 4,5 or n, implying that E||Sg|? < Cr— K o — 0 if k*/n — 0. To prove

(b), note that for any n > 0 and for some r > 1,

P< max |zpe| > \/Fﬁ) 2": <|znt| >\/7Tn> < 2": Lﬂtlr (A.11)

/2
thstsn t=1+k =11k (0 — k) o
Letting v; ), = ¢ (k) F,;lYt_Lk., we can write z,; = vk_lvt,kst, and by the Cauchy-Schwartz inequality, it

follows that
_ 1/2 1/2 1/2
Blentl” = Blogger/oil” < [og'[" (Blos”) " (Ble”) " <0 (Blog™) 7, (A12)

given that 1;,;1 = O(1) and Elg)* = O(1), for r < 4 under our assumptions. We now prove that
E |’ut7k|2r = O (k") . Given the definition of v ; and the norm properties of vectors and matrices, v, ;| =

€ (k) T Y] < 1) |T5 | 1¥imrall s so that
T

k
o = [€ (k) Ty War | < IR |05 ) IYem < MECH Yoo ill™ = MECE | Y92

j=1
Thus,
& r . ry 17
Elogl” < MICSE|> ui ;| =M;C5 || B vi
k ! k !
< Moy (S (Bli,[)" ) <mpep [ av| < mpczaw,
Jj=1 Jj=1

where the second inequality holds by the Minkowski inequality and the third inequality holds by the

fact that F |y5wj|27" <A< oo forall j =1,...,k and for some r < 4. It follows from (A.12) that

18



E|zn|" < C (M5C5AET)Y? < Ck™/2, for some finite constant C, which implies from (A.11) that
n
Lr/2 r/2
P< max |2pt] > vVn— kn) < Z 072 =0 k72 . (A.13)
1+k<t<n ioian (= k)2 g (n— k)21

%372

Letting r = 3 implies that (A.13) is O (7(71_16)1/2

), which is o (1) provided k*/n — 0, as we assume.
To conclude the proof, we show that (A.10) is bounded uniformly in 4,5 = 1,...,k and n. Define

$; = 0 for j < 0. Using the MA(occ) representation of y;, we have that (A.10) is equal to

n n
-1 . .
(n—k)"" D" Y Cov (ye—ivi—jei, ys—its—j€3)
t=1+k s=1+k
o n n
-1 . .
= Z Y, i, (n—k) Z Z Cov (5t—i—l1€t—j—l2€f7 5s—i—l355—j—l45§) :
U yelaz=—00 t=1+k s=1+k
Next, we show that
n n
-1
(n—k) Z Z Cov (€t_i_l16t_j_l2€%,€s_i_l3€5_j_l4€z) <, (A.14)
t=1+k s=1+k
uniformly in ¢, j, 11, ..., 14, and n, which proves the result given the absolute summability of {¢ j}. By an

application of Theorem 2.3.2 of Brillinger (1981, p. 21) we can write Cov (at,iwllgtﬁj,be%, ssmiwlgss_j_ueg)
as the sum of products of cumulants of £ of order eight and lower. In particular, if we let Y7 =

Et—ityEt—j—1,E7 and Yo = €5_;_,65_j_1,62, then
Cum (Y1,Y2) = Z Cum (X5 :4,5 €v1)...Cum (X4 14,5 € vp) (A.15)
v

where the sum extends over all indecomposable partitions v = v; U ... U, of the following table

Ep—i— El—qi—1 £ £
X = t—i—I; t—j—ly t t
€s—i—ly Es—j-1ly Es Es

By the mean zero property of ; only partitions with a number of sets smaller or equal to 4 (i.e. with
p < 4) contribute to the sum in (A.15).

Consider p = 1, i.c. consider v = {€/—j—1;,Et—j—1s>Et> €t Es—ilys Es—j—lar €55 Es}- This term con-
tributes towards the sum with the 8th order joint cumulant Cum (g;—;—y, , Et—j—lyy Ets Ets Es—i—lgs Es—j—lgsEso €s),
which by stationarity can be written as k. (t —s — i —l},t —s —j—lo,t — s,t —s,—1 — I3, —j — 14,0,0) =

ke (T—i—Ily,7—j—lo,7,7,—1—l3,—j — 14,0,0), if we set 7 =t — s. Thus, by a change of variables
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the contribution of this term to (A.14) is

n—{1+k) |’T|
Z (1_ n—k,‘) ’fs(T_Zl_llaT_j_127T7T7_i_l37_j_l470a0)
T=—n+(1+k)
00
< Z ‘He(T_Z'_l177—_j_l277—777_i_l37_j_l470a0)’
T=—00
0o 0o 0o
< Z Z Z |ke (T1,7T2,...,77,0)| < o0,
TI=—00 T2=—00 T7T=—00

by Assumption 1 (iii’). For p = 2 the mean zero property of ¢; implies that only partitions v = v U v
with cardinalities (#vi, #v2) € {(4,4),(2,6),(3,5)} contribute to (A.15) with a non-zero value, i.c.
products of cumulants of orders 2 to 6 enter this term. Here #uv; is used to denote the number of
elements contained in each set v;. Because the sum is taken over indecomposable partitions there is
at least one element of each row of X in at least one set of each partition. This implies that we can
express some of the cumulants entering the product as a function of ¢ — s. The summability condition
Assumption 1 (iii’) then ensures the boundedness of the contribution of these terms to the sum in
(A.14). The same reasoning can be applied for p = 3, where (#v1, #v2, #v3) € {(2,2,4),(3,3,2)}, and
for p = 4, where (F#v1, #ve, #vs, #v4) € {(2,2,2,2)}. R

Proof of Theorem 2.3. Adding and subtracting appropriately, we can write
bp—ve =L (k) T  (By — By ) T (k)0 (k) (D —T.Y ) BeD (k)£ (k) T By (T =T ) £ (k
bp—vi = €(k) Iy k k) T e (k)+E (k) (T k kL (k) +L (k) Ty By (T k (%),

which is bounded by |92 —vi| < C (HBk — BkH + Hf‘,;l — F,;lHl) , for some constant C, given that
1€ (k)| HF;l H1 ,and || Bg||; are bounded, and that Hf‘;l H and HBk H are bounded in probability. Under
; 1 1

our assumptions,

‘f;l —I‘,;IH = op (1), see Lemma A.2. Next, we show that HBk - BkH = op (1),

which proves the result. We can write HBk — BkH < Ay + Ay + Az, where

n
=k > YiaawYy, (67, — €f)
t=1+k

n
—1 2 2
(n—k)"" > ViV (67 — ci)
t=1+k

A1: 7A2:

bl

Az =

n
(n— k)m1 Z (Y%*lka;le,kg% —FE (Yt—l,kyf—l,sz?)) H :
t=1+k

We can show that A3 = Op ( (n_’;)l /2> under our conditions (see proof of Theorem 2.2. Aj here
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1/2
corresponds to Sy there). Next, we will show that A; = Op <<’j:> ) , which is op (1) if %4 — 0, and

A = Op (k Z;‘iu-k ’¢,j

)7 which is op (1) if n'/2 37, |#;] = 0 and k?/n — 0. Consider A;. Write

Tt
-1 A A
(n—k)"" D Vi1V peen (Ben — nn)
t=1+k

<

Tt
—1 ~ ~
(n—k)"" Y YiwYiak Gok — k) Eok +eep)
t=11k

A=

n
(n—k) " Z Yio1 kY pern (Bop — k) || = A + Ao

t=1+k

_l’_

We will consider only A1;. The analysis of A3 follows by similar arguments. Replacing &;  — & with

~

_Ytl—l,k (qﬁ (k) — ¢ (k)) and applying the triangle inequality and the Cauchy-Schwartz inequality yields

A = (=R Y Y aY kY ke (Qb(k)—w))H
t=1+k
< o) =) =8 D2 1Yl ferl
t=1+k
n 1/2 n 1/2
< ety -gm) <<n—k>"1 > Wik °> <<n—k)—1 > |ét,k|2)
t=1+4k t=1+k

E1/2 5/ L4/2
OP <m> OP (k/>OP(1):OP m 5

where the second equality holds by Theorem 2.1, the fact that E ][ﬁ_1’k||6 = O (k®) (since E lye|® <
A < o0) and (n — k)_1 Dok |ét,k|2 = Op (1). Since k'/n — 0, it follows that A;; = op (1).
Next, take As. Since g4y = €4 — Z_?iprk ¢y and sf,k — &2 = (g4, — 1) (€t + £1), We can write

n [e.¢]
—1
A< |l =K1 Y YeouaYigeen [ — D by
t=1+k j=1+k

n o
+|(n—k)~! Z Yio1 kY pee | — Z biyt—j ||| = A1 + Asa.
=1tk J=1+k

Consider Asy. The analysis of Ay is analogous. An application of the triangle inequality and the

Cauchy-Schwartz inequality yields

T o0 o0 T
Ay < (n=k)"" D0 IWaciklPleed D il lwe—il < D0 ol (n =81 D0 IVierel el
t=1+k j=1+k j=1+k t=1+k
o0 n 1/2 n 1/2 o0
< Z |95 <(”—k)m1 Z Y1k 4) <(”—k)_1 Z |5tyt—j|2) =0Op |k Z 195 |5
j=1+k =14k t=1+k je=1+k
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given that E||Yt_17k||4 = Op (k*) and that Elew;I? < A < oo for all ¢,5. But k37 9| =
#nlﬂ Z;iu-k ‘qu‘ — 0 under Assumption 2 (ii) and k/n'/? — 0, which implies Ay = op (1).

Proof of Theorem 3.1. Given Lemma A.4, it suffices to show that (n — k)~'/? St Why =P
N (0,1), in probability, where w}, = K(k)lflzlvglﬁ_l,ké;k. Because conditional on the original
data w}, is an independent (not identically distributed) array of random variables, we will apply
Lyapunov’s theorem (Durrett, 1996, p. 121). Note E* ((n—k -1/ itk wnt> = 0 and 52 =
Var* ((n “Yzsm wn,) = %, with o} = £ (k)' T BL' M () and vi? = (k) T Byl e k),
B, = (n— k)_l Dtk Y}_l,kY;’_l,ket,k. The proof will consist of the following steps: Step 1. Show

2 L 1, or equivalently, ’UZZ — v,% LA 0, given that v,% is bounded away from zero. Step 2. Verify

Qi

e _ P
Lyapunov’s condition, i.e., for some r > 1, (n — k)™ > i, , E* |w;;t|27" = 0.

Proof of Step 1. By the triangle inequality, ‘v - vk‘ < ||¢(k HF lHl HBk - BkH <C HBk — By,
for some constant C, given that ||£ (k)| and HI‘,:IH1 are bounded. By Theorem 2.3, BkH =op (1),
which proves step 1.

Proof of Step 2. We will show Lyapunov’s condition with r = 3. Let v, ), = ¢(k)'T 1Y} k- Then,
Wy, = v,;11;t7kéf’k. We have that

n n
TN E T = (=BT Y okl T o ek B T < C(n—k Z okl *" 204"
t=1+k t=1+k t=1+k
n 1/2 n 1/2
<Cn—k) T <(n —k > |vt7k|4’") <(n —k > |gt7k|‘”) .
t=1+k t=14k

By an argument similar to that used in Lemma A.4, we can show that (n— k)" Dok |ét,k|4r <

ar
(n—k)™" Z?:Hk e + Op <(Z;’;1+k ‘qﬁj‘) ) + Op ( 47«/2) provided E |y|'"" < A < oo for all ¢.
Thus, with 7 = 3, under our conditions it follows that (n — k)" 327, [é:x]*" = Op (1). Similarly, we

can show that (n — k)™ itk |vt7k|4r = Op (k") = Op (K*), with r = 3. Thus,

, zn: or kT k3 1/2
S B [ = Op (7) _ 0p ( ) —op (1),
t=1+k " (n—k)™ n—k

Proof of Theorem 3.2. Given Lemma A.5, it suffices to show that (n — k)~'/ St Why =P

if k3/n — 0.

N (0, 1) in probability, where w?, = £ (k) v II‘ Yr ket - Note that, conditional on the data, wy;, is in-
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] * *2 — - —
dependent with E* (w},) = 0 and Var* ((n — k) 1/2 ok 11)nt> = %, where vi2 = £ (k) T} ' By, M (k),
*2
as in the proof of Theorem 3.1. Thus, % — 1 in probability and we only need to check Lyapunov’s
k
condition (cf. Step 2 in the proof of Theorem 3.1). Using the properties of the pairwise bootstrap

yields, for some r > 1,

n
B (lwpl™) < @I [0 17 Jor 7 B (Iaseial™) €= 32 [¥ieamnsl™
t=1+k
1/2 n 1/2
<c< ) <<n—k)-1 3 |at,k|4f) = Op (K?) Op (1) = Op (k")
t=1+k t=1+k

provided sup, E |&;|*" < C < oo. We choose r = 2 and get

8 30 B (™) < (= BT Op () = O ((n’“_ k)/> = o (1),

t=1+k

if k3/n — 0.
Proof of Corollary 4.1. First, we show that v — & (g ({b (k)) By (¢(k))> Jvgr = N (0,1), where

vok = V'g (¢ (k) (T;'Bel'; ) Vg (¢ (k) . A mean value expansion yields
Vi (g ($(0) =9 (6 ®)) = Vg (¢ () V= F ($ (k) = 6 (k) ) + i, (A.16)

where r, = (Vg (¢ (k) — Vg (¢ (k) Vn — k (g}ﬁ (k) —¢ (k)), ¢ (k) lies in the segment connecting ¢ (k)
and ¢ (k), and we can show that r, = Op (#) by Theorem 2.1 and Assumption 3 (ii). We then apply
Theorem 2.2 to the first term in the RHS of (A.16) with ¢ (k) = Vg (¢ (k)). Second, we show that

n—k (g (g%* (k)) -9 ((Aﬁ (k))) /Vg =ar* N (0,1) in probability. A mean value expansion yields
k(g (4" ®) =g (d®)) = Vg @)V —F (" (k) = b)) +7i,  (AID)

where 1} = (Vg (¢" (k) — Vg (¢ (k) vVn — k (qﬁ (k) — é(k)) and ¢ (k) lies in the segment connect-
ing ¢ (k) and ¢ (k). Thus,

il < (Ve (8 () = Vg (6 (kD[ Vi —F |97 (k) — & (k)| < 1| (k) — W= |¢" (k) - b (k)
< M(||p"®-dw|+|émw -0 ®]) V- ~ 3|,
since |67 (k) = ¢ B)|| < ||#" k) = d®)| + s -0 @) < 6" 0) = 30| + &) — 4 (). For
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each of our two bootstrap methods we can show that

(k) = (k)| = Op- (% ) with probability
approaching one. For the FWB, we have that ¢ (k) — ¢ (k) = f‘,:l (n— k)~ > i1k Yi-1kEf ), which
‘1 H(n — k) PV }/}’_lvké;kH . Since

before, and H(n — k)t itk Yt—LkéZkH = Op-+ (%) by (A.21) (cf. proof of Lemma A.4) and the

impies |3 (k) — & (k) | < [P

f‘;lHl = Op (1), as we argued

Markov inequality, it follows that

‘(}S* (k) — qES(k:)H = Op+ (%) in probability. The proof for the

nt/

pairwise bootstrap follows similarly and is therefore omitted. Thus, for our two bootstrap methods,
7y = Op~ (#) in probability. Finally, an application of Theorems 3.1 and 3.2 with £ (k) = V'g (¢ (k))
delivers the result.

Proof of Lemma A.1. We apply Brillinger’s (1981) Theorem 2.8.1. Define ¢; = 0 for j < 0 and
let Cum (-,-,,-) denote the fourth order joint cumulant a set of random variables. Using the MA(o0)
representation of y;, we have that

oo
Ky (0,11,[2,13) = Z ’Q/}jl'é/}jzd)j?)?,[)ﬂCUTn (5t~j175t+ll-—jga5t+l2—j375t+13—j4)
Ty Ja=00
oo
= Z 77[}]‘1 7/}]'277[)]‘37/)]‘40“7” (et Ettli+j1—j21 Ettla+j1—ja0 5t+l3+j1~j4)
J1yesja==00

o0
> ke (0,0 + 1 — o, la + 1 — s, ls + 51 — )

J1seensJa==—00

where the first equality follows from the properties of cumulants (see e.g. Brillinger, 1981, p. 19), and

the second equality follows from the stationarity of ¢,. It follows that

Z Z Z |y (0,01,12,13) |

lj=—00lg=—00 lg=—0
o0 o0 o0 o0
< S Wttt >0 DT D [k (0,0 4 g1 — das b+ 1 — da,ls + 1 — ja) | < 00,
J19eee,J4==-00 =00 lg=—00 l3=—00

given Assumption 1 (iii) and the absolute summability of ;. H

Proof of Lemma A.2. As in the proof of Berk’s (1974) Lemma 3, we have that

A

e R S Lo N R

< (It et - i)

- et < (0 o = 1) o - i e
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using the fact that HI‘,;IHI is bounded. Thus,

) | o IR
|ot | < S (A.18)
SRR R
Now, using (A.1), we have
. 2 ) 2
S
k n 2
=YY E <(n —B) Y (i — E (yt—z'yt—j))) - (A.19)
=1 j=1 t=1+k
Note that
" 2
(n—k)E <(n -k Z (Yt-iyr—; — B (%—z’%—j))) (A.20)
t=1+k

n n
= (n=k)"" D D By ys-its—) — Bye-iti—s) B Ye—is—j)]-
t=1+k s=1+k

Letting R (m) = E (ytyt+m) for all m € Z, it follows that E (yi—iyi—;) E (ys—iys—j;) = [R (¢ - N
By the stationarity of y;, E (yt—i¥t—j¥s—i¥s—j) = E (YtYt+i—jYsYs+i—j) » and because y; is a zero-mean
process, it also follows that F (y1¥+i—jYsys+i—;) can be written in terms of the fourth-order cumulant

of (Yt, Yt+i—j» Ys, Ys+i—;) as (see Hannan, 1970, p. 209)

E (Yeyttie ¥t (s—t) Yt (s—t)rimj) = Ky (Gt +i—fit+ (s — 1)t 4+ (s —t) +i —j)

+(RGE—-))?+(R(s—1)*+R(s—t+i—j)R(s—t—(i—j)).

Stationarity of y; implies ky, (t,t +¢—j,t + (s —t),t+(s—t)+i—J) =ry (0,1 —j,s —t,s —t+1i—j),

so that letting | = s — ¢ it follows from (A.20) that

n 2
(”—k)E<(”—k)_1 Z (yt—iyt—j_E(yt—iyt—j))>
t=1+k
! i e Y 2
=2 () (g (R 5)+ (RO)
I=—(n—k—1)

FRU+i- ) RU— (i~ )= (R(-7)))

ey 1 o 2 - .
S (l—n_k)(ﬂy(O,z—j,l,l—i-zmj)—i-(R(l))+R(l+z—j)R(l—(7,—j))>.
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Thus, (A.20) is bounded by

> (16w i =il l+i= )|+ (R +|R(+i= ) R~ G~ j))])
l:O:)OO o o0 1/2 o0 1/2
< D IRy =gl l+i— )+ Y (R(l))2+<z (R(l))Q) (Z (R<l>)2)
l=—o0 {=—00 l=—0o0 l=—0o0
< > sy (0i—gli+i—g) [ +2 Y (RO,
l=—00 l=—00

where the second term is bounded by o* (Z;‘io 1/Jj)2, as in Berk (1974, p. 491), and the first term is
bounded by D777 Y Do oo IRy (0,11, 12,13) |, which is bounded by Lemma A.1. Hence (A.19)
is O (k*/(n —k)) and
N 2 . 2
E (HF’“ - F’“HJ <E (HF’“ - rkH ) < CK2/ (n—k) =0,
if £2/n — 0. By the Markov inequality, this implies that ka — FkHl = op (1) and thus from (A.18),

il

=op (1) 5

=
&
|
!
&
H__
A

C1-c|t-r
1

proving (A.3). If instead k*/n — 0, then
. 2 R 2 ,
E ((k1/2 Hrk - rkul) ) < kE <Hrk - F’“H ) <CE/(n—k) =0

showing that &'/2 Hf‘k — FkHl = op (1) and consequently k'/? Hf‘,:l - I‘,;lHl = op (1), which proves
(A4). N

Proof of Lemma A.3. Following Lewis and Reinsel’s (1985) proof of their Theorem 2, we can write

n
V=K (k) ($ (k) = ¢ (k) = Va— e (k) T} ((n DY Yt_l,kst>
t=1+k
= Wip + Wop + Wan,

where wy, = {(k) (f‘,:l — I‘,j) Vn—kUy,, wey = £(k) (f,;l — I‘,j) vn —kUs, and
wsy, = £ (k) F,;lx/n — kUyyp, with Uy, and Uy, defined as in the proof of Theorem 2.1. Using (A.2) we

have |wi,| < ||£(k:)||l<:1/2‘

BT 52V =R = op (1), given that [l¢ (k)| < My, that

k2 Hf‘,:l — I‘,;'lHl = op (1) by Lemma A.2 if AN 0, and that Hk‘l/Q\/n— kUlnH = 0Op (1), as we

n
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showed in the proof of Theorem 2.1. Similarly, |way,| < ||€ (k)| k'/? Hf’;l -t Hl Hk"l/Q\/n — kUQnH =

op (1), given Lemma A.2, eq. (A.4), and given that ||Us,| = Op (%) (cf. proof of Theorem 2.1).

Finally, following Lewis and Reinsel (1985, p. 399) we let v, = ¢ (k)' F;lY}_lyk. Then,

n n
Elws| = (n—k)"PE| Y (k)T Yiip(er—ew)| = (n—k) P E| D v e — e
t=k-+1 t=k-+1

—1/2 - —1/2 - 2 \\1/2 9\ 1/2

< =k Elog(er el < -k (B (02) (E(st—gt,k))
t=k-+1 t=k-+1
1/2 2 >
— 1/%
< Ot Mz/ vn—k Z |¢;] — 0,
j=1+k

given Assumption 2 (ii), where the first inequality holds by the triangle inequality, the second inequality
o\ 1/2
s § . . 2
holds by Cauchy-Schwartz and the third inequality holds because (E (et — €rk) ) <O 52k 195l

(cf. proof of Theorem 2.1, (A.18)) and because
, _ 2 o2 3
B (v2,) = £ (k) T (k) = Hrk 12y (k:)H < Hrk 1/2H1 1€ R)P < |05, Mo,
which is bounded under our assumptions. B
Proof of Lemma A.4. Adding and subtracting appropriately yields

Proo = L) (TF =T ) o = )72 Y Yiasél,
t=1+k

implying that

n
(n—k)~'/? Z Yi1kE0k
t=1+k

rhusl < e [T = [k

T
(n—k)™ Z Y168k
t=1-+k

<O |0 1| k)2

for some finite constant C, given that ||¢ (k)| and ‘v;l‘ are bounded. Since

_ Op (ﬁ) , (A.21)

7';wb‘ < CkY/? Hf;l — F;lul Op (1) = op (1), where the equality holds by an application

Phu| > 9) <

n 2
E* [ |[(n=k)" Y Yiséis
t=14+k

we have E*

of Lemma A.2, see (A.4). By the Markov inequality, for any § > 0, we have P* (

tE* (‘T}wbD = op (1) and the desired result follows.
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To complete the proof, we prove (A.21). We can write

*
E Z Yi1kEk Z Z Y 1 Ye- 1k5tk5ek}
t=1+k t=14+k s=1+k
T
* * —2 ! 22 —1
Z Z Y Yo w B (Epin) = (n— k)72 D Y WYkt = (n—k) ' x,
t=1+k s=1+k t=1+k

where the last inequality follows because E* (87,85 ) = 0if t # s and E* (6] 485 ,) = é%,k otherwise.
Next, we show that x; = Op (k), which in turn implies (A.21). Applying the triangle inequality first
and then the Cauchy-Schwartz inequality, we have that

" n 1/2 1/2
Xl < =k Y VLYo B < <(n—k)“1 > Yk, 2) < Z €tk)

t=1+k t=1+k t=1+k

n 1/2 n 1/2
= <(n —k)7? 1, 4) <(n — k) Z é;lk) = A;.A,.
t=1+k t=1+k

Because sup, E \yt\4 < C < oo under our conditions, F ||Yt_17k||4 =0 (kz)7 which implies that A, =

Op (k). Since Ay = Op (1), as we show next, this proves the result.

To show that Ay = Op (1), note that &, = & — z;’in iYyt—j — (g}ﬁ( ) — ¢ (k )) Y, 14- By the

cr-inequality (Davidson, 1994, p. 140), we have that

4

n [oe] . / 4
N <om-R Y (A S b +‘(¢>(l~c)—¢>(k)) Yi 14| | = Bi+Bs+Bs.
=1tk t=1+k j=1+k

B = Op (1) since E |e|* < A < oo for all t. Next consider By. We have that

n o0 4 %X4
E|Bof=C(n=k)" > |E||D] bjuey
t=1+k Jj=1+k
4 4
<Ctn-k" Y | Y \¢j\<E|yt—.j|) <C| > ol
t=1+k \j=11k j=1+k

where the first inequality follows by Minkowski’s inequality and the last inequality holds by E |y;—; |4 <
4
A < oo for all ¢, j. Thus, by the Markov inequality, it follows that By = Op ((Z?iuk ‘gbj ‘) ) = op (1)

given that Z;’il ‘qu‘ < oo and k — co. Finally, consider B;. By the triangle inequality for vector norms,
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we have that

b~ ) (-1 D Wi

> ‘= 0p (i—i) Op (kQ) =O0p <<];—2>2> =op (1),

B3 <

given Theorem 2.1, the fact that ||Y,/_1’/§||4 = Op (k*) and k*/n — 0 under our assumptions.

Proof of Lemma A.5. Simple algebra shows that r;b = Aj + As, where

T
Ay = ()Y Vn—k (F;b_,li — I‘,;]> 1;,;1 (n— k)_1 Z Yff.l,ké}ik

t=1+k
n
Ay = L(E)YVn—k (f‘;l — I‘,;]> vt (n—k)! Z Y kéige
t=1+k

Consider As first. We have that

ol < CllE ) K2 |05 =T 672 (0= 02 [n =)™ 3 Wi e (A.22)
t=1+k
Next we will show that
n 2
E =0 S vl | =or (n ﬁ k) : (A.23)
t=14+k

which, combined with Lemma A.2 and (A.22), shows that As = op~ (1) in probability. To prove (A.23),

note that
2

n n
_2 oy a
=(n—k) E E B (Y h8in Yoy ki) -
t=1+k s=1+k

n
1 R
(n —k) Z Y kEik
t=11k

E*

By the properties of the pairwise bootstrap, conditional on the data, 1@*_’1’,6@;,6 is independent of

Yoo &5k When t # s, which implies that

2
=0,

n

(n—k)"" Y Vit

t=1-+k

B (Y finYoiantog) = B (Vi kéis) B (Y180 s) =

where the last equality holds by the FOC of the optimization problem that defines &S(k:) For t = s,

instead we have
n
* TN * A% _ -1 ! a2
E (Y;~1,k€t,st~l,k55,k) = (n—k) Z Yt—1,kYt—1,k5t,k-
t=14+k

Thus, the LHS of (A.23) equals (n — k) > Yok Y kYi_l’ké?’k, which is Op (%)7 as we showed in

n—

the proof of Lemma A.4.
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Next, we show that A; = op« (1) in probability. We can write

n
-1 * Ak
E YI,~1,lcEI,,k:

t=1-+k

1/2
-1 pl 200 k
prk Ty H1 (n—k)'“Op <(n— k)1/2> )

conditional on the data, given (A.23) and the Markov inequality. So, it suffices to show that

Al < Clemll|

-1 f‘—1H _ 2
pb.k k 1(” )

IN

d

k1/2

f‘;b_’,i — f‘,;l Hl = op- (1) in probability. Following the same argument as in the proof of Lemma

A.2, it is enough to show that k'/2 ‘ A; kT f‘kHl = op~ (1) in probability, or by the Markov inequality

. 12
and the inequality (A.1), that KE* (HF;bk - I‘kH ) = op (1). By definition of the Euclidean matrix

normn,

2) = tr <(n— k)~ z”: z”: B [(Yt*—LkYt*—'Lk —fk> (3@11,@/}*—'1,1: —fk>]>

B <Hf;;b,k — Ty

t=1+k s=1+k
n
= & <(n —B)72 Y (Yea¥iong — D) (Yoo ¥y - rk)>
t=1+k

n
= (n—k)lr <(” —kB)TN Y YV YeaaY - Fk) ;

t=1+k

where the second equality uses the fact that E* [(Yt* LY g f‘k> (Ys*_l WY — f‘kﬂ = 0 when

t# s Since ||(n = BT DI Y w Yo YoV € 0= 97 S Yl = Op (k) and
I'x = Op (1), it follows that kE* <HF bk~ FkH ) (k—k) +O0p ( ) = op (1) given that k,—b — 0.
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