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ARMA Representation of Integrated and Realized
Variances*

Nour Meddahi'

Résumé / Abstract

Nous dérivons la représentation ARMA des variances intégrées et réalisées quand la variance instantanée
est la combinaison linéaire de deux facteurs auto-régressifs, c’est-a-dire, les modéles SR-SARV/(2). Cette
classe de processus contient les modéles affines, diffusion GARCH, CEV, a fonctions propres, ainsi que
les processus Ornstein-Uhlenbeck et positifs. Nous étudions le cas a effet de levier, et aussi le lien entre la
représentation GARCH faible des rendements et la représentation ARMA de la volatilité réalisée.
Finalement, nous analysons les conséquences empiriques de ces représentations ARMA. Nous trouvons
qu’il est possible que certains paramétres de la représentation ARMA soient négatifs. Ainsi, la positivité
de I’espérance linéaire des variances intégrées et réalisées n’est pas assurée. Nous trouvons aussi que pour
certaines fréquences d’observation, les paramétres du modéle en temps continu peuvent étre faiblement
identifiables ou pas identifiables a partir de la représentation ARMA de variances réalisées.

This paper derives the ARMA representation of integrated and realized variances when the spot variance
depends linearly on two autoregressive factors, i.e., SR-SARV(2) models. This class of processes includes
affine, GARCH diffusion, CEV models, as well as the eigenfunction stochastic volatility and the positive
Ornstein-Uhlenbeck models. We also study the leverage effect case, the relationship between weak
GARCH representation of returns and the ARMA representation of realized variances. Finally, various
empirical implications of these ARMA representations are considered. We find that it is possible that
some parameters of the ARMA representation are negative. Hence, the positiveness of the expected values
of integrated or realized variances is not guaranteed. We also find that for some frequencies of
observations, the continuous time model parameters may be weakly or not identified through the ARMA
representation of realized variances.

Mots clés : variance intégrée, variance réalisée, représentation ARMA, modéles SR-
SARYV, faible identification.

Keywords: Integrated variance, realized variance, ARMA representation, SR-SARV
models, weak identification.
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1 Introduction

The recent literature on volatility modeling has highlighted the advantage of using realized
variances constructed from the summation of finely-sampled squared high-frequency returns.
These papers include Andersen and Bollerslev (1998), Andersen, Bollerslev, Diebold and Ebens
(2001), Andersen, Bollerslev, Diebold and Labys (2001, 2002; ABDL hereafter), Barndorff-
Nielsen and Shephard (2001, 2002a-d), Taylor and Xu (1997), and Zhou (1996); for a survey
of this literature, Andersen, Bollerslev and Diebold (2001), Barndorff-Nielsen, Nicolato and
Shephard (2002), and Dacorogna et al. (2001) should be consulted. The theoretical justification
for this approach is that when the length of the intra-daily returns tends to zero, the sum of
squared returns tends in probability to the quadratic variation of the underlying diffusion
process (ABDL, 2001; Barndorff-Nielsen and Shephard, 2001; Comte and Renault, 1998).
Quadratic variation plays a central role in the option pricing literature. In particular, when
there are no jumps, quadratic variation equals the integrated variance highlighted by Hull and
White (1987).

Concurrently, it has been well established by several empirical studies that two factors are
needed to model correctly the spot variance process: one factor to capture the persistence
of the volatility and a second one to deal with fat-tails; examples of these studies include
Engle and Lee (1999), Gallant, Hsu and Tauchen (1999), Meddahi (2001), Alizadeh, Brandt
and Diebold (2002), Barndorff-Nielsen and Shephard (2002a), Bollerslev and Zhou (2002), and
Chernov, Gallant, Ghysels and Tauchen (2002).

The main goal of the paper is to derive the ARMA representation of integrated and realized
variances when the spot variance depends linearly on two autoregressive factors. Continuous
time stochastic volatility models where the spot variance depends linearly on autoregressive
factors are studied in detail by Meddahi and Renault (2002) who named them the square-
root stochastic autoregressive variance (SR-SARV) models in reference to the discrete time
counterpart introduced by Andersen (1994). Special examples of SR-SARV models are: the
affine model of Heston (1993); the GARCH diffusion model of Nelson (1990); the CEV processes
when the variance is square-integrable (Meddahi and Renault, 2002); the positive Ornstein-
Uhlenbeck model of Barndorff-Nielsen and Shephard (2001); and the eigenfunction stochastic
volatility model of Meddahi (2001).

Knowing the ARMA representation of integrated and realized variances is important for
impulse response analysis, filtering, forecasting, and for statistical inference purposes. For
example, by using these ARMA representations, one can forecast future values of integrated
or realized variances by using current and past realized variances. Indeed, this approach is

adopted in Andersen, Bollerslev and Meddahi (2002) who used the results of the present paper.

LAn alternative approach to the two-factor model is to consider a one-factor model with jumps, as in
Andersen, Benzoni and Lund (2002) and Pan (2002); for a comprehensive empirical comparison of these
approaches, see Chernov et al. (2002).



The ARMA representation is also the analytical steady-state of integrated variance. Hence,
instead of using the Kalman filter in a QML estimation procedure as did Barndorff-Nielsen
and Shephard (2002a), one can use the ARMA representation.

Barndorff-Nielsen and Shephard (2002a) showed that integrated and realized variances
are ARMA (p,p) processes when the spot variance is a linear combination of p independent
continuous time autoregressive processes. This result was extended by Andersen, Bollerslev
and Meddahi (2002), who establish the same result when the variance is a linear combination
of p uncorrelated and autoregressive processes. However, these studies did not characterize
all the parameters of the ARMA (p,p) processes. While the autoregressive parameters of the
ARMA (p,p) process coincide with those of the p autoregressive factors involved in the spot
variance, the characterization of the moving-average parameters is less obvious. To do so, we
use the results of Meddahi (2002a) who characterized these moving-average parameters when
p = 2. Finally, it is worth noting that the ARMA representation of realized variance is not
the same as the weak GARCH representation of returns (Drost and Nijman, 1993; Drost and
Werker, 1996). However, a weak GARCH structure of intra-daily returns implies the ARMA
structure of realized variances. In Section 4, we elaborate in more detail the relationship
between the weak GARCH representation of returns and the ARMA representation of realized
variances.

