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The Bootstrap of the Mean
for Dependent Heter ogeneous Arrays

Silvia Gongalves', Halbert White*
Résumé/ Abstract

Actuellement, les conditions assurant la validité des méthodes de bootstrap
pour la moyenne d'échantillon des (possiblement hétérogenes) fonctions de
dépendance d'époque proche (DEP) des processus de mixage sont inconnues.
Ainsi, un des objectifs principaux de cet article est d'établir la validité du
bootstrap dans ce contexte, en élargissant |'applicabilité des méthodes de bootstrap
aune classe de processus largement adéquats pour les applications en économie et
en finance. Les résultats se rapportent au bootstrap de blocs mouvants de Kiinsch
(1989) et Liu et Singh (1992), de méme qu'au bootstrap stationnaire de Politis et
Romano (1994). Plus particuliérement, nous démontrons que la consistance de
I'estimateur de variance du bootstrap pour la moyenne d'échantillon résiste a
I'nétéroscédasticité et a la dépendance de forme inconnue. La validité
asymptotique de premier ordre de I'approximation du bootstrap a la distribution
actuelle de la moyenne d'échantillon est également démontrée dans ce contexte
DEP hétérogéne.

Presently, conditions ensuring the validity of bootstrap methods for the
sample mean of (possibly heterogeneous) near epoch dependent (NED) functions
of mixing processes are unknown. A main purpose of this paper is thus to
establish the validity of the bootstrap in this context, extending the applicability of
bootstrap methods to a class of processes broadly relevant for applications in
economics and finance. The results apply to the moving blocks bootstrap of
Kinsch (1989) and Liu and Singh (1992) as well as to the stationary bootstrap of
Politis and Romano (1994). In particular, the consistency of the bootstrap
variance estimator for the sample mean is shown to be robust against
heter oskedasticity and dependence of unknown form. The first order asymptotic
validity of the bootstrap approximation to the actual distribution of the sample
mean is also established in this heterogeneous NED context.
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1. Introduction

The bootstrap proposed by Efron (1979) provides an attractive method for generating statistics
useful for inference and the construction of confidence intervals. It amounts to treating the em-
pirical distribution of the data as if it were the population distribution when evaluating a statistic
of interest. Given its straightforward applicability, even in situations where standard methods
are intractable, bootstrap methods have become increasingly popular among applied econome-
tricians. Under mild regularity conditions, the bootstrap approximation to the distribution of a
statistic can be shown to be at least as accurate as the asymptotic normal approximation. More-
over, when asymptotically pivotal statistics are the basis for inference or confidence intervals,
bootstrap methods can deliver results more accurate than standard asymptotics.

Bootstrap methods have been most intensively studied for the case of independent identically
distributed (i.i.d.) observations (e.g., Bickel and Freedman (1981), Singh (1981)). However, the
failure of the i.i.d. resampling scheme to give a consistent approximation to the true distribution
of a statistic when observations are not independent (e.g. as remarked in Singh (1981)) has
motivated several attempts in the literature to modify and extend Efron’s idea to dependent
data. Most of the extensions so far apply only to the stationary case. Bootstrap methods
appropriate for stationary mixing processes have been proposed and studied by Kiinsch (1989)
and Liu and Singh (1992) (the “moving blocks” bootstrap) and by Politis and Romano (1994)
(the “stationary bootstrap”), among others. As it turns out, the moving blocks bootstrap is
robust to heteroskedasticity. Lahiri (1992) gives conditions ensuring the second order correctness
of Kiinsch’s bootstrap for the normalized sample mean of observations that are not necessarily
stationary. More recently, Fitzenberger (1997) has shown that the moving blocks method can be
validly applied to heterogeneous mixing processes in the context of linear regressions and quantile
regressions. Similarly, Politis et al. (1997) have shown the validity of certain subsampling methods
for heterogeneous mixing processes.

For applications in economics, mixing is too strong a dependence condition to be broadly



applicable. Andrews (1984) gives an example of a simple AR(1) process that fails to be strong
mixing. The need to accommodate such time series motivates the use of functions of mixing
processes, the so-called processes near epoch dependent (NED) on an underlying mixing process
(Billingsley, 1968; McLeish, 1975; Gallant and White, 1988). NED processes allow for consider-
able heterogeneity as well as dependence and include the mixing processes as a special case. An
important example of the usefulness of near epoch dependence in economics concerns the stan-
dard ARCH (Engle, 1982) and GARCH (Bollerslev, 1986) processes widely used in economics
and finance, for which the mixing properties are currently known only under certain restrictive
assumptions (Carrasco and Chen, 1999). As Hansen (1991a) and Sin and White (1996) have
shown, ARCH and GARCH processes are nevertheless, processes NED on an underlying mixing
process, under mild regularity conditions. The NED concept thus makes possible a convenient
theory of inference for these models that would otherwise be unavailable.

Presently, conditions ensuring the validity of bootstrap methods for the sample mean of
(possibly heterogeneous) NED functions of mixing processes are unknown. A main purpose
of this paper is thus to establish the validity of the bootstrap in this context, extending the
applicability of bootstrap methods to a class of processes broadly relevant for applications in
economics and finance. As is usual in the bootstrap literature, establishing the validity of the
bootstrap for the sample mean is an important step towards establishing its validity for more
complicated statistics. In Gongalves and White (2000) we build on the results given here to prove
the validity of the bootstrap for general extremum estimators such as quasi-maximum likelihood
and generalized method of moments estimators.

Our results apply to the stationary bootstrap (SB) of Politis and Romano (1994), which has
not yet been studied in a heterogeneous context, and to the moving blocks bootstrap (MBB)
scheme of Kiinsch (1989) and Liu and Singh (1992), which has not been studied with the degree
of dependence considered here. In particular, the consistency of the bootstrap variance estimator
for the sample mean is shown to be robust against heteroskedasticity and dependence of unknown

form. We also establish the first order asymptotic validity of the bootstrap approximation to the



actual distribution of the sample mean in this heterogeneous, near epoch dependent context.
The plan of the paper is as follows. The main theoretical results for the univariate mean

are given in Section 2. Section 3 extends these results to the multivariate mean and to smooth

functions of means. Section 4 presents a simulation study to examine the finite sample properties

of the methods, and Section 5 concludes.

2. Main Results

Suppose {Xps,n,t =1,2,...} is a double array of not necessarily stationary (heterogeneous) ran-
dom variables defined on a given probability space (2, F, P). By assuming that {X,,} is near
epoch dependent on a mixing process, we permit a considerable degree of dependence and het-
erogeneity and include mixing processes as a special case. We define {X,;} to be NED on

a mixing process {V;} provided E (X72,) < oo and vy = sup,,, HXm — B (X)

‘2 tends to
zero at an appropriate rate. Here and in what follows, || X, = (B [Xnt|” )1/ P denotes the L,
norm and E}ff,’j ()=FE (\]—“ttf,f) , where ]:ttf,f =0 (Vi_k,...,Viyk) is the o-field generated by
Vicky---, Vizk. In particular, if vy, = O (k:_“_‘s) for some § > 0 we say { X} is NED of size —a.
The sequence {V;} is assumed to be strong mixing although analogous results could be derived
under the assumption of uniform mixing. We define the strong or a-mixing coefficients as usual,
ie. ap =sup,, SUP{acFm  BeFe,,} |P(ANB)— P (A)P(B)|, and we require a — 0 as k — oo
at an appropriate rate.

Let pipy = E(Xpu) for t =1,2,... ,n,n=1,2,... and let fi,, =n~1 31" | u,,; be the average
population mean. We regard 1, as the parameter of interest to be estimated by the sample mean
Xn, =n"1Y7 | Xu Related studies such as Fitzenberger (1997) and Politis et al. (1997) have
assumed a common mean, fi,; = p. If {X,;} is assumed to have a common mean p, then g,
is just p. Although we don’t impose this restriction, we shall find it convenient to assume that
the population means ,,, satisfy a certain homogeneity condition in order to establish our main
consistency result.

Our goal is to conduct inference on fi,, based on a realization of {X,,;}. Alternatively, we



may be interested in constructing a confidence interval for fi,, or in computing an estimate of the
standard error of its estimator, the sample mean, X, = n ! >°7" | X,;;. The bootstrap can be
used for these purposes.

We follow Lahiri (1999) in describing the block bootstrap methods. Let £ = ¢, € N (1 < ¢ < n)
denote the (expected) length of the blocks and let By¢ = {Xpnt, Xnyt+1,--- , Xns+e—1} be the
block of ¢ consecutive observations starting at X:; ¢ = 1 corresponds to the standard boot-
strap. Assume for simplicity that n = k¢.! The MBB resamples k¥ = n/{ blocks randomly
with replacement from the set of n — ¢ + 1 overlapping blocks {Biy,...,Bp_s41¢}. Thus, if
we let I1,..., Iy be iid. random variables uniformly distributed on {1,... ,n — ¢+ 1}, the

MBB pseudo-time series {X;gl),t =1,... ,n} is the result of arranging the elements of the &

. 1 1 1
resampled blocks By, ¢,..., By, ¢ in a sequence: X;l ) = Xn,Im,X;g ) = XnIpi+1s--- ,X;é ) =
(1) _ *(1) _
Xt t=10 X o41 = Xnlug>--- X, 1 = X 1,,+0-1. Here and throughout, we use the super-

script (1) in X;(tl ) to denote the bootstrap samples obtained by the MBB. Similarly, we will use
the superscript (2) to denote bootstrap samples obtained by the SB resampling scheme.

Unlike the MBB, the stationary bootstrap resamples blocks of random size. Let p = ¢!
be a given number in (0,1); p = 1 corresponds to the standard bootstrap. Let L1, Lya, ...
be conditionally i.i.d. random variables having the geometric distribution with parameter p so
that the probability of the event {L,; =k} is (1 —p)*'p for k = 1,2,... . Independent of
{X,} and of {L}, let I,1, Iy2,... be iid. random variables having the uniform distribution
on {1,...,n}. The SB pseudo-time series {X *(2)} can be obtained by joining the resampled

nt

blocks Bi,; 1,1, Bino,Lns>--- > BI where K =inf{k > 1: L,1 + ...+ Lpx > n}. Thus, the

n27 nK Lnk

stationary bootstrap amounts to resampling blocks of observations of random length, where each
block size has a geometric distribution with parameter p and expected length equal to % = /.
We shall require ¢ = ¢,, to tend to infinity at an appropriate rate, which is equivalent to letting

p = pp, tend to zero. Hence, on average the lengths of the SB blocks tend to infinity with n as

f n is not divisible by £, we can let k be the smallest integer satisfying k¢ > n and delete the observations
X for t > n (Politis and Romano, 1994); alternatively, we can let k = [n/{] be the integer part of n/¢ and let

n' = [n/€] £ replace n, as in Andrews, 1999, and references therein.



happens with the (fixed) MBB blocks lengths.

As Politis and Romano (1994) remark, an alternative way to generate the SB resamples is
as follows: let X:f) be picked at random from the original n observations, i.e. X:f) = X1,
where I, is an i.i.d. random variable with uniform distribution on {1,...,n}. With probability
p, let Xj;§2> be randomly drawn from the original n observations, while with probability 1 — p,
X;g) is the “next” observation in the original time series following X, z,., i.e. X, *(2) = Xy Ii+1,
and so on until n observations in the resample have been generated. If t > n, X:f) is defined to
be X5, where s =t (modn).

In contrast to the MBB resampling method, the stationary bootstrap resample is a strictly

stationary process (Politis and Romano, 1994), conditional on the original data.

Given the bootstrap resample {an yee ,X;g)}, j = 1,2, one can compute the bootstrap
version of the statistic of interest, X;Y) = n~1 S X, (J . For stationary a-mixing processes,

Kiinsch (1989) and Politis and Romano (1994) show that their block bootstrap “works”. As a
consequence, by repeating this procedure a large number B of times, one can approximate the
true distribution of \/n(X, — f,) by the approximate sampling distribution of \/n(Xa? — X,,),
conditional on the original data, given by the empirical distribution of the B draws of \/E(X}*L(j )
X,,). Likewise, an estimate of the variance of the scaled sample mean 02 = var (y/nXy) is casily
obtained by using the bootstrap variance (},217]- = var® (ﬁf(}';(j )). Here and in the following, the
star denotes expectation with respect to X;g] ), et ,X;;g ) conditional on the data Xntyeoo s Xone

The goal of this section is to extend these results to the heterogeneous NED case.

Under the assumption of heterogeneous dependent observations, o2 is given by

n
=n""! ZE {(Xnt — Hnt) } +2 Zn_l Z E — Lnt) (Xn,t—i-T - Mn,t—i-’r)] .
t=1

Our first result establishes the consistency of the block bootstrap variance estimators for the

sample mean, the MBB variance estimator 62

. and the SB variance estimator 62 ,, when the
observations are near epoch dependent on a mixing process. As it turns out, neither of these

bootstrap variance estimators require resampling the observations. Indeed, the following formula



for (}3%1 is available (Kiinsch, 1989, Theorems 3.1 and 3.4):

RS <—'—;'> R (7)), 2.1)

T=—0(+1
where

n—|7|

E’ﬂ (T) = Z ﬁn (taT) (Xnt - Xa,n) (Xn,tJr\T\ - Xa,n) , and
t=1

The weights «, (t) and 3,, (t,7) are given as follows (cf. Kiinsch, 1989, expressions (3.2) and

(3.7)): ) .
Mgy iftef{l,... (-1}

an(t) =% =5, iftef{l,...,n—0+1} (2.2)
%, ifte{n—0+2,... ,n},

and L i
Wv 1ft€{1,7£_|7'|_1}

B (t,7) = g dte{l—|r|,...,n—L+1} (2.3)

ﬁﬂ%, ifte{n—»0+2,... ,n—|1|},

where Y " ap, (t) =1 and Z;;'T' B, (t,7) = 1. Thus, as Kiinsch (1989) remarks, X, is asymp-
totically equivalent to the sample mean X,, if £ = o (n), and R,, (1) is an estimate of the autoco-
variance at lag 7 similar to the usual sample covariance, but with a smaller bias.

Similarly, the SB variance estimator can be calculated with the following formula (Politis and
Romano, 1994, Lemma 1):

n—1
G =R (0) +2) b (1) Ba (1), (2.4)
T=1

where

~

n—Tt

R/n (’T) = n*l Z (Xnt — Xn) (Xn,t—i-’r - Xn)
t=1

is the usual autocovariance estimator and

bo(r) = (1-2) @ =p) + - (1=p)" "

is the Politis and Romano (1994) weight, with smoothing parameter p = ¢~



As is evident from (2.1) and (2.4), the MBB and the SB variance estimators for the sample
mean are closely related to a lag window estimator of the spectral density at frequency zero.

In particular, as remarked by Fitzenberger (1997) and by Politis and Romano (1994), the MBB

2

1 1s approximately equivalent to the Bartlett kernel variance estimator

variance estimator &
considered by Newey and West (1987). Politis and Romano (1994) also discuss the relation

between 5’%,1 and (7'%2. They offer an interpretation for the SB variance estimator as a weighted

average over ¢ of MBB variance estimators with fixed length ¢, which suggests that (}272 should

be less sensitive to the choice of p than &,2171 is to the choice of ¢. In a recent theoretical study,
Lahiri (1999) compares several block bootstrap variance estimators, including the MBB and the

SB. He concludes that while (},2171 and (}%72 have the same asymptotic bias, the variance of (},2172 is

2
n,1»

larger than that of &7 ;, suggesting that the SB method is asymptotically less efficient than the
MBB. In Section 4, we compare the finite sample properties of both methods via some Monte
Carlo simulation experiments.

Assumption 2.1 is used to establish our main consistency theorem.

Assumption 2.1

2.1.a) For some r > 2, || Xyll3, S A <ooforalln,t=1,2,....

2.1.b) {X,} is near epoch dependent (NED) on {V;} with NED coefficients vy, of size _2((7521));

2r

{Vi} is an a-mixing sequence with oy, of size —-=5.

Theorem 2.1. Assume {X,,;} satisfies Assumption 2.1. Then, if ¢, — oo and £, = o (n1/2), for

J=12, . |
62— (oh+ud;) =0, where ;= var* (n_1/2 Zﬂ2§])> ‘
t=1

The proof of this and of all our results can be found in the Appendix.

Under arbitrary heterogeneity in {X,,;} the block bootstrap variance estimators &721 pJ=12,

are not consistent for o2, but for o2 + u?L ;- The term u% ; 1s related to the heterogeneity in the

means {4, } and amounts to a block bootstrap variance of the scaled bootstrap population mean



Vv/npk. Theorem 2.1 makes clear that a necessary condition for the consistency of [be’j for 02 is
that u2 ; — 0 as n — co. A sufficient condition for u2 ; to vanish is first order stationarity of

{ X} :if p,y = E (Xy) = p for all n,t, then ufw- = (. We have the following lemma.

Lemma 2.1. If we let fi,,, = > /1 () fiy,

-1 n—|7|
7] _ _
u?z,l = Z <]- - 7 Z ﬁn (taT) (:unt - :ua,n) <:un,t+\7'| - Ha,n) ) and
T=—0+1 t=1
n n—1 n—T1
_ _\2 _ _ _
ui@ = n ! Z (:unt - Hn) +2 Z bn (T) n ! Z (Hnt - :un) (/’Ln,t+7’ - :un) .
t=1 =1 t=1

In fact, the condition lim,, ng,j =0, j = 1,2, should be interpreted as an homogeneity

condition on the means. The following assumption ensures lim, .o ufl ;=0,7=12
Assumption 2.2 n '3 (1, — f1,)* = 0 (¢,1) , where £, — oo and £, = o (n).

The following consistency result holds under Assumptions 2.1 and 2.2 and is an immediate

consequence of the previous remark.

Corollary 2.1. Assume {X,;} satisfies Assumptions 2.1 and 2.2. Then, if {,, — oo and ¢, =

o (nl/Q),

This result extends the previous consistency results by Kiinsch (1989) and Politis and Ro-
mano (1994) to the case of dependent heterogeneous double arrays of random variables, where
the stationary mixing assumption is replaced by the more general assumption of a (possibly het-
erogeneous) double array near epoch dependent on a mixing process. Notice in particular that
we do not assume asymptotic covariance stationarity.

In particular, for j = 2, Corollary 2.1 contains a version of Politis and Romano’s (1994)
Theorem 1 as a special case. Consider a strictly stationary a-mixing sequence {Xi,...,X,}
satisfying Assumption 2.1. Because a mixing process is trivially near epoch dependent on itself,

the NED requirement is automatically satisfied. Corollary 2.1 achieves the same conclusion as



Politis and Romano’s (1994) Theorem 1 under the same moment conditions but weaker c-mixing

2r

size conditions (ay = O (k%) for some A > 2

and r > 2 here in contrast to ay = O (k=) for

some A > @

and € > 0 there). We allow more dependence here, with the familiar trade-off
between moment and memory conditions. Nevertheless, we require the stronger condition that
b, = o (n/?), ie. n¥2p, — oo (with p, = £, — 0), while Politis and Romano (1994) only
require ¢, = o(n), i.e. np, — oo. Imposing stationarity in our framework will ensure that
02 — 0% asn — oo, where 02 = var(Xj) + 2.0, var (X1, X14-); hence, (}272 — 0% in
probability, as Politis and Romano (1994) conclude.

Similarly, for 7 = 1, our Corollary 2.1 specializes to Kiinsch’s (1989) Corollary 3.1 when
{X}} is a stationary a-mixing sequence, under the same moment conditions and weaker a-mixing
conditions, but under the stronger requirement that ¢,, = o (nl/ ?) instead of £, = o (n).

The next theorem establishes the first order asymptotic equivalence between the moving
blocks and stationary bootstrap distributions and the normal distribution for the sample mean.
A slightly stronger dependence assumption is imposed to achieve this result. Specifically, we

require {X,;} to be Loy s—NED on a mixing process (see Andrews (1988)), for small § > 0, i.e.

Vg = Sup,,, HXm — Ettf,lj (Xnt)

‘2 s 0 as n — oo. We strengthen Assumption 2.1.b) slightly:
Jr

2.1.b") For some small § > 0, {X,,;} is Loys—NED on {V;} with NED coefficients vy of size

_2(r=1)
(r=2)

(248)r
r—2 °

; {V4} is an a-mixing sequence with oy, of size —

Theorem 2.2. Assume {X,,;} satisfies Assumptions 2.1 and 2.2 strengthened by 2.1.b'). Then

02 < K < 0o and if 02 > k > 0 for all n sufficiently large,

(i) supyeg |P [o7 V0 (Xn — it,) < 2] — © (x)| — 0, where @ is the standard normal cumulative

distribution function.

(ii) Assume further that ¢,, — oo and ¢, = o (n1/2) . Then, for all ¢ > 0,

P{ilelﬂg pr* [ﬁ(X;(j)—Xa Sx} —P[\/E(X'n—ﬁn) Sw]) >€}—>0, j=12,

where P* is the probability measure induced by the bootstrap, conditional on { X} .

10



For j = 2, this is an extension of Theorem 2 of Politis and Romano (1994) for stationary
mixing observations to the case of NED functions of a mixing process. For j = 1, Theorem 2.2
states a weaker conclusion than does Theorem 3.5 of Kiinsch (1989), since we prove convergence
in probability, but not almost sure convergence. On the other hand, we permit heterogeneity and
greater dependence.

In part (i) we state the usual asymptotic normality result for the sample mean. We apply a
central limit theorem for arrays NED on mixing processes given by Wooldridge and White (see
e.g. Gallant and White, 1988, Theorem 5.3). In that result, it suffices that || X, < A < oo for
some 7 > 2 and {X,;} is NED on {g;} of size —1, as is immediately guaranteed by the stronger
conditions we impose to derive our bootstrap results.

In part (ii) we prove the uniform convergence to zero (in probability) of the discrepancy be-
tween the actual distribution of \/n (X, — f,) and the block bootstrap approximation to it. This
result follows from the fact that under our assumptions the distribution of o;,1y/n ()_(;Z(j ) )_(n),
conditional on X,1,... , Xpy, converges weakly to the standard normal distribution for all double
arrays {X,:} in a set with probability tending to one. In particular, we apply a central limit
theorem for triangular arrays and use Assumption 2.1.b’) to ensure that Lyapounov’s condition
is satisfied under our heterogeneous NED context. Assumption 2.1.b) might well be sufficient to
verify the weaker Lindeberg condition, as in Kiinsch (1989, Theorem 3.5), although we have not
verified this.

Fitzenberger (1997) has recently proven the consistency of the moving blocks bootstrap ap-
proximation to the true sampling distribution of the sample mean for heterogeneous a-mixing
processes. Our result extends his by allowing for near epoch dependence on mixing processes.
However, in the purely strong mixing case, our moment and memory conditions are more strin-

2P+8 — O for small § > 0 and

gent than his. In particular, his Theorem 3.1 only requires F | X|
p > 2, and {X;} strong mixing of size _5%' Politis et al. (1997, Theorem 3.1) have also estab-
lished the robustness of the subsampling method for consistent sampling distribution estimation

for heterogeneous and dependent data under mild moment conditions (E |X;|*T* < A < oo for

11



some ¢ > 0). Nevertheless, they also assumed a strong mixing process, asymptotic covariance
stationarity, and slightly stronger size requirements than ours on the mixing coefficients (ay of
size —@).

A well known property of the MBB statistic y/n ()_(T*L(l) - )_(n) is that its (conditional) ex-
pected value is not zero. Indeed, under the MBB resampling scheme E* ()_(;2(1)> =371 an (t) X,
where the weights «,, (t) are defined as in (2.2). If ¢, = o(n), one can show that E* (X'T*L(l)> =

Xn +Op (&) (see e.g. Lemma A.1 of Fitzenberger, 1997). Thus, the MBB distribution has a

random bias \/n (E* <X2(1)> — Xn) , which is of order Op (,ff}z)' (For the SB no such problem
exists since E* (XZ@)) = X,,.) As pointed out by Lahiri (1992), this random bias becomes pre-
dominant for second order analysis and prevents the MBB from providing second order improve-
ments over the standard normal approximation. To correct for this bias, he suggests recentering
the MBB distribution around the bootstrap mean, that is, to consider the bootstrap distribution
of \/n ()_(;2(1) — E* ()_(;2(1)) ) The following result shows that under the assumptions of Theorem
2.2 recentering the MBB distribution around the MBB bootstrap mean is asymptotically valid

(to first order) in this heterogeneous NED context.

Corollary 2.2. Under the assumptions of Theorem 2.2, for all € > 0,
P {sup pr* {\/ﬁ (X'T*L(l) —E* (X';"L(l))) < x} - P [\/ﬁ (X'n — ﬁn) < x] ‘ > 6} — 0,
zeR
where P* is the probability measure induced by the MBB bootstrap, conditional on { X}y ;.

Theorem 2.2 and Corollary 2.2 justify the use of the MBB and SB distributions to obtain an
asymptotically valid confidence interval for fi,, instead of using a consistent estimate of the vari-
ance along with the normal approximation. For example, an equal tailed (1 — ) 100% stationary

(63

bootstrap confidence interval for fi,, would be [X, — ¢}, (1 —%),Xn — q}; ($)], where ¢}, (§) and

q, (1 — %) are the § and 1 — § quantiles of the SB bootstrap distribution of X'T*L@) — X,
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3. Extensions

Our main results can be readily extended to the multivariate mean and to smooth functions of
sample means.

The first extension we study is the multivariate sample mean. Suppose each X,,; takes values
in R? with i’* element given by X,.+;. The parameter of interest is now the vector of average means
[, With typical element fi,; =n~t>1 | E(Xpy) forn=1,2,...,and i = 1,... ,d. By analogy
with Assumption 2.1, the double array of random vectors {X,:} is assumed to be near epoch
dependent on the strong mixing sequence {V;}. For j = 1,2, a multivariate pseudo-time series
{X:é] )} is generated by the MBB and the SB resampling schemes described before in exactly the
same way.

We let V,, = var (\/ﬁX'n) be the d x d covariance matrix with typical element Ufml =
var (y/nXpi,/nXy) . The MBB and SB covariance estimators denoted by Vn, j = var* (ﬁf(fl(j )) )
for j = 1,2, respectively, can be computed without resampling as before. In fact, following
Kiinsch (1989, Theorems 3.1 and 3.4), the following formula for a typical element (}fb,ul of le

can be obtained:
-1
ohra =Rl O +Y (1= 7) (R + (D),
T=1

where

n—r
Rﬁ (7_) = Z 6n (t;T) (Xntz' - Xa,n,z’) (Xn,t+7',l - Xa,n,l) )
t=1

and Xa,n,z' =Y 00y (t) Xpy for i =1,... ,d, and a,, (t) and G, (t,7) are given in (2.2) and
(2.3), respectively. Similarly, for a typical element (}72172711 of Vpo (cf. Lemma 1 in Politis and

Romano (1994)), we have

n—1
TR ACOEDSNCICACEYHCIE
T=1

where R (1) is the usual cross covariance estimator at lag 7, ie. Ri(r) =
n ST (Xt — Xni) (Xnegrg — Xot) 5 bn (7) is the SB weight and p = p, = £,

The following results are the direct counterparts of Theorems 2.1 and 2.2 for the multivariate

13



sample mean.

Theorem 3.1. Let {X,:} be a double array of d x 1 random vectors with typical element { X; }
satisfying Assumption 2.1. Let V;, = var (v/nXy,) and Vn,j = var* <\/5X;;(j)) ,7=1,2.If,, — o0

and ¢, = 0 (n1/2), then for j = 1,2,
Vag = (Vo Uny) 50, where U, 5 = var* (Vg

The bias term U, ; can be interpreted as the block bootstrap variance-covariance matrix of
\/ﬁﬁ;;(j ) that would result if we could resample the vector time series {yu,,,}. A multivariate
extension of Lemma 2.1 gives the appropriate expressions for Uy, ; for j = 1,2. If the elements of
{Xnt} satisfy Assumptions 2.1 and 2.2, then U, ; — 0 as n — oo and we obtain the consistency

result Vn,j -V £o.

Theorem 3.2. Let {X,:} be a double array of d x 1 random vectors with typical element { X,; }
satisfying Assumptions 2.1 and 2.2 strengthened by 2.1.1'). Let V,, = var (\/ﬁXn) be positive
definite uniformly in n, i.e. V,, is positive semidefinite for all n and detV,, > k > 0 for all n

sufficiently large. Then V,, = O (1) and

(i) Vi /2 m (X, — i) = N (0, 1) under P, and

sup
zeR4

P [\/ﬁ V2 (X, — ) < x} s (x)‘ 0,

where ® is the standard multivariate normal cumulative distribution function, “ <” applies

to each component of the relevant vector and “ =-" denotes convergence in distribution.

Moreover, if ¢, — oo and £, = o (n1/2) , then for any € > 0, and for j = 1,2,

(i) Vn71/2\/ﬁ (X}*L(j) — Xn> = N (0,1;) under P* with probability P approaching one, and

P < sup
z€R4

where P* is the probability measure induced by the bootstrap, conditional on { X}y, -

P Vi (%5 = %,) <a| = P [Vt (% — i) < 2| >€}HO,

For j = 2, Theorem 3.2 is an extension of Theorem 3 of Politis and Romano (1994) to the

heterogeneous near epoch dependent case.
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We now consider the validity of the bootstrap for smooth functions of sample means. We follow
Horowitz (1999) in describing the “smooth function model”. Specifically, we let f (Zn1, ... , Znp)
denote the statistic of interest, where f = (fi,...,f;) is a smooth function from RP to R?
in the sense defined below, Z,; = n~! S hi (Xp) for i = 1,...,p and each h; is a known
nonstochastic function from R? to R. The parameter of interest is f (MZM, cee uzﬂp), where
fig,. =113 01 Elhi (Xnt)]. We will assume that each real-valued function f; is continuously
differentiable in R? (or at least in a neighborhood of i, = (ﬂzn L ,pznp),) and that the
gradient of f at fiy , the p x ¢ matrix Vf (ﬁZn), has full column rank uniformly in n (which
implies that each f; has a nonzero differential at fi, ). If we further impose the moment and

memory conditions on {h; (Xy¢)} as given by Assumption 2.1, the following theorem is true.

Theorem 3.3. For h : R — RP, let {h(X,1)} be a double array of p x 1 random vectors
with typical element {h; (X,:)} satisfying Assumptions 2.1 and 2.2 strengthened by 2.1.1).
Fori = 1,...,p, let Zy, = n=1> 0 1 hi (Xnt), fy,. = n~t> 0 E[hi (X)) and write Z, =

_ / _
(an, . ,an)/, Loy, = (ﬂznl, ... vﬂan> . If Q) = var (\/ﬁZn) is positive definite uniformly in

n, then €, = O (1) and

(1) supyers

P [\/ﬁﬂgw (Zo—1iz,) < x} ~ 3 (m)‘ 0.

If ¢, —» oo and £, = o (n1/2), then for j = 1,2,

(i) supyers [P |V (Z0Y) = Zo) S| = P[VA (Zo = fiz,) < 7] ) L.

(iii) If we assume further that f : RP — RY is continuously differentiable and that V f (,DZn) has

full column rank uniformly in n, then for j = 1,2,

sup
z€RP

P VA (£ (29) = 1 (20) 2] = P VAT (20) = 1 () < 2] 50

For j = 2, Theorem 3.3 is an extension of Theorem 4 of Politis and Romano (1994) to the
NED heterogeneous case.
Parts (i) and (ii) follow trivially by an application of Theorem 3.2 to the double array

{h (Xnt)} - To establish part (iii) we apply a mean value expansion to f (Z,) around iz to show
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that /T % (f (Za) = f (fiz,)) = N (0,1,), where T, = V' f (fiz,) @V f (fiz,). Similarly, we
show that for j = 1,2, /nly/? ( ¥ (Z;‘;(j)) _f (Zn)) = N (0,1,) under P* with probability P

approaching one, which delivers the result.

4. Simulation results

An immediate application of Theorem 3.3 is the construction of confidence intervals for param-
eters of linear models that are estimated by least squares or instrumental variables estimators
since these estimators are smooth functions of sample means.

In this section we present the results of a simulation study aimed at assessing the finite sample
properties of a variety of bootstrap methods for inference in the context of a multivariate linear
regression. We consider the problem of building a confidence interval for a single regression
parameter and use the finite sample coverage probability of symmetric 95% confidence intervals
as our performance criterion. Our study is analogous to the simulation studies by Fitzenberger
(1997) (who considers the moving blocks bootstrap) and Politis et al. (1997) (who consider
the subsampling and the moving blocks bootstrap). Here we consider moving blocks bootstrap
(MBB) and stationary bootstrap (SB) procedures. For comparison, we also consider two other
standard kernel covariance estimators, the Bartlett kernel (BT) estimator and Andrews’ (1991)
Quadratic Spectral estimator (QS).

We follow the basic setup of Andrews (1991) and Andrews and Monahan (1992) who consider
the linear regression model y; = x} 3+ &, where x} = (1, ¥}) contains five regressors, the first one
being a constant. The data generating process is one of the processes proposed by Andrews (1991),
namely AR(1)-HET 1, in which the errors follow some form of conditional heteroskedasticity. In
particular, we let x; = pxi1 +vig, @ = 2,...,5; & = p&_1 +uy and g, = |wo¢| . Two different
distributions are used to generate the innovations v; and u;: the standard normal distribution
and the (centered) exponential distribution with parameter 1. We set the true parameter (
equal to zero (without loss of generality) and consider the following values for the AR parameter

p:—0.5,0.2,0.5 and 0.9. In the simulations, 10,000 random samples are generated for the sample
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size n = 128, which is one of the sample sizes considered in the previous literature.

The goal is to build a confidence interval for 3,. The traditional approach relies on the
asymptotic normal approximation and uses a consistent covariance estimator to compute the
t-statistic. The kernel methods implement this approach. We use an automatic bandwidth
selection procedure to compute the kernel covariances (see Andrews, 1991). For the bootstrap
methods, one of several possible approaches is to form confidence intervals based directly on the
bootstrap distribution. For example, a symmetric 95% bootstrap confidence interval is given
by [B% — G 0.955 B% + a5 0.95|» Where g;, (g5 1s the 0.95 quantile of the bootstrap distribution of
Ban = Ban

to construct a confidence interval based on bootstrap quantiles. Following Politis (1998), we will

, and where B;n is the resampled OLS estimator of 35. This is only one of many ways

call this approach the “root method” (cf. Politis, 1998). Because it does not rely on the normal
approximation, this method might be expected to capture the potential skewness of the finite
sample distribution of the estimator. To implement the “root method”, we use 500 bootstrap
replications for each sample in the Monte Carlo experiment. For the moving blocks bootstrap
we consider fixed block sizes that range from ¢ = 1 to ¢ = 32; for the stationary bootstrap, we
consider similar average block sizes, i.e. we take p=1to p=1/32.

The bootstrap is also used as a means to obtain a consistent estimator of the asymptotic vari-
ance of BQTL. In particular, we use the bootstrap to consistently estimate B,, = var(nfl/ 2 Doy TEr).
To define the bootstrap variance estimator, we let {z;&;} replace the unobservable process
7(%j) _

{ae:}, where {&} are the OLS residuals. That is, for each j = 1,2, we consider B
var* (nil/ 2N ae U )), where {x,‘fé: U )} is a resample from {x;&;}. Following Andrews (1991),
we introduce a small sample degrees of freedom adjustment factor equal to n/(n — 5) in order
to take into account the estimation of 3 when computing &;; the kernel methods also use this

)

adjustment factor. To compute the element (2,2) of B,(L] corresponding to B% we use the closed
form expressions given by (2.1) and (2.4), which amounts to considering an infinite number of

bootstrap resamples.

Theorem 3.1 justifies the use of the bootstrap to provide a consistent estimator of the co-
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A%k

variance matrix B,,. As it turns out, the feasible estimator BY based on {xfst U )} is consistent
under the same conditions of Theorem 3.1 (see Gongalves and White, 2000, Theorem 3.1, for a
more general result that applies to general extremum estimators). In particular, note that {z;}
and {&} are AR(1) processes and thus they are mixing with geometrically decaying memory.
This implies that the products {z:e;} are mixing with the same size and thus they are trivially
NED on a mixing process. Thus, Assumption 2.1.b) is satisfied. The moment condition, As-
sumption 2.1.a), is also satisfied given that the innovations are generated as standard normal or
as exponential random variables. Since {z;} and {e;} are independent with mean zero, it follows
trivially that E (x4e¢) = 0, so that Assumption 2.2 is also satisfied. An application of Theorem
3.3 justifies using the bootstrap to approximate the quantiles of the finite sampling distribution
of 3%.

We now comment briefly on the results. Table 4.1 contains the results of our simulations with
Gaussian innovations and Table 4.2 refers to the case where the innovations are exponential. (In
the tables, ¢ is used to denote the fixed block size for the MBB; for the SB, ¢ corresponds to
1/p so that in this case ¢ denotes the average block size). Our results replicate the findings of
previous studies for the kernel methods.

The first feature of note is that all methods consistently undercover. This feature tends to
worsen with increasing dependence in the data. This is especially true for p = 0.9, where all
methods have coverage probabilities well below the true nominal level. However, for sufficiently
large block sizes, both the stationary bootstrap and the moving blocks bootstrap seem to better
handle the increased dependence in the data, especially when the “root method” is used. In
particular, for Gaussian errors and p = 0.9, the confidence interval based on the moving blocks
bootstrap quantiles (MBB-root) with ¢ = 16 achieves a coverage probability of 77.2% while the
best kernel method (QS) only covers the true parameter 69.1% of the time. The best stationary
bootstrap confidence interval for this scenario (SB-root, with p = 1/16) has a coverage probability
of 73.8%, ranking below the moving blocks method.

The better performance of the moving blocks bootstrap in comparison to the other methods is

18



a general pattern in our simulation study. The stationary bootstrap performs similarly, although
it ranks slightly below the moving blocks bootstrap. This is in line with recent work of Lahiri
(1999), who shows that blocking bootstrap methods that use a random block size tend to have
higher mean squared errors than methods that use a fixed block length.

Note also that using the bootstrap to approximate the quantiles of the true sampling distri-
bution of the estimator (MBB-root and SB-root) instead of relying on the normal distribution
along with a bootstrap variance estimator (MBB-var and SB-var) typically induces better cover-
age probabilities.

All methods perform worse under the exponential distribution as compared to the standard
normal distribution. Nevertheless, the coverage probability shortfall is largest for the kernel
methods and for the MBB-var and SB-var methods. By not relying on the asymptotic normal
distribution, the “root method” is able to capture the potential skewness of the finite sample

distribution of the estimator.

5. Conclusion

In this paper we establish the first order validity of block bootstrap methods for the sample mean
of dependent heterogeneous data. Our results apply to the moving blocks bootstrap of Kiinsch
(1989) and Liu and Singh (1992) as well as to the stationary bootstrap of Politis and Romano
(1994). In particular, we show that the MBB and the SB variance estimators for the sample
mean are consistent under a wide class of data generating processes, the processes near epoch
dependent on a mixing process. We also prove the first order asymptotic equivalence between
the block bootstrap distributions and the normal distribution in this heterogeneous near epoch
dependent context.

We perform a simulation study for the case of a multivariate linear regression. The block
bootstrap methods perform fairly well compared to more standard kernel methods, and can

deliver better inferences, especially under high serial correlation in the data.
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Table 4.1: Empirical coverage probabilities with Gaussian Innovations
95% level confidence intervals, n = 128

Parameter Method =1 /=5 ¢=6 (=7 (=8 (=12 (=16 (=32
p=02 BT 92.2
QS 92.4
MBB-var 922 91.7 914 91.2 91.0 89.6 88.4 82.0
MBB-root 91.8 914 91.2 91.0 909 90.2 89.5 85.4
SB-var 92.2 91.0 90.6 90.3 899 88.4 86.9 81.2
SB-root 91.8 905 90.3 90.1 89.7 88.4 86.7 81.9
p=0.5 BT 88.8
QS 89.4
MBB-var 85.2 89.0 888 88.6 88.2 87.0 85.8 79.1
MBB-root 84.5 88.9 888 887 88.5 88.5 87.9 83.9
SB-var 85.2 883 88.0 87.6 &7.2 85.7 84.0 78.5
SB-root 84.5 879 88.0 87.8 87.5 86.3 84.7 79.9
p=0.9 BT 67.0
QS 69.1
MBB-var 43.1 63.3 64.6 655 66.1 66.5 65.5 59.6
MBB-root 42,7 67.1 694 71.3 725 76.3 77.2 76.8
SB-var 43.1 639 645 0649 65.1 64.4 63.1 58.4
SB-root 427  67.8 694 70.5 715 73.7 73.8 71.1
p=-0.5 BT 89.1
QS 89.7
MBB-var 85.0 89.2 89.1 89.0 88.8 88.0 86.6 80.5
MBB-root 84.5 889 89.0 88.8 88.8 88.6 88.1 84.5
SB-var 85.0 88.6 885 832 K78 86.4 84.9 79.5
SB-root 84.5 882 88.1 879 &7.7 86.4 84.9 80.4
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Table 4.2: Empirical coverage probabilities with Exponential Innovations
95% level confidence intervals, n = 128

Parameter Method =1 /=5 ¢=6 (=7 (=8 (=12 (=16 (=32
p=02 BT 85.1
QS 85.1
MBB-var 85.2 84.3 84.0 83.7 834 82.3 81.0 74.6
MBB-root 85.8 854 85.0 84.8 84.7 84.6 83.9 80.0
SB-var 85.2 84.0 83.7 832 827 81.1 79.7 74.0
SB-root 85.8 84.6 84.6 84.2 83.8 82.9 81.5 76.5
p=0.5 BT 84.0
QS 84.4
MBB-var 80.9 839 836 834 83.3 82.1 80.8 73.9
MBB-root 80.6 85.0 852 85.1 851 84.9 84.5 80.9
SB-var 80.9 831 82.8 824 821 80.7 79.0 73.2
SB-root 80.6 84.5 843 843 &4.1 83.4 81.8 77.0
p=0.9 BT 65.6
QS 67.5
MBB-var 42,5 620 633 64.3 64.9 65.4 64.4 58.5
MBB-root 422  66.5 686 70.2 715 75.7 76.5 76.5
SB-var 42,5 62.7 633 63.7 63.8 63.3 62.2 57.0
SB-root 422  67.0 688 T70.1 71.0 73.1 73.3 71.2
p=-0.5 BT 86.6
QS 87.1
MBB-var 83.0 86.5 86.3 86.2 85.9 84.8 83.3 76.5
MBB-root 82.8 873 872 87.1 870 86.9 86.0 82.3
SB-var 83.0 858 855 85.0 84.7 83.1 81.5 75.9
SB-root 82.8 864 86.3 86.1 85.9 84.9 83.1 78.6
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A. Appendix

Throughout the Appendix, K; (i = 0,1,2,...) will denote generic constants that may change
from one usage to another.
The following lemma generalizes Lemma 6.7 (a) in Gallant and White (1988, pp. 99-100). It

will be used in the proof of our subsequent results.

Lemma A.1. Assume {X,:} is a double array of random p x 1 vectors, p € N, such that
E(Xn) = 0 and || Xyyll5, < A < oo for some r > 2 and for all n,t = 1,2,... , j=1,...,p;

assume further that {X,;} is NED on {e;} with vy = sup,,, ‘Xnt] Ef"'llz ntj)H for all j =
: 2

1,...,p, where EXXF () = E <|.7-'ttf,l:>, FItE = 0(et - retsk), and {e;} is an a-mixing se-

quence with mixing coefficients denoted by ay. Then, for fixed T >0 and allt < s <t+T,

]> —I—ngf(r ]1)+K3< E }_%) +v[£]>2,

1
’COU (Xntan,t+T,j7anan,s+T,j)’ < K; (afs

>‘>|‘\ Nl

1
t] + ’U[szt

for some finite constants K1, