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Résumé / Abstract

Plusieurs méthodes d'estimation nécessitent un modèle instrumental et un
modèle d'intérêt. On retrouve parmi ces méthodes la méthode des moments
efficace de Gallant et Tauchen (1996) et l'Inférence Indirecte proposée par
Gouriéroux, Monfort et Renault (1993). La présence de ces deux modèles procure
de nouvelles occasions d'inférence. Dans cet article, on présente et dérive la loi
asymptotique de différents tests de changement structurel. Certaines procédures
sont des extensions de tests standards tandis que d'autres sont spécifiquement
adaptées à la présence des deux modèles.

Several estimation procedures such as the Efficient Method of Moments
(EMM) of Gallant and Tauchen (1996) and Indirect Inference procedure of
Gouriéroux, Monfort and Renault (1993) involve two models, an auxiliary one
and a model of interest. The role played by both models poses challenges and
provides new opportunities for hypothesis testing beyond the usual Wald, LM and
LR-type tests. In this paper we present the asymptotic distribution theory for
various classes of tests for structural change. Some procedures are extensions of
standard tests while others are specific to the dual model setup and exploit its
unique features.
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1 Introduction

There is now a fully developed asymptotic distribution theory for various types of test

statistics associated with Generalized Method of Moments (henceforth GMM) and Simulated

Method of Moments (henceforth SMM) estimators. The seminal paper by Hansen (1982)

on GMM proposed a widely used test for overidentifying restrictions, while Gallant (1987)

and Newey and West (1988) presented generic Wald, LM and LR-type tests. Andrews and

Ploberger (1994) deal with optimal tests when a nuisance parameter is present only under

the alternative. One of the most prominent applications of such test statistics involves the

hypothesis of structural change with unknown breakpoint.1 McFadden (1989), Pollard and

Pakes (1989) and DuÆe and Singleton (1993) extended the GMM framework to estimation

methods involving simulated moments. A comprehensive treatment of Wald, LM and LR-

type tests for SMM can be found in Gouri�eroux, Monfort and Renault (1993).

In recent years a number of estimation procedures have been proposed which involve

a dual model setup. Examples include Asymptotic Least Squares (henceforth ALS) of

Gouri�eroux, Monfort and Trognon (1985), the indirect inference method of Gouri�eroux et

al. (1993) (henceforth I.I.) and the EÆcient Method of Moments (called EMM) procedure

of Gallant and Tauchen (1996). Estimation procedures involving auxiliary models are more

commonly used, particularly in situations where likelihood-based estimation or method of

moments are infeasible. Many empirical examples can be found in macroeconomic and �-

nancial econometrics literature. These procedures are driven by the fundamental distinction

between an auxiliary model, parameterized by a vector �; and a model of interest, which

is parameterized by �. The distinct role played by both models can be viewed as adding

complications to the formulation of traditional tests and can also be viewed as the basis for

formulating new classes of tests. The purpose of our paper is to examine both issues.

We present several classes of tests for structural change, some are extensions of tests

proposed for GMM and SMM while others genuinely exploit features unique to the dual

model setup. We proceed in two steps. First we ignore the simulation uncertainty and deal

with tests for structural change in a GMM-type setup involving an auxiliary model. Such

tests are based on the ALS principle. Next we add the simulation uncertainty and present

a generic class of tests for structural change with unknown breakpoints for EMM and I.I.

1It should be noted that various tests for the structural change hypothesis were developed for the GMM

estimator; see for instance Andrews and Fair (1988), Dufour, Ghysels and Hall (1994), Ghysels, Guay and

Hall (1997), Ghysels and Hall (1990), Guay (1996), Hall and Sen (1999), Ho�man and Pagan (1989), Sowell

(1996a), among others.
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estimators.

Among the tests for structural change speci�cally tailored for EMM and I.I. �gures a class

of tests based on a principle of simulated scores which is speci�c to the combination of an

auxiliary model and simulation based estimation. The simulated score tests we propose use

simulated series from a restricted null model of interest. Using the reprojection arguments

of Gallant and Tauchen (1998) we can �t a sieve seminonparametric SNP density to the

simulated data. Under the null the simulated data should yield a reprojection score generator

which is a martingale di�erence sequence when applied to the actual sample data. To test

the martingale di�erence hypothesis we consider tests proposed by Bierens and Ploberger

(1997) and de Jong (1996). We extend their tests to the simulation-based context of EMM

and I.I. Hence it is a test principle tailored exclusively for EMM and I.I. applied here in the

context of structural change.

Our analysis also relates to a EMM diagnostic test proposed by Liu and Zhang (1998).

Their test, while meant to be a simulated score test, is closely related to one of the structural

change tests we propose. We generalize and extend the test Liu and Zhang (1998) suggested.

Recent work by van der Sluis (1998) also proposes structural change tests for EMM. We show

that the asymptotic derivations in van der Sluis are invalid for the proposed statistics and

compare our tests with the Hansen J-type and Hall-Sen type tests discussed in van der Sluis

(1998).

The paper is organized as follows: In section 2 we discuss tests for structural change with

unknown breakpoint. Section 3 deals with simulated score tests. Section 4 covers non-nested

hypothesis testing while section 5 concludes.

2 Models and Parameter Estimators

In this section we describe the data generating processes as well as the various classes of

estimators we will consider. A �rst subsection is devoted to the description of the data

generating processes. The second subsection covers the parameter estimators.

2.1 The Data Generating Processes

The data generating process is described by a parametric nonlinear simultaneous equations

model, namely:

r(yt; yt�1; xt; ut; �) = 0 (2.1)
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q(ut; ut�1; "t; �) = 0 (2.2)

where � 2 < � Rp; fytg corresponds to the vector of dependent variables whereas fxtg is

the vector of exogenous variables. Both vector processes are stationary and observable, in

addition fxtg is a homogeneous Markov process independent of f"tg and futg: The latter

two are latent processes with "t white noise with known distribution G0:
2 The fact that only

one lag is considered in (2.1) and (2.2) is not essential and can easily be relaxed.3 It will also

be convenient to de�ne the vector Zt�1 � (yt�1; xt): Equations (2.1) and (2.2) correspond to

the data generating processes considered by Gouri�eroux et al. (1993), Gallant and Tauchen

(1996) and Broze et al. (1998). Since we will be dealing with simulation-based estimators

we assume that samples of simulated fyst (�)gTt=1 can be generated uniquely through (2.1)

and (2.2), given � and conditional on initial values u0 and y0 as well as the observed path of

exogenous variables fxtgTt=1:
The indirect inference method of Gouri�eroux et al. (1993) and the eÆcient method of

moments of Gallant and Tauchen (1996) are estimation procedures designed for situations

where the log-likelihood function of the structural model:

�T (�) =
TX
t=1

log `(ytjZt�1; �) (2.3)

is computationally intractable. The likelihood-based method is therefore replaced by an

instrumental criterion which involves a vector of parameters � 2 � � Rq, namely:

QT (�) =
TX
t=1

 t(ytjZt�1; �): (2.4)

Minimizing (2.4) yields an M-estimator b�T for �: The auxiliary model parameters � and those

of the structural model are related through:

g(��(�); �0) = 0 (2.5)

where �0 is the true value and �� is the estimator which minimizes the limit (as T !1) of the

M-estimation criterion (2.4). Equation (2.5) yields a so-called binding function �� = b(�0):

The I.I. and EMM procedures provide, in di�erent ways, simulation-based approximations

to the binding function. Moreover, the function in (2.5) must satisfy:

2The assumption of white noise can be relaxed, see Gouri�eroux et al. (1993) for further discussion.

3In principle an in�nite number of lags can be considered as discussed by Gallant and Tauchen (1996).
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Assumption 2.1 For the purpose of identi�cation, p � G � q in (2.5), where � 2 < � Rp;

� 2 � � Rq, g 2 RG and G� = @g(��; �0)=@�
0

is of full column rank.

Finally, it will be useful to split the parameter vector � into two subvectors � = (�1; �2).

There are at least two motivating reasons for this. First, following Andrews (1993) one can

consider tests for partial structural change where only a subvector �1 of the parameter vector

of interest � is tested for structural change. Second, following Broze et al. (1998) and Dridi

and Renault (2001) one can also consider situations where only a subvector �1 of � is of direct

interest while �2 consists of nuisance parameters, such as parameters pertaining for instance

to distributional assumptions. Such a situation, which Broze and al. (1998) and Dridi and

Renault (2001) label semiparametric indirect inference, also suggests tests for structural

change for subvectors corresponding to parameters of economic interest. Throughout the

remainder of this paper we will discuss the implications of partial structural change and

semiparametric indirect inference. To keep the notational complexity minimal, we avoid

spliting the parameter vector � in subvectors. All the results we present can easily be

modi�ed to take into account the special cases of testing the null hypothesis of structural

change for subvectors.