After deriving the ARMA representation of integrated and realized variances, we study their
empirical implications, and find two main important results. First of all, when one writes the
(GARCH-like) recursive equation of the expected value of integrated or realized variances, one
can possibly get negative parameters. Hence, the positivity of the expected value of integrated
or realized variances is not ensured. This result is not in contradiction with the theoretical
aspects of the model: it is possible that the linear projection of a positive variable onto the
Hilbert-space generated by its past values is non-positive. However, the conditional expectation
of a positive variable given the sigma-algebra generated by its past values is always positive.
This non-positivity problem was the main motivation of Meddahi and Renault (2002) to use
SR-SARV models instead of weak GARCH ones to study temporal aggregation of volatility
models. The second empirical result is that it appears that some parameters of the structural
models, i.e., the parameters of the continuous time model, are weakly identified when the
spot variance depends on two factors. The main reason is that one moving-average root of
the realized variance process is close to an autoregressive root and, indeed, is the same for
a particular frequency of observations that depends on the unknown parameters. This may
explain why some estimates are not precise in Bollerslev and Zhou (2002), who used GMM
(Hansen, 1982) to estimate a two-factor affine continuous time model by using the dynamics
of the realized variance process.

The paper is organized as follows. In Section 2, we give the structure of the autoregressive

variance processes and provide several examples. We then characterize in Section 3 the ARMA



representation of integrated and realized variances when the spot variance depends on one
autoregressive factor, given that this has not been previously presented in the literature.
Section 3 also deals with the more empirically relevant two-factor example. In Section 4,
we study the case of leverage effect, the link between weak GARCH of returns and ARMA
representation of realized variances, and the usefulness of the ARMA representation of realized
variance for the estimation of the parameters of the continuous time stochastic volatility model
by using the GMM or the QML methods. Section 5 studies the empirical implications of the
ARMA representation of integrated and realized variances. Section 6 concludes, and all the

proofs are reported in the Appendix.

2 Stochastic Autoregressive Variance Models

We assume that

dpy = 0, dW4, (2.1)

02 = ag + aP(f,) + aP(f,) (2.2)

where f; is a state-variable process, possibly bivariate, and independent of the process W;. The

functions P(-) and P(-) are defined so that they have the following properties:

E[P(f))] = E[P(ft)] =0, Var[P(fy)]= Var[ﬁ(ft)] =1, (2.3)

COU[P(ft)af)(ft)] =0, (2'4)

Vh > 01 E[P(ft+h) | fTapTaT S t] = eXp(_/\h’)P(ft)a

. o (2.5)
E[P(firn) | fr, 07,7 < t] = exp(=Ah)P(fy),

where \ and )\ are two positive real numbers. In the first part of the following section, we will
assume that @ equals zero and we will call it the one-factor model. In the second part of the
same section, we will assume that a # 0 and @ # 0, and we will call it the two-factor model.
Equations (2.3) are normalization assumptions. Equation (2.4) means that the components
P(f;) and P(f;) are uncorrelated. This assumption met when f, is a bivariate process
(fies fo4) " where fi; and fo, are independent, P(f;) is a function of fi,, and P(ft) is a
function of fo;. This independence assumption is, however, not necessary for ensuring (2.4);

see the eigenfunction example below. Observe that (2.3) and (2.4) imply
E[o}]=ay and Var[o}] =a®>+a’. (2.6)

Assumption (2.5) means that each component of the spot variance is an AR(1) process. As

we will show below, when explicit examples will be provided, assumption (2.5) holds for the
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popular affine stochastic volatility models (Heston, 1993) and the GARCH diffusion model
(Nelson, 1990). It holds also for the CEV processes, the eigenfunction stochastic volatility
(ESV) models of Meddahi (2001), and the positive Ornstein-Uhlenbeck Lévy-driven models of
Barndorff-Nielsen and Shephard (2001). Observe that under (2.5), we have

Vh >0, Elo},, | fr,pr, 7 <] = ag + aexp(=Ab)P(f,) + aexp(—Ab)P(f).  (2.7)

This model is a special case of the SR-SARV model introduced by Andersen (1994)
in discrete time and extended to continuous time by Meddahi and Renault (2002). It
is a special case because Meddahi and Renault (2002) assumed that the variance is a
linear combination of the components of a general VAR(1) process, while we are assuming
that the VAR(1) process has a diagonal autoregressive matrix. Because we specify the
independence of the factor f; with the Brownian process W;, we exclude the leverage effect,
and accordingly the theoretical results of Meddahi and Renault (2002) imply that any
discrete process {5%) ,5§Z) = Pih — Pt—1)h,t € N}, where h a positive real number, is a weak
GARCH(2,2) (Drost and Nijman, 1993; Drost and Werker, 1996); see Meddahi (2002a) for
the characterization of the weak GARCH parameters. We now give some examples of the

model characterized by (2.1)-(2.5).
Example 1: Affine processes, Heston (1993). Assume that o] = o}, + 03, where o7,
and 0%7,: are two independent square-root processes

O'Zt = kZ(HZ - O'Zt)dt + O-iaitdvvi,t; Z = 1, 2.

Then we can rewrite o7 as in (2.2)-(2.5), with f, = (01,,03,)",

N Y
\/017%(91 Gl,t)? P(ft) - \/0270%

a0:01+92, a:—01\/01/2k1, a=—o \/02/2k2, A= kl, —kg.

Example 2: GARCH diffusion processes, Nelson (1990). Assume that o7 = o7, + 03,

where o7, and 03, are two independent GARCH diffusion processes

P(ft) =

(92 - Jg,t)’

Zt—k(@ — o} )dt+0 oudWiy, 0 < 2k;, i=1,2.

Note that we assume that o? < 2k;, i = 1,2, in order to ensure the existence of the second
moment of azt, 1 = 1,2, which is an assumption that one needs for the existence of the second

moments of integrated and realized variances. We can also rewrite o7 as in (2.2)-(2.5), with

ft = (Uita Og,t)—r’

p(ry= Y= e gy By = VR0 g

g 054 —
010_1 1,t 020_2 2,t



a0:01+02, a:91 U%/(le—U%), &:92 Ug/(QkQ_Ug), )\:kl, )\:]{]2

Example 3: Eigenfunction stochastic volatility model, Meddahi (2001). Assume

that f; is a scalar stationary diffusion process given by the stochastic differential equation

df, = p(f)dt + o(f,)dW,,

where W, is a Brownian process. Let A be the infinitesimal generator associated with f, and
defined by

A8(50 = o () + T 904 (1),

for any square-integrable and twice differentiable function, ¢(f;). The solution P;(f;) of

-APi(ft) = —)\z'Pi(ft),

is called an eigenfunction, while (—);) is the corresponding eigenvalue.? It turns out that the
eigenfunctions satisfy the conditions (2.3), (2.4) and (2.5). Therefore, we can assume that the
autoregressive processes P(f;) and P(f,) in (2.2) are two particular eigenfunctions. Observe
that in this case, P(f,) and P(f,) are orthogonal but not independent.

Meddahi (2001) shows that most of the volatility models, with one factor or more, are
special examples of ESV models. It is the case for affine processes where the eigenfunction are
Laguerre polynomials. Thus, the first example is an ESV model. Meddahi (2001) also shows
that the GARCH diffusion example and hence Example 2 is an ESV model. When the state
variable f; is an Ornstein-Uhlenbeck process, as in the log-normal model of Hull and White
(1987) and Wiggins (1987), the corresponding eigenfunctions are the Hermite polynomials.
Therefore, the log-normal volatility model is an ESV model, but the decomposition of the
variance process o; in terms of linear combination of Hermite polynomials involves all the
infinite number of polynomials. In contrast, one can assume that o7 depends on two particular
Hermite polynomials, i.e., P(f;) and P(f;) in (2.2) are two Hermite polynomials, H;(f;) and
H;(f:). For instance, Meddahi (2001) studies the case

0752 = qagy + G1H1(ft) +a2H2(ft); Hl(ft) = fta HZ(ft) = (ftQ - 1)/\/5’

with a? — 4ay/v/2(ag — az/+/2) < 0 and ay > 0 in order to ensure the positivity of oZ. Finally,
note also that Meddahi (2001) proposes other continuous time factors within the eigenfunction

framework, particularly an example based on the Jacobi diffusion.

2For a more detailed discussion of the properties of infinitesimal generators, see, e.g., Hansen and Scheinkman
(1995) and Ait-Sahalia , Hansen and Scheinkman (2002); see also Chen, Hansen and Scheinkman (2000) for an
alternative approach of modeling continuous time processes through eigenfunctions.



Example 4: Positive Ornstein-Uhlenbeck processes, Barndorff-Nielsen and
Shephard (2001). Assume that o7 = o7, + 03, where o7, and 03, are two independent

positive Ornstein-Uhlenbeck processes

t 0
a'iQ,t = e_kito'g,z. —|—/ €_ki(t_s)d2i(ki8), k; > 0, O-g,i = / €sd2(8),
0

—00

where z;(t) and 2,(t) are two independent integrable homogenous Lévy processes with positive
increments. In addition, assume that the mean and variance of ait, i=1,2, exist and are denoted
respectively by 6; and v;. Then we can rewrite o7 as in (2.2)-(2.5), with f; = (07 ,,03,)",

P(f) = ’Wa P(f) BV

a0:01+02, a = vV, CNL:’UQ, )\:kl, )\:kQ

Example 5: Combination of two different factor structures. In the first, second
and fourth previous examples, we always considered the same structure for the factors. For
instance, in the first example, we assume that the variance is the sum of two square-root
processes. However, one can also combine two different structures for the component of o?.
A simple example is to assume that o2 is the sum of a square-root process and a GARCH
diffusion process. This approach, implicit in the multifactor ESV model of Meddahi (2001), is
not very common in the literature; see, however, Chernov et al. (2002) for stock price dynamics

modeling, and Ahn, Dittmar, Gallant and Gao (2002) for interest rate modeling.

3 ARMA Representation of Variances

3.1 Integrated and Realized Variances

In the rest of the paper, we will study the ARMA representation of the daily integrated variance

and the realized variance. These two variables are defined respectively by

t
1V, :/ o2du, (3.1)
t—1
and
1/h
RV (h) = Zgyi)lzﬂ'h’ (32)
i=1

where h is a real number such that 1/A is an integer, and sgli)l i, are the intra-daily returns over

the periods [t —1+ (i —1)h;t—1+1ih], fori =1,2,...,1/h. It is well-known, using the theory of
quadratic variation, that RV;(h) converges in probability towards IV; when h — 0. In addition,

6



Barndorff-Nielsen and Shephard (2002a) provide a Central Limit Theorem. Finally, for a given
h, Barndorff-Nielsen and Shephard (2002a) and Meddahi (2002b) studied theoretically the
difference between realized and integrated variances.> Indeed, Meddahi (2002b) shows that
when there is no drift, we have

RVi(h) = IV, + e;(h), (3.3)

where

Lk i 14ih u
ei(h) = 22/ (/ 0sdWy5) 0, dW,.
t

= Jt-14+(-1)h Jt-14+G-1)h

Note that the convergence of realized variance towards integrated variance, plus some uniform
integrability conditions, imply also that at the limit the ARMA representation of integrated
and realized variances coincide. We will discuss this point below.

Before characterizing the ARMA representation of variances in models with one or two
factors, let us make two remarks about these ARMA representations for a general SR-SARV (p)
process. Meddahi and Renault (2002) show that for a SR-SARV(p) process, the spot variance
follows an ARMA(p,p-1). Therefore, the integrated variance which is obtained by temporally
aggregating the spot variance process is an ARMA(p,p) (see Granger and Morris, 1976). When
there is no leverage effect and no drift, Barndorff-Nielsen and Shephard (2002a) and Meddahi
(2002) show that the process e;(h) is uncorrelated with the process I'V;. Hence, realized variance
is also an ARMA(p,p) and has the same autoregressive roots as integrated variance. However,
the moving-average roots are different. Second, Barndorff-Nielsen and Shephard (2002a)
formally showed that both integrated and realized variances follow an ARMA (p,p) when
the spot variance equals the sum of p independent and autoregressive processes. Andersen,
Bollerslev and Meddahi (2002) extended these results to the case where the spot variance
equals the sum of p uncorrelated and autoregressive processes, as in our setting.*

In the derivation of the ARMA representation of integrated and realized variances, we will
need some variances and covariances of these two variables. They are given by®

i—z[exp(—)\) P14+ 2§L—Z[exp(—f\) +A—1], (3:4)

VarlIVy] =2
Vi -

J[L—exp(=A)P [l —exp(-N)P?
A2 A2 ’

3Andreou and Ghysels (2002) and Bai, Russell and Tiao (2001) also studied this difference through
simulations. In particular, they take into account microstructure effects that we ignore in our study.

4In their proof, Bollerslev and Zhou (2002) explicitly recognized that integrated and realized variances are
ARMA (p,p) processes, p = 1,2, when the spot variance depends on p square-root processes.

SBarndorff-Nielsen and Shephard (2002a) give the formulas (3.4)-(3.9) when the spot variance depends on
independent and autoregressive processes. By using the results of Meddahi (2001, 2002b), the independence
assumption was relaxed by Andersen, Bollerslev and Meddahi (2002), who assumed that the autoregressive
processes are uncorrelated.

Cov(IVy, IV,_1) = a (3.5)




Cov(IVi, Vi) = a® exp(—\) L= GX;(_A)]Z + @ exp(— ) L= exj\pz(—j\)]z, (3.6)
Var[RV,(h)] = Var[IV,] + Varle,(h)], with
5,  4a? 42 - - (3.7)
Varle,(h)] = 2agh + W(exp(—/\h) — 14 Ah) + IS¢ (exp(—Ah) — 1+ Ah),
Cov(RVi(h), RVi_1(h)) = Cov(IV, 1V,—1), (3.8)
Cov(RVi(h), RVi—2(h)) = Cov(IV;, 1V;s). (3.9)

In the subsequent propositions, we will also use the following notation. Let z; be second-

order stationary variable, then we denote by
mt,l[z] (310)

the best linear predictor of z; onto H; 1(z), where H, {(z) is the Hilbert-space generated by
{1, z;,7 < t — 1}. For real numbers 71, ¥, v, v1, v2, p1, and p, with py # 0, we define the

following functions:

Do (v, v0,01) = (1 +7%)wo — 2u1, (3.11)
D1 (7, vo, v1) = —yvo + 1, (3.12)

Dao (71,72, V0, v1,v2) = (L + 775 + (71 +72))v0 — 2(71 +72) (1 + my2)vs + 2717202, (3.13)

D1 (71,72, v0, 01, v2) = —(1 + 7172) (71 +72)v0 + (1 + (71 + 72) + 1172)v1 — (71 + 72) 02,

(3.14)
Do (71,72, v0, V1, v2) = V17200 — (71 + Y2)v1 + V2, (3.15)
S(p1,p2) =27 popi? | =2 = p5 ' + sign(pz)\/(2 + o) = 4pipy? |, (3.16)

where
sign(pe) = 1 if po > 0 while sign(ps) = —11if py < 0.

We are now able to study the ARMA dynamics of integrated and realized variances. We
study the one-factor case in the next subsection. Then we study the more empirically relevant

two-factor example in the last subsection.



3.2 The One-Factor Model

Throughout this subsection, we assume that the variance process depends on one factor, i.e.,
@ in (2.2) equals zero. We start by the derivation of the ARMA(1,1) representation of the

integrated variance process.

Proposition 3.1 ARMA(1,1) representation of integrated variance for the one-
factor model. Consider the model defined by (2.1)-(2.5) with a # 0 and a = 0. Then IV}, the
integrated variance defined in (3.1), is an ARMA (1,1) process with the following representation:

1V, = (1 - 7)0'0 + ’YIV;tfl +n — 5771:71, (317)

where n; is a white noise (whose variance is given in the Appendiz), with

1+ /1 —4p2
v =exp(—A), B= 2 r (3.18)

D,
= Dy
where Dig(-) and Di1(-) are defined in (8.11) and (3.12) respectively, while Var[IV;] and
Cov(IVy, IV,_1) are given in (8.4) and (3.5) (with a = 0). As a consequence, my_1[IV] (defined

in (8.10)) follows the recursive formula

p Dj = Dyj(v, Var[IVy], Cov[IV;, IV,_4]), j =0,1,

mi 1 [ IV] =w+ alVi_y + Bmy_o[IV], (3.19)
where w = (1 — y)ay and o = — B.

The proof of the proposition (provided in the Appendix) has two steps. In the first, we
characterize the state-space representation of the integrated variance process IV; by showing
that

IV, = s 1 +uy, s =ag(l —exp(—A))+ exp(—A)si—1 + v, (3.20)
where s; is an affine function of af and (ut,vt)T is a martingale difference sequence. This
representation is useful because it shows that I'V; is an ARMA(1,1) given that it equals an
AR(1) process, s;_1, plus a noise, u;. In the second step, we also use (3.20) to characterize
the ARMA coefficients: (3.20) implies that the autoregressive root of I'V; is exp(—A), and the

process z; defined by
2 = 1V — exp(=A) V-1 — ao(1 — exp(—A)) = u¢ — exp(—=A)us—1 + vi1
is a MA(1) process. Hence, z; may be represented as

2 =M — B



where 7, is a white noise and the moving-average root § is a real number with | 8 |< 1. The
real [ is then obtained as the solution (with absolute value smaller than one) of

B _ Cov(z,21)
1+82 Varlzm

It turns out that the real p, defined in Proposition 3.1, is exactly the ratio Cov(z;, z; 1) /Var|zy],
and it can be expressed in terms of Var[V;] and Cov(IV;, IV, ), as done in Proposition 3.1.
It is worth noting that, in general, the process 7; is not a martingale difference sequence.
The main reason is that the process z; is generally heteroskedastic. Therefore, 7; is not Gaussian
and indeed heteroskedastic; see Meddahi and Renault (2002) and Meddahi (2002b) for more
details. However, these authors showed that the process 7; is more restricted than a white

noise, given that the following condition holds

Elne— B—y | pry7 <t —2]=0.

Such multi-period conditional moment restrictions were introduced by Hansen (1985) and
studied in detail by Hansen, Heaton and Ogaki (1987), Hansen and Singleton (1986), West
(2001), and Kuersteiner (2002). They are derived in the context of squared residuals in Meddahi
and Renault (2002) and applied in the context of integrated variance by Bollerslev and Zhou
(2002); see Section 4 for more details.

The recursive equation (3.19) followed by m;_[IV] is easily obtained from (3.1) given that
my_1[IV] = IV, —n;. The most interesting feature of (3.19) is that it resembles a GARCH(1,1)
equation (Bollerslev, 1986). Hence, it can be used for statistical inference, for filtering and
forecasting purposes as in Baillie and Bollerslev (1992); see Andersen, Bollerslev and Meddahi
(2002) for an application.

A natural question concerns the positiveness of m;_;[IV]. This positiveness is guaranteed
when o > 0 and 8 > 0 (Nelson and Cao, 1992), that is,

0 < B <exp(=A).
It turns out that the previous conditions are not always satisfied. In particular, by using the
definition of the function Dsq(-) given in (3.12), it is easy to show that

Cov(IVy, IV;_y)
0< <=
sp Var[IVy]

which is not satisfied. The intuition for the existence of a situation where the last inequality

< eXp(_/\),

is not satisfied is the following. The integrated process IV; is the temporal aggregation of
the spot variance. In practice, spot variance is persistent. Thus, the aggregation of the spot
variance will lead to a process with more persistence (measured by the first autocorrelation).
For instance, we have
Cov(IVy, IV, 1)
Var[IVy]

=0.967 when exp(—2A)=10.95
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and
Cov(IVy, IV, 1)
Var[IV]

Indeed, the inequality is always violated because when using formulas (3.4) and (3.5) (with

=0.569 when exp(—2A)=0.4.

a@ = 0), one gets
0 < B <=0<exp(—2A)+ 2 exp(—A) — 1,

which never holds when )\ > 0.6

In summary, the traditional assumptions for the GARCH literature that ensures the
positiveness of the expected value of a positive random variable are not satisfied. We do
not know if there are examples where m,_{[IV] is negative. However, there are no theoretical
reasons that ensure the positivity of m;_;[IV], which is the best linear projection of IV} onto the
Hilbert-space H;_1(IV'). However, the conditional expectation of IV} given the sigma-algebra
o(IV,,7 <t —1) is positive. The problem of the possibility of the non-positiveness of the
best linear predictor of a positive variable was the main motivation of Meddahi and Renault
(2002), who advocated the use of SR-SARV models instead of weak GARCH models (Drost
and Nijman, 1993; Drost and Werker, 1996).

We now characterize the ARMA(1,1) representation of the realized variance process.

Proposition 3.2 ARMA(1,1) representation of realized variance for the one-factor

model. Consider the model defined by (2.1)-(2.5) with a # 0 and @ = 0. Then RVy(h), the

realized variance process defined in (3.2), is an ARMA(1,1) process with the representation:
RVy(h) = (1 —y(h))ao + y(R)RVi—1(h) + m(h) — B(h)m—1(h), (3.21)

where ny(h) is a white noise (whose variance is given in the Appendiz), with

() = exp(-3) =, 50 = (5.2

» Dj(h) = Dy (v, Var[RVi(h)], Cov(RV(h), RV;-1(R))), 7 =0, 1.

Cov(RVi(h), RV, 1(h))
P = ar Vi)
Here Dio(-) and Di1(-) are defined in (8.11) and (8.12) respectively, while Var[RV;(h)]
and Cov(RVy(h), RV;_1(h)) are given in (3.7) and (3.8) (with @ = 0). As a consequence,
my_1[RV (h)] (defined in (3.10)) follows the recursive formula

me_1[RV (R)] = w + a(h)RVi_1(h) + B(h)me_s[RV ()], (3.23)

where and w = (1 —y)ay and a(h) = v — B(h).

6 After the first version of this paper, Barndorff-Nielsen, Nielsen, Shephard and Ysui (2002) also considered
the positiveness of estimates of integrated variance. In particular, they relate this positiveness to the positivity
of the partial autocorrelation of integrated variance. It is straightforward to show that the second partial
autocorrelation of the integrated variance is p(y — p)/+/(1 — p?), where y and p are defined in Proposition 3.1,
ie., v = exp(—\) and p equals the first autocorrelation of the integrated variance process. It turns out that
p > v and therefore the second partial autocorrelation of the integrated variance process is negative.
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The proof of the previous proposition is similar that the one of Proposition 3.2. Indeed,
the structural representation of RV;(h) is obtained from the integrated variance structural
representation by using (3.3). It turns out that the process e;(h) in (3.3) is uncorrelated
with IV, and the processes involved in the structural representation. Therefore, RV;(h) is
also an ARMA(1,1) process with the same autoregressive roots than IV;. However, their

moving-average roots, 5(h) and §, are different. Indeed, we have

B —YVarIVy] + Cov(IV;, IV;_1)
1+62  (1+92)Var[lV;] — 2yCov(IV;, IV )

while

B —y(Var[IV;] + Varle;(h)]) + Cov(IV;, IV;_1)
L+ B(h)?2  (1++2)(Var[IVi] + Varle,(h)]) — 2yCov(IV;, IV,_,)’

In other words, the difference between 3 and §(h) is due to the variance of the measurement
error e;(h). As we already mentioned, the variance of this noise converges toward zero when h
goes to zero. Hence, the moving-average root of the realized variance, as well as the variance
of the innovation 7;(h), converge to those of the integrated variance and hence the ARMA
representations of integrated and realized variances coincide. This result is not surprising, given
the convergence of realized variance toward integrated variance and the uniform integrability
of the second moment of realized variance.

The convergence result implies that 3(h) is also negative when h is close to zero. However,

it is not the case for large values of h. The main reason is as follows. Again, we have

Cov(RVi(h), RViy(h)) _ Cou(IV,, IVi_y)
Var[RV;(h)] ~ Var[IVy] + Var[es(h)]

0 < B(h) = < exp(=A).

The last inequality may hold because of the variance of the measurement error e;(h). As we
will see in the empirical section, this is the case when one computes realized variance with
5-minute (or longer) returns. Thus, the linear expected value of realized variance is positive

for relevant empirical examples.

3.3 The Two-Factor Model

We now study the ARMA representation of the variances when the spot variance depends on

two autoregressive factors, i.e., ¢ and @ in (2.2) are non-zero.

Proposition 3.3 ARMA(2,2) representation of integrated variance for the two-
factor model. Consider the model defined by (2.1)-(2.5) with a # 0 and @ # 0. Then IV}, the
integrated variance defined in (3.1), is an ARMA (2,2) process with the following representation:

IV, = (1 —v)(1 —y)ao + (71 + 72)IVicr — 2l Viea + my — Bimi—1 — Bafi—2, (3.24)
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where 1, is a weak white noise (whose variance is given in the Appendiz), with

8 2s+1—+/4s+1
2:

T 1= Baps 2s ’

11 = exp(=A), 7 = exp(—X), f = 22

(3.25)

D, D,
= — =—,s5=85
P1 DO y P2 DO y S (pla pQ)

Dj = Dsj(v1, 72, Var[IVi], Cov[IV,, IVi_1],Cov[IV,, IV,_5]), 7 =0,1,2.

Here Dyy(-), Do1(-), Da(:) and S(-) are the functions defined in (3.13), (3.14), (3.15) and
(8.16) respectively, while Var[IVy], Cov(IV;,IV,_1) and Cov(IV;, IVi_s) are given in (3.4),
(3.5) and (3.6). As a consequence, my 1[IV] (defined in (3.10)) follows the recursive formula

mt,l[IV] = w + (XlI%,l —+ (IQIV;,Q + ﬁlmt,Q[IV] -+ ﬁthfg[IV], (326)

where w = ap(1 — 7)1 —72), oy =71+ 72 — F1 and ay = —Y172 — fo.

The proof of this proposition (provided in the Appendix) is similar to the one of Proposition

3.3. In particular, we considered the process z; defined by
2 = IV, — (exp(=A) + exp(=A)) Vi1 + exp(=A — A)IV,_5 — ag(1 — exp(=))(1 — exp(=2N))

which, in turn, is a moving-average process of order 2, MA(2). The main difficulty is the
characterization of the moving-average parameters 5; and s of the process z;. For this purpose,
we use the recent results of Meddahi (2002b), who characterized them in terms of the first and

second autocorrelations of z;. Note also that one can easily get the moving-average roots,
denoted by A\; and Ao, from 3; and S5. Indeed, we have

B1 =AM+ Az and Bz = — A1 Ay,

and hence

A1_51—\/§12+452 and )\2:ﬁ1+ §%+4ﬂ2. (3.27)

Similarly, we can also characterize the ARMA(2,2) representation of the realized variance

process:

Proposition 3.4 ARMA(2,2) representation of realized variance for the two-factor
model. Consider the model defined by (2.1)-(2.5) with a # 0 and a = 0. Then RVy(h), the
realized variance process defined in (3.2), is an ARMA (2,2) process with the representation:
RVi(h) = (1 = 71(h))(1 = 72(h))ao + (71(h) + 72(h)) RVi-1(h) — 71(h)72(h) RVi—2(h) (3.28)
(k) = Bu(h)e—1(h) = Ba(h)m—a(h), |
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where 1, is a weak white noise (whose variance is given in the Appendiz), with

m(h) = exp(—A) = 71, 72(h) = exp(—A) = 72,

__Ba(h) p(h) _2s(h)+1—/4s(h) +1 (3.29)
B = T80 ooty P = 0 ’
i) = D pa(h) = P (0) = S(au(8), )

Dj(h) = Daj(1(h), va(h), Var[RVi(h)], Cov[RV(h), RV, 1(h)], Cov[RVi(h), RV} 2(h)]), j = 0,1,2.

Here Dygy(+), Do1(+), Daa(+) and S(-) are defined in (3.18), (3.14), (3.15) and (3.16) respectively,
while Var[RV;(h)], Cov(RV;(h), RV;_1(h)) and Cov(RV;(h), RV;_o(h)) are given in (3.7), (3.8)
and (3.9). As a consequence, my_1[RV (h)] (defined in (3.10)) follows the recursive formula

my 1[RV (h)] = w + a1 (R)RV;_1(h) + az(h)RV;_5(h)
+ B1(h)my_o[RV (h)] + B2(h)my_s[RV (h)]

where w = ag(1 —71)(1 — 72), a1(h) = v + 72 — Bi(h) and az(h) = —7172 — B2(h).

(3.30)

The comments made after Proposition 3.2 are also relevant for the two-factor case. In

addition, the moving-average roots, denoted by A;(h) and A\y(h), are given by

\/ﬁl )2 +402(h)

M(h) = +\/51 )2+ 465( )

and Ag(h) =

(3.31)

We will consider in more detail the behavior of the moving-average roots in the empirical
section. As we will see, for a particular frequency of observations, one moving-average root
will equal one autoregressive root. Therefore, the realized variance process will become an
ARMA(1,1) process. This may be problematic for inference purposes because one faces an

identification problem.

4 Refinements

4.1 The Leverage Effect Case

In the previous section, we ruled out the leverage effect; that is, we assumed that the factors
driving the volatility are independent with the Brownian motion driving the process p;.
However, we can readily extend our results to include this case. It is worth noting that the
results about the ARMA representation of integrated variance do not depend on the presence
of the leverage effect. In other words, they are still valid. The general results of the second and
fourth propositions where we characterize the ARMA representation of the realized variance

process in the one-factor and two-factor cases are still valid. The small difference is that the
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formula for Var[RV;(h)] given in (3.7) is no longer true.” It turns out that under leverage
effect, Cov(et(h), IV;) # 0 and hence (3.7) becomes

Var[RVi(h)] = Var[IVy] + Var[e:(h)] + 2Cov(ei(h), IV}).

Meddahi (2002a) gives the formulas for Cov(e;(h), IV;) and Varle;(h)] under leverage effect
for general ESV models. Hence, the ARMA representations of realized variances follow on

applying these results to Propositions 3.2 and 3.4 above.

4.2 Realized Variances and Weak GARCH

There is a connection between the ARMA representation of realized variance and weak
GARCH representation of returns. Meddahi and Renault (2002) show that when one
considers a continuous time SR-SARV (p) model without leverage effect, the returns are weak
GARCH(p,p), whatever the frequency of observations. In other words, the squared-returns
process is an ARMA(p,p). Consider now daily realized variance, defined as the sum of the
square of intra-daily returns; i.e., realized variance is the temporal aggregation of the square of
intra-daily returns, which are ARMA((p,p). Hence, by using Granger and Morris (1976), one
obtains that daily realized variance is an ARMA (p,p) process.

However, the autoregressive and moving-average roots of the squared intra-daily returns
and realized variance are not the same. For instance, for the two-factor model considered
previously, the autoregressive roots of the squared intra-daily returns, sg,’:), are exp(—kih) and
exp(—koh), while those of the realized variance are exp(—k;) and exp(—kg). Of course, when
h =1, i.e., when one considers squared daily returns, these autoregressive roots coincide. It
is not the case for the moving-average roots if one considers realized variance computed with
intra-daily returns, i.e., RV;(h), h # 1. Finally, when h = h = 1, realized variance equals

squared daily returns and their ARMA representations are obviously the same.

4.3 GMM and QML Estimation of Continuous Time Models
Through Realized Variances

For a simple exposition, we consider the one-factor case only. We have showed that the

innovation process 7; given in Proposition 3.1 is such that

Elny — B—1 | mr, 7 <t —2] = 0.

Thus, we have

E[IV, —exp(=A) IV, 1 —ao(l — exp(=A)) | IV, 7 <t—2] =0. (4.1)

"Under leverage effect and constant drift, we still have Cov(RV;(h), RV;_i(h)) = Cov(IV;, IV;_;) for i # 0.
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Hence, if one observes the integrated variance process, one cas use (4.1) to estimate ag and A.

However, we also have
E[RVy(h) — exp(—=A)RV;_1(h) — ao(1 — exp(=A)) | RV (h), 7 <t—2] =0, (4.2)

and therefore one can use (4.2) to estimate (ag,\), which is feasible given that RV;(h) is
observable. Bollerslev and Zhou (2002) follow this strategy.

Note however that conditions (4.1) and (4.2) do not identify the parameter a. Therefore,
Bollerslev and Zhou (2002) also derive a similar moment condition than (4.1) for IV;?> when
the variance depends on square-root processes. In this case, the square of the integrated
variance process also admits an ARMA representation. The reason is the following: for a
square-root process f;, Laguerre polynomials are autoregressive processes given that they are
the eigenfunctions of the infinitesimal generator associated with the square-root process; see,
for instance, Meddahi (2001). But any Laguerre polynomial of order 7 is a polynomial of degree
i. Therefore, for any integer n, the vector (f;, f2, ..., f*)" is a VAR(1). By applying this result
to n = 2 and by using Ito’s Lemma, one easily shows that I'V;> admits a state variable with
2p autoregressive processes, where p is the number of autoregressive processes involved in the
variance decomposition. However, this result is not always true. A necessary condition is
that the infinitesimal generator admits as eigenfunctions affine and quadratic functions. Wong
(1964) shows that this only holds for diffusions of the form

dfy = (e + gf)dt + o(f)dW,, o(f)? =bf2+cf,+d.

A second necessary condition is that the polynomials are in the domain of the infinitesimal
generator, which requires the L? integrability of the polynomials; see Hansen, Scheinkman
and Touzi (1998) for more details. This is always the case for the square-root and Ornstein-
Uhlenbeck processes, but not for the GARCH diffusion model. In the last case, one needs an
assumption on the parameters that insure the L? integrability of the moments.

Of course, an alternative approach to the methodology of Bollerslev and Zhou (2002) for
the identification of the parameter a is the incorporation of the moving-average parameter in
the estimation; for instance, by using

Cov(RVy(h), RV,_1(h)) = Cov(IV;, IV,_y) = d® 1- eX)\pQ(—)\)]2.

In their empirical section, Bollerslev and Zhou (2002) used moment conditions fulfilled
by the integrated variance process but apply them to the realized variance observations. In
other words, these authors ignore the measurement error e;(h). However, the conditions (4.1)
and (4.2) are the same and, hence, the measurement error problem does not matter for these

moment conditions. This feature may explain why the Bollerslev and Zhou (2002) approach
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works well even if the measurement error problem matters for the moment restrictions on the
squared process IV;2.8

Instead of adopting a GMM approach, Barndorff-Nielsen and Shephard (2002a) proposed a
QML estimation procedure and used the state-space representation of the integrated variance

process combined with the Kalman filter.’

Interestingly, the ARMA representation of the
realized variance process that we derived allows us to do the same estimation procedure. More

precisely, one can estimate the parameters of the model by minimizing the function

— (RVi(h) — my_1[RV (h)])?
2 2var(n;(h)]

+ 5 log(var{n.(h),
t=1

with mo[RV (h)] = E[RV;(h)] = ap. This approach is the same as that of Barndorff-Nielsen
and Shephard (2002a) given that m; ;[RV] is the analytical steady-state of the Kalman filter.
We leave for future research the use of this estimation method, which is clearly simpler than
the methods of Barndorff-Nielsen and Shephard (2002a) and Bollerslev and Zhou (2002).

5 Empirical Implications

In this section, we derive the empirical implications of the ARMA representations of integrated
and realized variances. We consider two examples. The first one is a one-factor affine

continuous time stochastic volatility model, i.e.,
dz; = 0:dW;, do} = k(0 — o7)dt + oo, dW, (5.1)

where W, and W;, are independent standard Brownian processes. The numerical results
we will provide are based on the parameter estimates reported in Bollerslev and Zhou
(2002) obtained by matching the sample moments of the daily realized variances constructed
from high-frequency five-minute DM/$ returns spanning from 1986 through 1996 to the
corresponding population moments for the integrated variance. The resulting values are
k= 0.1464, 0 = 0.5172, 0 = 0.5789, implying the existence of a slow mean-reverting factor.

The second example is a two-factor affine continuous time stochastic volatility model, i.e.,
dz; = 0,dW,, of = Jit + J%}t, dUZt = k;(0; — azt)dt + 00, dW;,, for i =1,2, (5.2)

where W;, Wi, and Wy, are independent standard Brownian processes. The numerical results
we will provide are also based on the parameter estimates reported in Bollerslev and Zhou
(2002). The resulting values are k; = 0.5708, 6; = 0.3257, o1 = 0.2286, ky = 0.0757, 6, =

8Recently, Corradi and Distaso (2002) derived sufficient conditions on the speed of convergence of h toward
zero (relatively to the sample size T') that allows one to ignore the measurement error in statistical inference.

9See also Galbraith and Zinde-Walsh (2001) and Maheu and McCurdy (2002) for alternative estimation
procedures.
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0.1786, o9 = 0.1096, implying the existence of a very volatile first factor, along with a more
slowly mean-reverting second factor.

The results concerning the one-factor and two-factor models are reported in Table 1 and
Table 2 respectively. In Table 1, we reported for integrated variance (respectively realized
variance) the autoregressive and moving-average roots, denoted by v and A (respectively v(h)
and A(h)) and the dynamic coefficients, denoted by « and S (respectively a(h) and B(h)),
of the recursive equation describing the expected value of integrated variance (respectively
realized variance), given in (3.19) (respectively (3.23)). We give the same coefficients in Table
2 for the two-factor model. The realized variances are computed by using intra-daily returns at
the following lengths: one day, eight hours, four hours, three hours, one hour, thirty minutes,
fifteen minutes, ten minutes, five minutes, one minute, and thirty seconds.

Let us start by studying the results of the one-factor model reported in Table 1, which can
be summarized as follows. The autoregressive root of integrated variance, I'V;, and realized
variance, RV;(h), coincide for any h, while their moving-average roots are different. However,
when h goes to zero, the moving-average root of realized variance denoted by A(h) converges
toward the moving-average root of the integrated variance process (denoted by A). The same
convergence result holds for the parameters of the recursive equation of the expected values
of integrated and realized variances. As discussed in Section 3, parameter [, defined in
the GARCH-like equation describing the expected value of integrated variance, is negative.
Therefore, it is also the case for the corresponding coefficient of realized variance (i.e., B(h))
when h is small. However, when A is not small, the amount of the noise e;(h) is important
and ((h) becomes positive. The result in Table 1 indicates that B(h) becomes positive for
h > 1/288, which corresponds to realized variance computed with five-minute returns or
longer ones. In other words, this is the case in practice, given that empirical papers consider
five-minute or thirty-minute returns. Finally, note that the parameters a(h) and §(h) for
h =1, i.e., squared daily returns coincide with the usual GARCH(1,1) parameters. As shown
in the previous section, the ARMA representation of the realized variance RV;(1) coincides
with the (weak) GARCH representation of daily returns.

Consider now the two-factor model. All the results pointed out for the one-factor model
are still valid for the two-factor case. However, there is an additional result: there exists a
frequency, which corresponds to a particular value of h, denoted h*, for which a moving-average
root of realized variance equals the non-persistent autoregressive root (i.e., 7). From Table
2, it is clear that h* is between 1/8 and 1/24, which correspond to three-hour and one-hour
returns respectively. Therefore, RV;(h*) is an ARMA(1,1). As a consequence, the structural
model, i.e., the two-factor model specified in (5.2), is not completely identifiable but only
partially. In other words, one can not estimate all the parameters given in (5.2) by using the
ARMA representation of realized variance RV;(h*), as did Barndorff-Nielsen and Shephard
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(2002a) and Bollerslev and Zhou (2002).1°

Of course, by taking a different A than h*, one identifies the model and hence can estimate
all the parameters. However, there are two problems with such argument. The frequency h*
is unknown and depends on the parameters that have to be estimated. Therefore, by taking
an ad hoc frequency, one is not sure that the model is identified. The second problem is
that for h close to h*, a moving-average root of realized variance is close to the non-persistent
autoregressive root. For instance, from Table 2, it is clear that the moving-average root A;(h)
is close to the autoregressive root v, for realized variance computed with intra-daily returns of
length between one hour and four hours. Therefore, the model is somewhat weakly identified,
a results that may explain why the coefficient k, of the persistent factor in Bollerslev and Zhou

(2002) was not precisely estimated.'!

6 Conclusion

In this paper, we have derived the ARMA representation of integrated and realized variances
when the spot variance depends linearly on two autoregressive factors, i.e., SR-SARV(2)
models. This class of processes includes popular models like affine and positive Ornstein-
Uhlenbeck processes, estimated using realized variances respectively by Bollerslev and Zhou
(2002) and Barndorff-Nielsen and Shephard (2002a). Such representation is useful for
forecasting (see Andersen, Bollerslev and Meddahi, 2002, for an application) and for statistical
inference.

Several questions are still open and left for future research. The first one is to study the
sign of the expected value of integrated variance. We have shown that the usual sufficient
assumption that ensures this positivity is violated and it will therefore be useful to have more
insight into this issue. A second interesting question concerns be the study of the potential
identification problem that highlighted in the empirical section. A potential solution will be
the combination of various realized variances computed with different lengths of intra-daily

returns. This approach is currently under investigation.

10Bollerslev and Zhou (2002) consider also moment restriction fulfilled by the square of the integrated
variance. Therefore, it is possible that this moment condition identifies the rest of the parameter. Note
also that in our analysis, we do not take into account the fact that some moment restrictions used by Bollerslev
and Zhou (2002) are valid for integrated variance and not for realized variance.

1The standard error reported by Bollerslev and Zhou (2002) for this parameter is 0.8984.
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Appendix

Proof of Proposition 3.1. By using (2.7) for one-factor and two-factor models, one gets
t
EIV| friprym <t —1] =/ Elo2 | fr,pr,7 <t — 1]du
t—1
1
= / E[O-t271+u | f’T?p’T’T S t— 1]dU,
0

= /01 (ao + aexp(—Au)P(fi—1) + &GXP(_;\U)p(ft—l)) du,

ie.,

E[IVy| fr,pr,7 <t —1] =ao+ al_#p(_/\)P(ftl) + &1—%1)(_)\)?0%1)_ (A1)

When @ = 0, (A.1) means that

1 — exp(—A
IV, = 811 4 uy with s,y = ag + a%ﬂﬂ_l) and Elu | fr,p,, 7 <t =1] =0,
(A.2)

Equation (2.5) implies that

P(fi—1) = exp(=A)P(fi—2) + we—1  with  Elwiy | fr,p,, 7 <t —2] = 0.
Hence,

1-— -
st-1 = ag(1 — exp(—A)) + exp(—A)s—2 + v-1 with v,y = a%“&r
Therefore, we have
Elz | frypr,m <t—2] =0 with
2z = IV, —exp(—A)IVi_y — ag(1 — exp(—A)) = uy — exp(—A)ug—1 + v4_1, (A.3)

i.e., z; is a MA(1) process given that its variance is finite. Thus, there exists a white noise 7

and a real number 3, with | 5 |< 1, such that z, = n, — B4,

B _ Cov(z,2-1)
1+82 Var[z]

Varlz) Dy
1+ﬂ2 - 1+/32

=p and Varlp] =

The equation 8+ p(1+ %) = 0 admits one unique solution 3 such that | 8 |< 1 and is given in
(3.18). To achieve the proof, we need Var|z] and Cov(z, 2z;—1). Equation (A.3) implies that

Var[z] = (1 + ) Var[IV)] — 2¢Cov[IV;, IV, 1] = Dig(v, Var[IV;], Cov[IV;, TV, 1)),
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with v = exp(—A), and

Cov(zi,2-1) = —yVar[IVi] + (1 + v*)Cov[IV;, IV, 1] — yCov[IV;, IV ).
But IV, is an ARMA(1,1) where the autoregressive parameter equals . Therefore

Cov[IV;, IV,_g] = vCov[IV;, IV;_4].
Thus,
Cov(z, 2 1) = —yVar[IVi] + Cov[IV;, IV, 1| = D11(y, Var[IVy], Cov[IV;, IV, 4]).
Finally,
my (V] =1Vi = = (1 = v)ag + v IVi1 — By—y = w + yIViey — B(IVm1 — my_o[1V]),

ie., (3.19).1
Proof of Proposition 3.2. By combining (3.3) and (A.2), one gets

RVy(h) = s;1 + ug(h) with uy(h) = uy + e4(h), and Elui(h) | frypr, 7 <t —1] =0,

given that Meddahi (2002b) shows Ele;(h) | fr,p,,7 < t — 1] = 0. The rest of the proof is

exactly the same as for the proof of Proposition 3.1; in particular, we have
__Do(h)
14 B(h)?
Proof of Proposition 3.3. Equation (A.1) implies that IV; is an ARMA(2,2) with

autoregressive roots that equal exp(—A) and exp(—2A). The rest of the proof is an application
of Proposition 2.1 and Proposition 2.3 of Meddahi (2002b); in particular,

Varlm(h)]

Dy
1+ 62+ 63

Finally, the proof of (3.26) is similar to the proof of (3.19).H

Var[n] =

Proof of Proposition 3.4. By combining (3.3) and (A.1), one gets

BIRVA) | fropr <t = 1] =ay+ 0t =PV pr ) a2 pg - (a

given that Meddahi (2002b) shows E[e;(h) | fr,pr, 7 < t—1] = 0. Equation (A.4) implies that

RV;(h) is an ARMA(2,2) with autoregressive roots that equal exp(—A) and exp(—\). The rest

of the proof is similar to the proof of Proposition 3.3. In particular,

Dy(h)

Var[nt(h’)] = 1 +51(h)2 +62(h)2
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Table 1: ARMA(1,1) representation of daily integrated

and realized variances for the one-factor model

v y A ! B
966 -.268 1.23 -.268
RV(h) 1/h  Freq  y(h) A(h) a(h) B(h)
1 1 day 966 .898 .0678 .898
3 8 hours .966 .835 .130 .835
6 4 hours .966 .777 189  .777
8 3 hours .966 .747 .218 .747
24 1 hour .966 .603 .362 .603
48 30mn .966 .486 .480  .486
96 15mn .966 .352 .614 .352
144 10mn .966 .269 .697  .269
288 5 mn 966 .128 .838  .128
1440 1 mn 966 -.126 1.09 -.126
2880 30sec .966 -.188 1.15 -.188

Table 2: ARMA(2,2) representation of daily integrated

and realized variances for the two-factor model

vV T V2 At A2 Qaq ) B Pa
H65 927 -306 .858 940 -.739 552 215
RV(h) 1/h  Freq Y1(h) (k) Ai(h) Ao(h) ai(h) as(h) Bi(h) Pa(h)
1 1 day D65 927 665 .793  .0337 -.0242 1.46 -.500
3 8 hours .565 .927 .638 .771  .0837 -.0611 1.41 -.463
6 4 hours .565 .927 .603 .750 .139 -103 1.35 -.421
8 3 hours .565 .927 583 .741 .169 -126 1.32 -.398
24 1 hour 565 .927 460 .711  .321 -.244 1.17 -.280
48 30mn .565 927 342 707 442 -340 1.056 -.184
96 15mn 565 927 201 .721 570 -.441 922 -.084
144 10mn 565 927 115 .736 .641 -498 .851 -.026
288 5 mn D65 927 -.024 769 747 -583 745  .039
1440 1 mn D65 927 -.226  .830 .888  -.697 .604 .173
2880 30sec  .b65 927 -264 843 913 -717 580  .193
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