2.2 Parameter estimators

The Asymptotic Least Squares estimator of Gouri�eroux, Monfort and Trognon (1985) is a

procedure for estimating � through an auxiliary model parameterized by �: Its main advan-

tage, which we exploit here for expository purpose, is that it does not involve simulation

uncertainty. Sidestepping this source of uncertainty, at least at a �rst stage, allows us to

focus �rst and foremost on the key issue of testing for structural change when an auxiliary

model is present.

2.2.1 The Asymptotic Least Squares estimator

We will consider several ALS estimators. In particular, we de�ne the estimator for the entire

sample of the parameter vector of the auxiliary model as the following M-estimator:

�̂T = argmin
�2�

1

T

TX
t=1

 t(ytjZt�1; �) (2.6)

where � 2 � � Rq. Some tests for structural change involve parameter estimators over

subsamples. We will call full sample estimators, like (2.6), as restricted estimators since the

parameters are assumed identical across subsamples. To de�ne an unrestricted estimator we
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consider explicitly two subsamples, the �rst is based on observations t = 1; � � � ; [T�] while
the second subsample covers t = [T�] + 1; � � � ; T where � 2 � � (0; 1). The separation

[T�] represents a possible breakpoint and [�] denotes the greatest integer function. The

unrestricted asymptotic least squares estimators for the �rst and the second subsamples are,

�̂1T (�) = arg min
�12�

1

[T�]

[T�]X
t=1

 t(ytjZt�1; �) (2.7)

�̂2T (�) = arg min
�22�

1

T � [T�]

TX
t=[T�]+1

 t(ytjZt�1; �): (2.8)

To simplify the notation, we de�ne 	1T (�; �) =
1

[T�]

P[T�]
t=1  t(ytjZt�1; �1); 	2T (�; �) =

1
T�[T�]

PT
t=[T�]+1  t (ytjZt�1; �) and the vector 	T (�; �) = (	1T (�; �);	2T (�; �)) : The un-

restricted least square estimators of the parameter vector � for the �rst and the second

subsamples are obtained by:

�̂iT (�) = argmin
�i2<

g(�̂iT (�); �)
0WiT (�)g(�̂iT (�); �) (2.9)

where WiT are random nonnegative symmetric matrices and g is de�ned in (2.5). The

corresponding binding functions are ��1(�) = b1(�
0
1; �) and ��2(�) = b2(�

0
2; �) and ��i is the

estimator which minimizes the limit (as T ! 1) for each of the subsamples i = 1; 2: The

restricted asymptotic least squares estimator for � is obtained via a function relating �� to

the parameter of interest. This function is de�ned as g(��(�); �0) = 0 where �̂ replaces ��, i.e.

the estimator which minimizes as T !1 the limit of the M-criterion. Hence, the restricted

(i.e. full sample) estimator is:

�̂T = argmin
�2<

g(�̂T ; �)
0

WTg(�̂T ; �) (2.10)

where WT is a random nonnegative symmetric matrix.

2.2.2 The Indirect Inference estimator

The indirect inference method of Gouri�eroux et al. (1993) also involves the binding function

which relates the estimator for the auxiliary model to the estimator of the structural model

�� = b(�0): The binding function is unknown, however, and therefore is approximated by

simulation. Assume one selects a value of � and, using equations (2.1) and (2.2), one simulates

the process fyst (�)gTt=1: The estimator of the auxiliary model is then de�ned as:

�̂sT (�) = argmin
�2�

1

T

TX
t=1

 t(y
s
t (�)jZs

t�1(�); �)) (2.11)
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where Zs
0 are the initial values (y�1; x0) for the s simulated path. Note also that Zs

t�1(�) �
(yst�1(�); xt): For S simulated paths, we construct 1

S

PS
s=1 �̂

s
T (�); where �̂

s
T is a consistent

estimator of the binding function. The indirect estimator of � is obtained as the solution of

the following minimum distance problem

�̂ST = argmin
�2<

"
�̂T � 1

S

SX
s=1

�̂sT (�)

#0
WT

"
�̂T � 1

S

SX
s=1

�̂sT (�)

#
(2.12)

For certain structural change tests we will need again to de�ne subsample estimators.

They are obtained with the auxiliary model for the �rst and the second subsamples, namely:

�̂s1T (�; �) = arg min
�12�

1

[T�]

[T�]X
t=1

 1t(y
s
t (�)jZs

t�1(�); �) (2.13)

and

�̂s2T (�; �) = arg min
�22�

1

T � [T�]

TX
t=[T�]+1

 t(y
s
t (�)jZs

t�1(�); �) (2.14)

The binding function for the two subsamples are then, ��1(�) = b1(�
0
1; �) and ��2(�) =

b2(�
0
2; �)): Therefore the indirect estimators for the �rst and the second subsamples are

obtained by:

�̂SiT (�) = argmin
�i2<

"
�̂iT (�)� 1

S

SX
s=1

�̂siT (�; �)

#0
WiT (�)

"
�̂iT (�)� 1

S

SX
s=1

�̂siT (�; �)

#
(2.15)

for i = 1; 2:

To conclude this section we elaborate on the simulation of processes with structural

breaks. Suppose the parameters of interest for the two subsamples are �i for i = 1; 2: Then

for the �rst subsample one generates data based on (2.1) and (2.2), modi�ed accordingly,

namely r(yst ; y
s
t�1; xt; ut; �1) = 0 and q(ust ; u

s
t�1; "

s
t ; �1) = 0 for t = 1; � � � ; [T�]: This is repeated

for the second subsample which covers t = [T�] + 1; � � � ; T with �2 as parameter. Hence, one

creates a series fyst (�1; �2)gTt=1 � (fyst (�1)g[T�]t=1 ; y
s
t (�2)gTt=[T�]+1):

2.2.3 The EÆcient Method of Moments estimator

Gallant and Tauchen (1996) describe the maintained model via a sequence of time-invariant

densities fp1(y1j�); pt(ytjZt�1; �)g1t=1; � 2 < � Rp; whereas the auxiliary model is repre-

sented by a sequence of time-invariant densities ff1(y1j�); fft(ytjZt�1; �)g1t=1; � 2 � � Rq: It

should be noted that we continue to use Zt�1 as the conditional information set. Typically,

Gallant and Tauchen consider densities conditional on (yt�L; � � � ; yt�1): However, in some

circumstances Zt�1 contains only xt; as for instance is the case with reprojection schemes,
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see Gallant and Tauchen (1998). For the sake of simplicity we will keep the conditioning set

as Zt�1 and it will be obvious from the context what the conditional information set is. The

following assumption introduced by Gallant and Tauchen (1996) is used for the validity of

the EMM criterion as a speci�cation test for the maintained model.

Assumption 2.2 The maintained model fp1(y1j�); pt(ytjZt�1; �)g1t=1 � 2 < is smoothly em-

bedded within the auxiliary model ff1(y1j�); ft(ytjZt�1; �)g1t=1 � 2 �; i.e. for some open

neighborhood <0 ! �, it is such that: pt (ytjZt�1; �) = ft [ytjZt�1; b(�)]; t = 1; 2; : : : for

every � 2 <0 and p1 (y1j �) = f1(y1jb(�)) for every � 2 <0:

Under this embedding assumption, the parameters of the auxiliary model (��) are related

to the parameters of the maintained model (�0) according to �� = b(�0). Assumption 2.2

is comparable to Assumption 2.1, both play the same role guaranteeing identi�cation of �

via the auxiliary model. However, Assumption 2.2 is stronger than Assumption 2.1. Indeed,

under Assumption 2.2 the E.M.M. estimator is fully eÆcient.

The EMM estimator is obtained in two steps. The �rst step is to compute the (quasi)

maximum likelihood estimate of the auxiliary model:

�̂T = argmax
�2�

1

T

TX
t=0

log[f (ytjZt�1; �)]; (2.16)

and the corresponding estimate of the information matrix:

IT =
1

T

TX
t=1

[
@

@�
log f (ytjZt�1; �̂T )][ @

@�
log f (ytjZt�1; �̂T )]0: (2.17)

In the second step, a vector of moment conditions is constructed using the expectation

under the maintained model of the scores from the auxiliary model. The EMM estimator is

obtained by minimizing a GMM criterion function formed by the above moment conditions,

i.e.,

�̂ST = argmin
�2<

mS
T (�; �̂T )

0(IT )
�1mS

T (�; �̂T ) (2.18)

where

mS
T (�; �) =

1

TS

TSX
t=1

@

@�
log[f(yst (�)jZs

t�1(�); �)] (2.19)

and yst (�); Z
s
t�1(�)

TS

t=1
is a long series of realizations simulated from the maintained model

with the parameter vector �: Under suitable regularity conditions discussed in Gallant and

Tauchen (1996) and Assumption 2.2, we have
p
T (�̂T��0) d! Nf0; I�1g and, pT (�̂T��0) d!

Nf0; [M 0
�I
�1M�]

�1g where M� = (@/ @�0)m(�0; �0) and I is the outer product of scores, as

suggested by the estimator in (2.17). All these results apply to the case where the number
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of simulations goes to in�nity. In the case of possible structural changes with unknown

breakpoint, theoretical results based of the number of simulations equal to in�nity are not

so appealing as the computational cost involved can be prohibitively high. For this reason,

the asymptotic results need to be modi�ed to account for a �nite number of simulations.

When S is �nite, the randomness of the EMM estimator �̂T will not only depend on the

randomness of �̂T but also on the randomness of the moment conditions due to a �nite

length of series simulated from the structural model. Therefore the asymptotic variance-

covariance matrix in equation (2.17) is scaled by (1 + 1=S) using arguments similar to DuÆe

and Singleton (1993).

To conclude this section we present partial sample estimators which appear in certain

tests for structural change. The unrestricted EMM estimator for the subsamples are de�ned

as:

�̂SiT (�) = argmin
�i2<

m0
i(�; �̂iT (�))(IiT )

�1mi(�; �̂iT (�)) (2.20)

where �i 2 < � Rp, IiT is the estimator of the matrix I for the ith subsample and:

m1(�; �̂1T (�)) =
1

[TS�]

[TS�]X
t=1

@

@�
log f(yst (�)jZs

t�1(�); �̂1(�))]: (2.21)

m2(�; �̂2T (�)) =
1

TS � [TS�]

TSX
t=[TS�]+1

@

@�
log f [yst (�)jZs

t�1(�); �̂2(�)]: (2.22)

The simulation of processes when a break is present can be characterized by the following

sequence of densities fp1(y1j�1); pt(ytjZt�1; �1)g[T�]t=1 ; for the �rst subsample and

fpt(ytjZt�1; �2)gTt=[T�]+1; for the second. It is important to note that the simulated path

length is function of the fraction of the sample (�). This point is crucial. Indeed, asymptotic

distribution of several structural change tests could depend on the nuisance parameter S

and hence the critical values depend on S, in the case where the simulated path length is

not split according to the presumed breakpoint �: Section 3.2 will examine this problem.

3 GMM-like Tests for Structural change with unknown

breakpoint

The purpose of this section is to generalize GMM-based tests for structural change presented

by Andrews (1993), Andrews and Ploberger (1994), Sowell (1996a,b) and Ghysels, Guay and

Hall (1997). A variety of tests were proposed ranging from (optimal) Wald, LM and LR-type

tests to predictive tests with unknown breakpoint. In this section we deal with the issues
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posed by procedures involving two models, an auxiliary one and a model of interest. We

noted that the role played by both models poses challenges and provides new opportunities for

hypothesis testing. Here we only deal with the usual Wald, LM and LR-type and predictive

tests. In the next section we cover tests which are speci�cally designed for the dual model

setup. We cover tests based on ALS, Indirect Inference and EMM estimators. One of the

�rst issues to resolve is to clearly de�ne the null hypothesis of interest in tests for structural

change analysis. The analysis in the �rst subsection involves the ALS since it allows us again

to focus directly on the key issues of hypotheses and test statistics. The added complication

of simulation uncertainty is considered in the second subsection.

3.1 Tests for Asymptotic Least Squares

The purpose of this section is twofold: (1) clearly spell out the null hypotheses involved in

tests for structural change when an auxiliary model is present and (2) adapt the usual Wald,

LM and LR-type and predictive tests for such situations. A subsection is devoted to each of

the two issues.

3.1.1 The Null Hypotheses

The null hypothesis of interest is:

H�
0 : �t = �0 8t = 1; :::; T: (3.1)

The fact that we estimate the parameter vector � indirectly via an auxiliary model implies

that we also should consider the null hypothesis:

H�
0 : �t = �0 8t = 1; :::; T (3.2)

The null hypotheses (3.1) and (3.2), while related, are obviously not identical. Accepting H�
0

implies that there is no structural change for � because of the identi�cation Assumption 2.1

for the binding function. RejectingH�
0 does not necessarily imply thatH

�
0 is violated since the

dimension of � is equal or greater than the dimension of �: To unravel whether the rejection

of H�
0 is due to a structural change of the overidentifying restrictions, one can follow the

approach of Sowell (1996a) and characterize via projection the subspace which identi�es �:

Such projection can distinguish structural change of the structural parameters from breaks

in the overidentifying restrictions. This distinction becomes even more interesting when

we allow for partial structural change, i.e. consider subvectors of �: In particular, in the

9



context of semiparametric indirect inference, following Broze et al. (1998), this may involve

a subvector of nuissance parameters �2 for which structural change may be more tolerated.

To elaborate further on the distinction between the null hypotheses (3.1) and (3.2), and

in particular the interpretation of rejecting the null hypotheses, we consider a sequence of

local of alternatives:

�t;T = �� + h(�; s;
t

T
)=
p
T (3.3)

where h(�; s; �), for � 2 [0; 1], is a q-dimensional function which can be expressed as the

uniform limit of step functions, � 2 Ri, s 2 Rj such that 0 < s1 < s2 < : : : < sj < 1 and ��

is in the interior of �. The function h(�) allows for a wide range of alternative hypotheses

(see Sowell (1996a)). The parameter s locates structural changes as a fraction of the sample

size and the vector � de�nes the local alternatives. To simplify the notation h(�; s; t
T
) will

be noted h(s). The following theorem provides the asymptotic distribution for the optimally

weighted g(�) for both subsamples, using WT = 
�1T , where 
T is the full sample estimator

of the optimal weighting matrix 
 which is de�ned in Appendix E:

Theorem 3.1 Under Assumptions A.1, A.2, B.1 and sequence of local alternatives (3.3),

we have:

�
p
T


�1=2
T g(�̂1T (�); �̂T ) ) �B(�)� 
�1=2G�H(�) +

�
�1=2G�(G
0
�


�1G�)
�1G0�


�1=2 hB(1)� 
�1=2G�H(1)
i
:

(1� �)
p
T


�1=2
T g(�̂2T (�); �̂T ) ) �

h
B(1)� B(�)� 
�1=2G� (H(1)�H(�))

i
+

(1� �)
�1=2G�(G
0
�


�1G�)
�1G0�


�1=2 hB(1)� 
�1=2G�H(1)
i
:

where H(�) =
R �
0 h(�; s; u)du, B(�) is a q-dimensional vectors of independent Brownian

motions and G�, G� are de�ned in B.1.

Proof: See Appendix E

Under the null hypothesis (3.2), a version of Corollary 1 of Sowell(1996a) holds, namely

there exists an orthonormal matrix C such that

�C
p
T


�1=2
T g(�̂1T (�); �̂T ) )

264 �BBp(�)

�BG�p(�)

375 : (3.4)
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where BBp(�) is a p-dimensional Brownian bridge, B(�) is a G � p-dimensional Brownian

motion, C is such that 
�1=2G�(G
0
�


�1G�)
�1G0�


�1=2 = C 0�C;CC 0 = I and

� =

264 Ip 0p�(G�p)

0(G�p)�p 0(G�p)�(G�p)

375 :
For the function g(�) evaluated at the estimator obtained with the second subsample, we

have

(1� �)C
p
T


�1=2
T g(�̂2T (�); �̂T ) )

264 BBp(�)

�B�G�p(�)

375 (3.5)

where BBq(�) is de�ned above and B�G�p(�) = BG�p(1)�BG�p(�).

As shown by Sowell (1996b), structural change tests can be constructed in projecting on

the appropriate subspace. The limiting stochastic processes in (3.4) and (3.5) are equivalent

to the limiting stochastic processes for the GMM estimator in Sowell or those obtained for

the Simulated Method of Moments estimator in Ghysels and Guay (2001). Under the null

hypotheses (3.1) and (3.2), the results in (3.4) and (3.5) show that the limiting continuous

stochastic processes are linear combinations of p Brownian bridges, one for each parameter

estimated, and G� p Brownian motions, spanning the space of overidentifying restrictions,

where G is the dimension of g(�).
We can re�ne now the null hypothesis (3.1). In particular, following Hall and Sen (1999)

we consider the generic null, for the case of a single breakpoint, which seperates the identi-

fying restrictions across the two subsamples:

HI�
0 (�) =

8><>: P 0G

�1=2g(��(�); �0) = 0 8t = 1; : : : ; [�T ]

PG

�1=2g(��(�); �0) = 0 8t = [�T ] + 1; : : : ; T

where PG = 
�1=2G�(G
0
�


�1G�)
�1G0�


�1=2: Moreover, the overidentifying restrictions are

stable if they hold before and after the breakpoint. This is formally stated as HO�g
0 (�) =

HO�g1
0 (�) \HO�g2

0 (�) with:

HO�g1
0 (�) : (IG � PG1(�))


�1=2
1 (�)g(��(�); �0) = 0 8t = 1; : : : ; [�T ]

HO�g2
0 (�) : (IG � PG2(�))


�1=2
2 (�)g(��(�); �0) = 0 8t = [�T ] + 1; : : : ; T

where PGi(�) and 
i(�) are the subsample equivalents of PG and 
 respectively for i =

1,2. By projection the decomposition appearing in (3.4) and (3.5), it is clear that instability

must be re
ected in a violation of at least one of the three hypotheses: HI�
0 (�); HO�g1

0 (�); or

11



HO�g2
0 (�): It is only the former of those three which corresponds to the null hypothesis (3.1).

Violation of HO�g1
0 (�); or HO�g2

0 (�) mean that there are reasons to reject the null hypothesis

H�
0 in (3.2), but still accept H�

0 in (3.1). Various tests can be constructed with local power

properties against any particular one of these three null hypotheses (and typically no power

against the others).

To conclude we need to discuss the implication of various structural change tests in

presence of auxiliary models. The decomposition of the hypothesis (and associated tests)

into HI�
0 (�); HO�g1

0 (�); or HO�g2
0 (�) has di�erent implications for the structural model. The

auxiliary model can be viewed as a window through which information is obtained about the

structural model. Consequently, structural change can only be assessed via the information

about the structural model revealed by the auxiliary model. For example, Guay and Renault

(2001) examine indirect encompassing when both models are misspeci�ed and estimated by

auxiliary models. In the �rst step of their proposed procedure, the auxiliary model is used

only to obtain consistent estimators of the parameters of structural models. Structural

parameter instability detected through the intermediary of the auxiliary model is crucial for

the consistency of the procedure. However, instability of the overidentifying restrictions (of

the auxiliary model) without change of the structural parameters is innocuous.

3.1.2 Test statistics

A structural change test is obtained for the vector of parameters � when the function

S
�1=2
T g(�) is projected on the subspace identifying the parameters with the �rst subsample

estimator �̂1T . This statistic is

Q1T (�) = T�2g(�̂1T (�); �̂T )
0
�1=2T

�


�1=2
T G�;T (G

0
�;T


�1
T G�;T )

�1G0�;T

�1=2
T

�
(3.6)



�1=2
T g(�̂1T (�); �̂T ):

The statistic with the estimator of the second subsample is:

Q2T (�) = T (1� �)2g(�̂2T (�); �̂T )
0
�1=2T

�


�1=2
T G�;T (G

0
�;T


�1
T G�;T )

�1G0�;T

�1=2
T

�
(3.7)



�1=2
T g(�̂2T (�); �̂T ):

A structural change test for overidentifying restrictions is obtained with the statistic which

consists of projecting the function 
�1=2T g(�) on the subspace orthogonal to the subspace

identifying the parameters. For example, the statistic with the �rst subsample estimator is

Q0
1T (�) = T (�)2g(�̂1T (�); �̂T )

0
�1=2T

�
I � 


�1=2
T G�;T (G

0
�;T


�1
T G�;T )

�1G0�;T

�1=2
T

�
(3.8)



�1=2
T g(�̂1T (�); �̂T )
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In the case of unknown breakpoint, statistics can be constructed by mapping on � 2
�. Andrews and Ploberger (1994) in the context of maximum likelihood estimation and

Sowell (1996a,b) for GMM estimation derive optimal tests which are characterized by an

average exponential mapping. In the case of a one time structural break alternative and

a particular integral weight functions for h(�) in (3.3), the tests with the greatest weighted

average asymptotic power have the following form for structural parameter instability

Exp�QiT = (1 + c)(�p=2)
Z
exp

�
1

2

c

1 + c
QiT (�)

�
dR(�)

where R(�) is the weight function over the set of possible breakpoints �. The parameter c

controls the distance of the alternative. For close alternatives, the asymptotic test with the

greatest weighted average power is an average over � 2 � and has the form:
R
QiT (�)dR(�):

For a distant alternative, the functional is: log
R
exp

�
1
2
QiT (�)

�
dR(�). The supremum form

sup�2�Qit(�) often used in the litterature corresponds to the case where c=(1+c)!1. The

LM (or LMT (�) for given �) test statistic of structural change corresponds to the case where

R(�) = 1= (�(1� �)) d�. A Wald (WaldT (�)) and a LR-type (LRT (�)) test statistics can be

constructed as usual with the restricted and unrestricted ALS estimators. Following Andrews

(1993), we can show that WaldT (�) = LMT (�) + op(1) and LRT (�) = LMT (�) + op(1).

The following proposition gives the asymptotic distribution for the exponential mapping

for QiT when QiT corresponds to the Wald, LM and LR ratio-type tests.

Proposition 3.1 Under the null hypothesis H0 in (3.1) and Assumptions A.1, A.2, B.1,

the following processes indexed by � for a given set � whose closure lies in (0,1) satisfy:

supQiT ) sup
�2�

Qp(�); aveQiT )
Z
�
Qp(�)dR(�); expQiT ) log

�Z
�
exp[

1

2
Qp(�)]dR(�)

�
;

with

Qp(�) = BBp(�)
0BBp(�)

for i = 1; 2.

This result is obtained through the application of the continuous mapping theorem (see

Pollard (1984)). The asymptotic distribution is a quadratic form of weighted Brownian

bridge such as when the breakpoint is known the asymptotic distribution is a chi-square

with a degree of freedom equal to the dimension of the structural vector parameters.

The next proposition gives the asymptotic distribution for the exponential mapping for

Q0
iT when Q0

iT is the statistic for the structural change in overidentifying restrictions corre-

sponding to the null HO�gi
0 (�).
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Proposition 3.2 Under the null hypothesis of no structural change for the over-identifying

restrictions and Assumptions A.1, A.2, B.1, the following processes indexed by � for a given

set � whose closure lies in (0,1) satisfy:

supQ0
iT ) sup

�2�
Qi;G�p(�);

aveQ0
iT )

Z
�
Qi;G�p(�)dR(�);

expQ0
iT ) log

�Z
�
exp[

1

2
Qi;G�p(�)]dR(�)

�
;

with Q1;G�p(�) = BG�p(�)0BG�p(�) and Q2;G�p(�) = B�G�p(�)
0B�G�p(�); where BG�p(�) is a

G� p-dimensional vector of independent Brownian motion, B�G�p(�) = BG�p(1)� BG�p(�)

and i = 1; 2.

The asymptotic distribution is a quadratic form of Brownian motion such as when the

breakpoint is known the asymptotic distribution is a chi-square with a degree of freedom

equal to G � p. Predictive tests, discussed in Ghysels, Guay and Hall (1997) and Guay

(1996), can also be constructed and the asymptotic distribution of those tests can be easily

obtained from Theorem 3.1.

3.2 Structural Change for Indirect Inference and EMM

The analysis in Section 3.1 involves the Asymptotic Least Squares estimator of Gouri�eroux,

Monfort and Trognon (1985), a procedure which we have chosen to discuss �rst as it features

the estimation of � through an auxiliary model parameterized by �: We now turn our atten-

tion to procedures with similar features, but which require simulations to obtain the binding

function appearing in (2.5). Sidestepping simulation uncertainty allowed us to focus exclu-

sively on the key issue of testing for structural change when an auxiliary model is present.

The results in Ghysels and Guay (2001) may help us to understand the e�ect of simulation

uncertainty on tests for structural change. They propose a set of tests for structural change

in models estimates via Simulated Method of Moments (see DuÆe and Singleton (1993))

and show that the number of simulations does not a�ect the asymptotic distribution nor

the asymptotic local power of tests for structural change. Hence, the asymptotic results

obtained for GMM-based tests are also valid for SMM-based procedures. The intuition for

this result is that in the case of tests for structural change one compares parameter estimates

that are subject to the same simulation uncertainty (unlike tests of a �xed hypothesis where

the distance of the estimates to the null depends on the simulation uncertainty). The result
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in Ghysels and Guay (2001) critically depends on the choice of the weighting matrix and

a Monte Carlo investigation also reveals that simulation uncertainty does a�ect the �nite

sample properties of tests. Nontheless, it is also shown that a relatively small number of

simulations suÆces to obtain tests with desirable small sample size and power properties.

The purpose of this section is to extend the results of Ghysels and Guay (2001). In

particular, it will be shown that for both the I.I. and EMM estimators, the simulation

uncertainty does not a�ect the asymptotic distribution of tests for structural stability. Hence,

there is an asymptotic analogue between ALS-based tests and I.I. or EMM-based procedures.

We begin with the Indirect Inference procedure to show that this is indeed the case.

Theorem 3.2 For the full and the partial sample indirect inference estimators appearing in

(2.13), (2.14), under Assumptions A.2 and C.1 and (3.3), we have

�
p
T


�1=2
T

"
�̂1T (�)� 1

S

SX
s=1

�s1T (�
s
T ; �)

#
) �

"
B(�)� 1

S

SX
s=1

Bs(�)� 
�1=2H(�)

#

+�
�1=2b�
h
b0�


�1b�
i�1

b0�

�1=2 �"

B(1)� 1

S

SX
s=1

Bs(1)� 
�1=2H(1)

#

and for the second subsample

(1� �)
p
T
�1=2T

"
�̂2T (�)� 1

S

SX
s=1

�s2T (�
s
T ; �)

#
) �

"
B(1)� B(�)� 1

S

SX
s=1

(B(1)s �B(�)s)

#

+
�1=2 (H(1)�H(�)) + (1� �)
�1=2b�
h
b0�


�1b�
i�1 �

b0�

�1=2

"
B(1)� 1

S

SX
s=1

Bs(1)� 
�1=2H(1)

#

where H(�) =
R �
0 h(�; s; u)du and B(�) and Bs(�) are two q-dimensional vectors of mutually

independent Brownian motions and 
T = J�1T ITJ
�1
T .

Proof: See Appendix E

Under the null hypothesis, by replacing 
T by ~
T = (1 + 1
S
)
T in the expressions of

Theorem 3.2, a version of Corollary 1 of Sowell(1996a) can be easily shown such as

�C
p
T ~


�1=2
T

"
�̂1T (�)� 1

S

SX
s=1

�s1T (�
s
T ; Z

s
0 ; �)

#
)
264 �BBp(�)

�Bq�p(�)

375 :
For the second subsample, we have

(1� �)C
p
T ~


�1=2
T

"
�̂2T (�)� 1

S

SX
s=1

�s2T (�
s
T ; Z

s
0 ; �)

#
)
264 BBp(�)

�B�q�p(�)

375 :
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To obtained these results, we have just to see that

�
1 +

1

S

��1=2 "
B(�)� 1

S

SX
s=1

Bs(�)

#

is a q-dimensional vector of standard Brownian motion. As shown in Section 3.3, structural

change tests can be constructed by projection on the appropriate subspace. A structural

change test is obtained for the vector of parameters � when the di�erence between the

estimator obtained with the auxiliary model for the data and the average estimators obtained

with simulated paths is projected on the subspace identifying the parameters for the �rst or

the second subsample. This statistic is

T�2
"
�̂iT (�)� 1

S

SX
s=1

�siT (�
s
T )

#0
~

�1=2
T

�
~

�1=2
T b�

h
b0� ~


�1
T b�

i�1
b0� ~


�1=2
T

�
~

�1=2
T

"
�̂iT (�)� 1

S

SX
s=1

�siT (�
s
T )

#

where i = 1; 2 depending on the subsample. A structural change tests for overidentifying

restrictions is obtained by projecting the same function on the subspace orthogonal to the

subspace identifying the parameters. The resulting statistic is:

T (1� �)2
"
�̂iT (�)� 1

S

SX
s=1

�siT (�
s
T )

#0
~

�1=2
T

�
I � ~


�1=2
T b�

h
b0� ~


�1
T b�

i�1
b0� ~


�1=2
T

�

~

�1=2
T

"
�̂iT (�)� 1

S

SX
s=1

�siT (�
s
T )

#

The asymptotic distribution of the exponential mappings of these statistics is given in Propo-

sition 3.1 for the parameter stability and in Proposition 3.2 for stability of overidentifying

restrictions.

Theorem 3.2 shows that simulation uncertainty does not a�ect the asymptotic distribu-

tion of tests for structural stability. Hence, the implication of structural change detected

in the auxiliary model has the same interpretation as in the ALS case. In Section 3.1.1 it

was noted that the importance of instability in the auxiliary model for the structural model

depends on which hypotheses is violated, namely HI�
0 (�); HO�g1

0 (�); or HO�g2
0 (�): An inter-

esting case to examine can be found in Dridi and Renault (2001) who develop a generalization

of Indirect Inference to semi-parametric settings. Their approach produces a theory of robust

estimation despite misspeci�cations of the structural model. Suppose economic theory only

provides information about a subvector of parameters of interest �1 (in our notation) and

direct estimation of the structural model can not be performed so that the econometrician

relies on Indirect Inference. To simulated the structural model, an additional nuisance pa-

rameter vector �2 is required. Since we are only interested in a consistent estimator for �1,
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the importance of �nding structural change in the auxiliary model depends on the impact

of instability on the parameter vector of interest. In particular, instability for the nuisance

parameters �2 or for overidentifying restrictions without a�ecting stability of the parameter

vector of interest have no impact on the consistency of the semi-parametric Indirect Inference

estimator. Structural change tests must therefore focus on the parameter vector of interest

�1. With our results, partial structural stability tests for this parameter vector of interest can

be constructed and the asymptotic distribution of exponential mappings is given in Section

3.1.2.

Next, we turn to the EMM estimator, in particular:

Theorem 3.3 For the partial sample EÆcient Method of Moments estimators appearing in

(2.18), (2.21), (2.22), under Assumptions A.2 and D.1, we have

�
p
TI

�1=2
T m1(�̂

S
T ; �̂1T (�)) ) �

�
B(�)� 1p

S
BS(�) + I�1=2JH(�)

�
+�I�1=2M�

�
M 0

�I
�1M�

�
�1

M 0

�I
�1=2

�
B(1)� 1p

S
Bs(1) + I�1=2JH(1)

�
and for the second subsample

(1� �)
p
TI

�1=2
T m2(�̂

S
T ; �̂2T (�)) ) �

�
B(1)�B(�) � 1p

S

�
B(1)S �B(�)s

�
+ I�1=2J (H(1)�H(�))

�
+�I�1=2M�

�
M 0

�I
�1M�

�
�1

M 0

�I
�1=2

�
B(1)� 1p

S
Bs(1) + I�1=2JH(1)

�
where H(�) =

R �
0 h(�; s; u)du and B(�) and Bs(�) are two q-dimensional vectors of mutually

independent Brownian motions.

Proof: See Appendix E

Structural change tests can be constructed by replacing IT by ~IT = (1 + 1
S
)IT as shown

in the previous sections. The asymptotic distribution of the tests is the same since (1 +

1=S)�1=2
h
B(�)� 1p

S
Bs(�)

i
is a q-dimensional vector of Brownian motions. The asymptotic

distributions are given in Proposition 3.1 for the parameter stability and in Proposition 3.2

for stability of overidentifying restrictions.

van der Sluis (1998) proposes similar structural change tests for EMM. However, in

contrast to our strategy, the length of the simulated series used to construct the structural

change tests in van der Sluis (1998) is the same for the estimation of the full sample estimator

of � and for the evaluation of the moment restrictions with the unrestricted estimators �iT (�).

Such a strategy has an important impact on the asymptotic distribution as will be shown

in the remaining of this section. Suppose that the length of the simulated series is equal to
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TS. The statistic proposes by van der Sluis is based on the following moment restrictions:

1

TS

TSX
t=1

m(�̂ST ; �̂iT (�))

for i = 1; 2. For the case where the moment restrictions are evaluated at �̂1T (�) which is

also obtained with a simulated path equal to TS, we can show the following result under

the null:

p
TI

�1=2
T

1

[TS]

[TS]X
t=1

m(�̂ST ; �̂1T (�)) ) �
"
B(�)

�
� 1p

S
BS(1)

#

+I�1=2M�

h
M 0

�I
�1M�

i�1
M 0

�I
�1=2

"
B(1)� 1p

S
BS(1)

#
:

The LM structural change statistic is constructed by projecting the above moment restric-

tions on the subspace identifying the parameters. Such a statistic has the usual asymptotic

distribution (see Proposition 3.1). This result holds because the nuisance term introduced

by simulation (1=
p
S)BS(1) cancels out. However, the asymptotic distribution of a struc-

tural change test for overidentifying restrictions constructed by projection on the subspace

orthogonal to the subspace identifying the parameters is not the same as given in Proposition

3.2. In this case, one can show that the asymptotic distribution is given by the following

process:

BS
G�p(1)

0BS
G�p(1) +BG�p(�)

0BG�p(�):

This expression contains a nuisance parameter that depends on the length of the simulated

path, and hence the critical values depend on S. Consequently, the statistics in van der Sluis

(1998) are valid only in the case where S equals in�nity, or would require critical values that

need to be computed for various values of S (the applications in van der Sluis (1998) use

S = 3 with S =1 critical values).

4 Tests Exploiting Auxiliary Models

Thus far we examined a set of tests which were introduced to the literature in the context of

GMM and SMM estimation and have their roots in the earlier literature (see e.g. Andrews

(1993) for references). We studied the consequences of having estimation and inference via

auxiliary models. The purpose of this section is to present statistics which are designed to

tests for structural breaks and take advantage of the dual model setup. We cover two types

of tests, a �rst class relates to recent work of Liu and Zhang (1998) on diagnostic testing of
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EMM score generators which we show are implicitly tests for structural change. The second

class is based on the simulated score principle.

4.1 Liu and Zhang Tests

The results obtained in Appendix E allow us to examine the speci�cation test in the EÆcient

Method of Moments framework proposes by Liu and Zhang (1998). This test is a measure

of the overall goodness of �t of the auxiliary model. The zeta statistic introduced by Liu

and Zhang is de�ned as follows:

�T =
12

T 3

 
TX
i=1

iX
t=1

s0t(�̂T )

!
(IT )

�1
 

TX
i=1

iX
t=1

st(�̂T )

!

where st(�T ) = @=@� log f (ytj xt�1; �T ). We will show that the zeta statistic is in fact a struc-

tural change statistic test for the parameters of the auxiliary model. Under the alternative

(3.3), a Taylor expansion of the score evaluated at �t;T yields:

st(�t;T ) = st(�
�) +

@s(~�)

@�

h(�)p
T

+ op(1)

and therefore

Est(�
�) = �E@s(

~�)

@�

h(�)p
T

+ op(1): (4.9)

where ~� is de�ned in the Appendix. Using the result in (4.9) and previous results, we can

show that the asymptotic distribution of the zeta statistic under the alternative is given by:

12
�Z 1

0
BBq(�) + I

�1=2
T J (H(�)� �H(1))

�0 �Z 1

0
BBq(�) + I

�1=2
T J (H(�)� �H(1))

�
where BB(�) is a vector of independent Browinian Bridge of dimension q. The second term

in the bracket shows that the zeta statistic is powerful against structural change alternative

for the parameter vector �. However, this test is not an optimal test of structural change as

de�ned by Andrews and Ploberger (1994) and Sowell (1996a,b).

4.2 Simulated Score Tests

We introduce a speci�c structural change test for the EÆcient Method of Moments called

simulated score tests. The tests rely on simulated series from a restricted null model of

interest. Using the reprojection arguments of Gallant and Tauchen (1998), we can �t a sieve

seminonparametric SNP density to the simulated data. Under the null, the simulated data
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should yield a reprojection score generator which is a martingale di�erence sequence when

applied to the actual sample data.

In the case of structural change tests, the simulated score test consists of evaluating the

score for the actual sample data for a possible breakpoint using the estimator of the auxiliary

model for the simulated data. The �rst step is to simulate series with the restricted estimator

de�ned in equation (2.18). The second step is to obtain the estimator of � of the auxiliary

model with the simulated series. The score for this second step is:

s(�̂ST ; �̂N) =
1

N

NX
t=1

@

@�
log f(yst (�̂

S
T )jZs

t�1(�̂
S
T ); �̂N ):

where N is the length of the simulated series. The third step is to evaluate the score with the

data for a possible breakpoint at the estimator obtained in the second step. The simulated

score structural change test is then based on the following statistic:

m1(�̂N (�̂
S
T ); �) =

1

T�

T�X
t=1

@

@�
log f (ytjZt�1; �̂N(�̂ST )): (4.10)

where �̂T (�̂
S
T ) is the estimator of the auxiliary model obtained with simulated series. The

next theorem gives the asymptotic distribution of the statistic de�ned above.

Theorem 4.1 Under Assumptions A.2 and D.1 and the alternative (3.3)

�
p
TI

�1=2
T m1(�̂N(�̂

S
T ); �) ) B(�) + I

�1=2
1 JH(�)� �

p
Tp
N
BN (1)

��I�1=2M�

h
M 0

�I
�1M�

i�1
M 0

�I
�1=2"

B(1)� 1p
S
Bs(1) + I�1=2JH(1)

#

where H(�) =
R �
0 h(�; s; u)du and B(�) and B

N(�) are two q-dimensional vectors of mutually

independent Brownian motions.

Proof: See Appendix E

Under the null, the asymtotic distribution di�ers from the one obtained in Theorem 3.3.

In particular, it depends on the length of the simulated series N . However, replacing N by

TS� for � 2 � as the length of the simulated series results in the asymptotic distribution

appearing in Theorem 3.3. This is the same argument as the one developed in the discus-

sion of the van der Sluis statistic. Using TS� as the length for the simulated series yields

asymptotic distributions under the null and under the local alternative that are identical

to the distributions of the test proposes in Section 3.2. Structural change tests can then
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be constructed by replacing IT by ~IT = (1 + 1
S
)IT as shown in the previous sections. The

asymptotic distributions of these structural change tests are given in Proposition 3.1 for the

parameter stability and in Proposition 3.2 for the stability of overidentifying restrictions.

Hence, the simulated score tests have the same asymptotic distribution under the null and

the alternative as the the tests appearing in Section 3.2. However, the small sample prop-

erties can di�er. In particular, the usual statistics proposed in Section 3.2 are based on the

unrestricted estimators �iT for i = 1; 2. For small or large value of � 2 �, the properties

of the unrestricted estimators �iT could be poor since the partial samples used to obtain

these estimators are relatively small. This problem does not occur for the computation of

the simulated score test.

5 Conclusions

Estimation procedures involving auxiliary models are more commonly used, particularly in

situations where likelihood-based estimation is infeasible. Many empirical examples can

be found in the �nancial econometrics literature, particularly pertaining to the estimation

of continuous time processes. Financial markets experience regular disruptions, sometimes

modeled as so called jumps. There may be more fundamental shifts at work and the tests

proposed here would be applicable.

Besides generalizing existing test procedures we also introduced new ones which rely

on the dual model setup. The simulated score tests introduced in the paper can easily be

extended to hypotheses other than structural breaks. As a by product of the paper, we also

showed that some recently proposed diagnostic tests for auxiliary models are de facto tests

for structural change, albeit suboptimal ones.
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Appendices

A Technical Assumptions

To simplify the notation,  (ytjZt�1; xt; �) will be noted  (�).

A.1 Assumptions for the auxiliary model

Assumption A.1 	T (�; �) does not depend on � for all � under the null hypothesis.

Assumption A.2 The following are assumed to hold:

� �̂T � �0
p! 0 under the null for some �0 in the interior of <.

� sup�2�k�̂iT (�)� �0k p! 0 under the null for some �0 in the interior of < for i = 1; 2.

� �̂T � ��
p! 0 under the null for some �� in the interior of �.

� sup�2� k�̂iT (�)� ��k p! 0 under the null for some �� in the interior of � for i = 1; 2.

� 	iT (�; �) is twice continuously partially di�erential in � for all � 2 �� and � 2 � with

probability one, where �� is some neighborhood of ��.

� @2	iT

@�@�0
(�; �)

p! J for i = 1; 2 uniformly over � 2 � and � 2 �� where

J = limT!1
h
1
T

PT
t=1

@2 t
@�@�0

(��)
i
.

� IiT (�; �)
p! I for i = 1; 2 uniformly over � 2 � and � 2 �� where I1T (�; �) =

var
�

1p
[T�]

P[T�]
t=1

@ t
@�
(�)
�
, I2T (�; �) = var

�
1p

T�[T�]
PT

[T�]+1
@ t
@�
(�)
�

and I = limT!1 var
�

1p
T

PT
t=1

@ t
@�
(��)

�
.

� J is uniformly positive de�nite over � 2 �.

� 1p
T

P[T�]
t=1

@ t
@�
(��; �) ) I1=2B(�) � JH(�) under the alternative (3.3) where B(�) is a

q-dimensional vector of standard Brownian motions and H(�) =
R �
0 h(r)dr.
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B Asymptotic Least Squares Regularity Conditions

Assumption B.1 The following are assumed to hold:

� g(�iT (�); �) is continuously partially di�erential in � for all � 2 �� and � 2 � with

probability one, where �� is some neighborhood of �� for i = 1; 2.

� g(�iT (�); �) is continuously partially di�erential in � for all � 2 <0 and � 2 � with

probability one, where <0 is some neighborhood of �0 for i = 1; 2.

� @g
@�0 (�̂iT (�); �)

p! G� for i = 1; 2 uniformly over � 2 � and � 2 �� where G� =
@g
@�0 (��; �0)

� @g
@�0 (�̂iT (�); �)

p! G� for i = 1; 2 uniformly over � 2 � and � 2 < where G� =
@g
@�0 (��; �0)

� sup�2�kWiT (�)�W0k p! 0 for i = 1; 2.

C Indirect Inference Regularity Conditions

Assumption C.1 The following are assumed to hold:

� �̂ST � �0
p! 0 for some �0 in the interior of <.

� sup�2�k�̂SiT (�)� �0k p! 0 for some �0 in the interior of < for i = 1; 2.

� �̂sT (�)� b(�)
p! 0 for some �� in the interior of � for s = 1; : : : ; S.

� sup�2� k�̂siT (�; �)� bi(�; �)k p! 0 under the null for some nonrandom function bi(�; �),

for � 2 <0 where <0 is some neighborhood of �0, for s = 1; : : : ; S and i = 1; 2.

� 	s
T (�; �) is twice continuously partially di�erential in � for all � 2 �� and � 2 � with

probability one, where �� is some neighborhood of �� and for s = 1; : : : ; S.

� @2	s

iT

@�@�0
(�; �)

p! J for i = 1; 2 uniformly over � 2 � and � 2 �� for s = 1; : : : ; S.

� IsiT (�; �)
p! I for i = 1; 2 uniformly over � 2 � and � 2 �� where Is1T (�; �) =

var
�

1p
[T�]

P[T�]
t=1

@ s
t

@�
(�)
�
, Is2T (�; �) = var

�
1p

T�[T�]
PT

[T�]+1
@ s

t

@�
(�)
�
and for s = 1; : : : ; S.
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� �siT (�; �) is continuously partially di�erentiable in � 2 <0 and � 2 � with probability

one for i = 1; 2 and s = 1; : : : ; S.

� b(�; �) is continuously partially di�erentiable in � 2 <0 and � 2 � and is noted b�(�; �).

� sup�2� k@�̂
s

iT

@�0
(�; �)� b�(�; �)k p! 0 for i = 1; 2 and s = 1; : : : ; S.

� 1p
T

P[T�]
t=1

@ s
t

@�
(b(�0)) ) I1=2B(�)s where B(�)s is a q-dimensional vector of Brownian

motions for s = 1; : : : ; S and b(�0) = ��

� sup�2�kWiT (�)�W0k p! 0 for i = 1; 2.

D EÆcient Method of Moments Regularity Conditions

Assumption D.1 The following are assumed to hold:

� mS(�; �iT (�)) is continuously partially di�erential in � for all � 2 �� and � 2 � with

probability one, where �� is some neighborhood of �� for i = 1; 2.

� mS(�; �iT (�)) is continuously partially di�erential in � for all � 2 <0 and � 2 � with

probability one, where <0 is some neighborhood of �0 for i = 1; 2.

� �@ms

@�0 (�; �̂iT (�))
p! J for i = 1; 2 uniformly over � 2 � and � 2 ��.

� @mS

@�0 (�̂iT (�); �)
p! M� for i = 1; 2 uniformly over � 2 � and � 2 < where M� =

@mS

@�0 (��; �0)
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E Proof of Theorems

E.1 Proof of Theorem 3.1

We need to use the following Lemma to proof the Theorem.

Lemma E.1 Under assumptions A.1, A.2, B.1 and the alternative hypothesis (3.3), the

asymptotic distribution of the full sample ALS estimator is

p
T (�̂T � �0))

h
G

0

�W0G�

i�1
G0�W0G�J

�1I1=2
h
B(1)� I�1=2JH(1)

i
and the asymptotic distributions of the unrestricted M-estimators are:

p
T
�
�̂1T (�)� ��

�
) �J�1I1=2

"
B(�)� I1=2JH(�)

�

#

and

p
T
�
�̂2T (�)� ��

�
) �J�1I1=2

"
B(1)� B(�)� I1=2J (H(1)�H(�))

(1� �)

#
:

Proof of Lemma E.1:

First, the asymptotic distribution for the restricted estimator is shown. By the mean

value expansion for the F.O.C. evaluated at �T :

1

T

TX
t=1

@ t(�̂T )

@�
=

1

T

TX
t=1

@ t(�
�)

@�
+

1

T

TX
t=1

@2 t(~�)

@�@�0
(�̂T � ��) + op(1)

where ~�0 = [~�(1) : : : ~�(q)] and ~�(k) = �(k)�
�(k)
T + (1 � �(k))�̂(k) for some 0 � �(k) � 1 and

k = 1; : : : ; q. The expression above yields:

p
T (�̂T � ��) = �

"
1

T

TX
t=1

@2 t(~�)

@�@�0

#�1
1p
T

TX
t=1

@ t(�
�)

@�
+ op(1):

By Assumption A.2, we have

1p
T

TX
t=1

@ t(�
�)

@�

p! I1=2B(1)� JH(1) (E.1)

where H(1) =
R 1
0 h(r)dr. Since �̂T is consistent for ��, ~�

p! �� and by Assumption A.2, the

asymptotic distribution of the full sample estimator �̂T is then given by

p
T (�̂T � ��) d! �J�1I1=2

h
B(1)� I�1=2JH(1)

i
(E.2)
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The mean value expansion for the restricted ALS estimator is 
@g(�̂T ; �̂T )

@�0

!0
WTg(�̂T ; �̂T ) =

 
@g(�̂T ; �̂T )

@�0

!0
WTg(�

�; �0)

+

 
@g(�̂T ; �̂T )

@�0

!0
WT

@g

@�0
(~�; �̂T )(�̂T � ��)

+

 
@g(�̂T ; �̂T )

@�0

!0
WT

@g

@�0
(�̂; ~�)(�̂T � �0) + op(1)

where ~�0 = [~�(1) : : : ~�(p)] and ~�(k) = �(k)�0;(k) + (1 � �(k))�̂(k) for some 0 � �(k) � 1 and

k = 1; : : : ; p and ~� is de�ned above.

By the fact that the �rst term of the right hand side is equal to zero, the full sample

estimator �̂T is only function of the asymptotic distribution of �̂T . Thus, by the expansion

above, we have

p
T
�
�̂T � �0

�
= �

24 @g(�̂T ; �̂T )
@�0

!0
WT

@g

@�0
(�̂; ~�)

35�1

�
 
@g(�̂T ; �̂T )

@�0

!0
WT

@g

@�0
(~�T ; �̂T )

p
T (�̂T � ��) + op(1):

Since �̂T is consistent for ��, then ~�
p! �� and �̂T is consistent for �0 then ~�

p! �0. Under

Assumptions B.1, the consistency of ~� and ~� and the result (E.2),we obtain that

p
T
�
�̂T � �0

�
p!
h
G

0

�W0G�

i�1
G0�W0G�J

�1I1=2
h
B(1)� I�1=2JH(1)

i
:

The optimal estimator is obtained with the following weighting matrix

WT = 
�1T =

"
@g

@�0
J�1T ITJ

�1
T

 
@g

@�0

!0#�1
and


T
p! 
 =

h
G�J

�1IJ�1G0�
i
:

Now, we derive the asymptotic distribution for the unrestricted estimators. By the mean

value expansion for the M-estimators �̂1T for the �rst subsamples:

1

[T�]

[T�]X
t=1

@ t(�̂1T )

@�
=

1

[T�]

[T�]X
t=1

@ t(�
�)

@�
+

1

[T�]

[T�]X
t=1

@2 t( ~�1)

@�@�0
(�̂1T (�)� ��) + op(1)

where ~�1
0
= [ ~�1

(1)
: : : ~�1

(q)
] and ~�1

(k)
= �(k)�

�(k)
1 + (1 � �(k))�̂

(k)
1T for some 0 � �(k) � 1 and

k = 1; : : : ; q. Since �̂1T is consistent for �� by Assumption A.2,
�
�
p! ��. This yields

p
T
�
�̂1T (�)� ��

�
= �

0@ 1

[T�]

[T�]X
t=1

@2 t(~�1)

@�@�0

1A�1pT 1

[T�]

[T�]X
t=1

@ t(�
�)

@�
+ op(1):
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Similarly, by the mean value expansion of the M-estimators for the second subsamples

and manipulating this expansion, we obtain

p
T
�
�̂2T (�)� ��

�
= �

0@ 1

[T (1� �)]

TX
t=[T�]+1

@2 t(~�2)

@�@�0

1A�1

p
T

1

[T (1� �)]

TX
t=[T�]+1

@ t(�
�)

@�
+ op(1):

Using the weak convergence of the score (assumption A.2), we have

p
T

1

[T�]

[T�]X
t=1

@ 1t(�
�)

@�
) I1=2

"
B(�)� I�1=2JH(�)

�

#

and

p
T

1

[T (1� �)]

TX
t=[T�]+1

@ 2t(�
�)

@�
) I1=2

"
B(1)�B(�)� I�1=2J (H(1)�H(�))

(1� �)

#
:

Under Assumption A.2, the asymptotic distribution of the unrestricted M-estimators are

then: p
T
�
�̂1T (�)� ��

�
) �J�1I1=2

"
B(�)� I�1=2JH(�)

�

#
p
T
�
�̂2T (�)� ��

�
) �J�1I1=2

"
B(1)� B(�)� I�1=2J (H(1)�H(�))

(1� �)

#
:

Proof of Theorem 3.1:

First, we show the result for the �rst subsample. We do the mean value expansion for



�1=2
T g(�̂1T (�); �̂T ) which yields



�1=2
T g(�̂1T (�); �̂T ) = 


�1=2
T g(��; �0) + 


�1=2
T

@g

@�0
( ~�1(�); �̂T )(�̂1T � ��)

+

�1=2
T

@g

@�0
(�̂1T (�); ~�)(�̂T � �0) + op(1)

where ~�1(�) and ~� are de�ned above. By using Lemma E.1, Assumptions A.2 and B.1 with

the convergence in probability of 
T to 
, we obtain that

p
T


�1=2
T g(�̂1T (�); �̂T ) ) �
�1=2G�J

�1I1=2
"
B(�)� I�1=2JH(�)

�

#

+
�1=2G�

�
G0�S

�1G�

��1
G�


�1G�JI
1=2
h
B(1)� I�1=2JH(1)

i
:

Since 
�1=2G�J
�1I1=2B(�) is a q-dimensional standard Brownian motions, the result follows.

The asymptotic distribution for the second sample can be obtained in a similar way.
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E.2 Proof of Theorem 3.2

Lemma E.2 Under assumptions A.2, C.1 and the alternative (3.3), the asymptotic distri-

bution of the indirect inference estimator is

p
T (�̂ST � �0)

p!
h
b0�W0b�

i�1
b0�W0JI

1=2

"
B(1)� 1

S

SX
s=1

Bs(1)� I�1=2JH(1)

#

and the asymptotic distributions of the unrestricted simulated M-estimators are:

p
T
�
�̂s1T (�

0; �)� ��
�
) �J�1I1=2B(�)

�

p
T
�
�̂s2T (�

0; �)� ��
�
) �J�1I1=2

"
B(1)� B(�)

(1� �)

#

Proof of Lemma E.2:

Now, we derive the asymptotic distribution of the restricted estimator �̂S. For the sim-

ulated path s, we have the following mean value expansion for the F.O.C. evaluated at

�̂s:

1

T

TX
t=1

@ st (�̂
s
T )

@�
=

1

T

TX
t=1

@ st (�
�)

@�
+

1

T

TX
t=1

@2 st (~�
s)

@�@�0
(�̂sT � ��) + op(1)

where ~�s is de�ned as ~� in the proof of Lemma E.1 for a simulated path s. Then

p
T (�̂sT � ��) = �

"
1

T

TX
t=1

@2 st (
~�s)

@�@�0

#�1p
T
1

T

TX
t=1

@ st (�
�)

@�
+ op(1):

Under Assumption C.1 and by the consistency of ~�s, the asymptotic distribution of �̂s is

given by:

p
T (�̂sT � ��) d! �J�1I1=2B(1)s: (E.3)

In contrast to the asymptotic distribution of the estimator � (�̂T ) obtained for with data,

the asymptotic distribution of �̂sT does not depend on the alternative for obvious reasons.

The mean value expansion for the restricted indirect inference estimator is
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"
1

S

SX
s=1

@�̂sT
@�0

(�̂ST )

#0
WT

"
�̂T � 1

S

SX
s=1

�sT (�̂
S
T )

#
=

"
1

S

SX
s=1

@�̂sT
@�0

(�̂ST )

#0
WT"

(�̂T � ��)� 1

S

SX
s=1

(�̂sT (�̂
S
T )� ��)

�
 
1

S

SX
s=1

@�̂sT
@�0

(~�ST )

!
(�̂ST � �0)

#
+ op(1)

where ~�S is de�ned as in the proof of Lemma E.1 for the estimator obtained with S simulated

paths. This yields:

p
T (�̂ST � �0) = �

24" 1
S

SX
s=1

@�sT
@�0

(�̂ST )

#0
WT

1

S

SX
s=1

@�̂sT
@�0

(~�ST )

35�1

�
"
1

S

SX
s=1

@�̂sT
@�0

(�̂ST )

#0
WT

p
T

"
(�̂T � ��)� 1

S

SX
s=1

(�̂sT (�̂
S
T )� ��)

#
+ op(1):

By Assumptions C.1, Lemma E.1, result (E.3) and the consistency of ~�ST , the asymptotic

distribution of �̂ST is given by:

p
T (�̂ST � �0)

d!
h
b0�W0b�

i�1
b0�W0J

�1I1=2
"
B(1)� 1

S

SX
s=1

Bs(1)� I�1=2JH(1)

#

The asymptotic distribution depends on the matriceW0 and the number of simulations S.

The restricted optimal Indirect Inference estimator is obtained with the following weighting

matrix

WT = 
�1T =
h
J�1T ITJ

�1
T

i�1
and


T
p! 
 = J�1IJ�1

.

Now, we derive the asymptotic distribution for the unrestricted estimators. The mean

value expansion of the M-estimators for the �rst subsample evaluated at �̂1T (�
0; �) gives

1

[T�]

[T�]X
t=1

@ st (�̂
s
iT (�

0))

@�
=

1

[T�]

[T�]X
t=1

@ st (�
�)

@�
+

1

[T�]

[T�]X
t=1

@2 st (
~�s(�0))

@�@�0
(�̂s1T (�

0; �)� ��) + op(1):

This yields the following expression:

p
T
�
�̂s1T (�

0; �)� ��
�
= �

0@ 1

[T�]

[T�]X
t=1

@2 st (
~�s(�0))

@�@�0

1A 1q
[T�]

[T�]X
t=1

@ st (�
�)

@�
+ op(1):
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We can obtain the equivalent expression for �̂2T (�) by a similar mean value expansion.

By Assumption C.1, we have the following weak convergence of the score for the �rst and

the second subsamples:
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Given the results above, Assumption C.1 ans the consistency of ~�s(�0) for i = 1; 2, the

asymptotic distributions of the unrestricted simulated M-estimators are respectively:
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Proof of Theorem 3.2:

By a mean value expansion for the �rst subsample, we have that:
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By Lemma E.1 and E.2, Assumption C.1 and the consistency of ~�ST , we obtain that:
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Since 
�1=2J�1I1=2B(�) is a q-dimensional vector of standard Brownian motions, the result

follows. The asymptotic distribution for the second sample is obtained similarly.

E.3 Proof of Theorems 3.3 and 4.1

Lemma E.3 Under assumptions A.2, D.1 and the alternative hypothesis (3.3), the asymp-

totic distribution of the full sample EMM estimator is
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Proof of Lemma E.3:

First, the asymptotic distribution for the restricted estimator is shown. By the mean

value expansion for the F.O.C. evaluated at �T :
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where ~�0 = [~�(1) : : : ~�(q)] and ~�(k) = �(k)�
�(k)
T + (1 � �(k))�̂(k) for some 0 � �(k) � 1 and

k = 1; : : : ; q. The expression above yields:
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By Assumption A.2, we have
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where J = limT!1
h
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i
. Since �̂T is consistent for ��, ~�

p! ��, the asymp-

totic distribution of the full sample estimator �̂T is then given by
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The mean value expansion of the F.O.C. evaluated at the unrestricted EMM estimator

is  
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where ~�0 = [~�(1) : : : ~�(p)] and ~�(k) = �(k)�0;(k) + (1 � �(k))�̂S;(k) for some 0 � �(k) � 1 and

k = 1; : : : ; p and ~� is de�ned as in Lemma E.1.

Thus, by the expansion above, we have
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Under Assumptions A.2 and D.1 and the result E.5,we obtain that
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T ) converge in probability to �J . In the case where S = 1, the term B(1)S

disappears since 1p
S
= 0.

Moreover, we can show that under the alternative the asymptotic distributions of the

unrestricted (quasi) maximum likelihood estimators is given by:
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Proof of Theorem 3.3:

First, we show the result for the �rst subsample. We do the mean value expansion for
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By using Lemma E.1 and E.3, Assumptions A.2, D.1, result E.6 and the consistency of ~�1(�)

and ~�, we obtain that
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The asymptotic distribution for the second sample can be obtained in a similar way.

Proof of Theorem 4.1:

First, we show the asymptotic distribution of the estimator �̂N obtained with the simu-

lated series for � �xed to the restricted estimator �̂ST . The mean value expansion of the score

of the auxiliary model evaluated at �̂N (�̂
S
T ) is given by:
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By the asymptotic distribution of the restricted estimator �̂ST given in E.3, Assumption A.2,

D.1 and the consistency of ~� and ~�, we obtain that
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The mean value expansion of the score evaluated at �̂N for the data under the alternative

is
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By the asymptotic distribution of the �̂N derived above, Assumptions A.2 and D.1 and the

consistency of ~�, we obtain under the alternative that
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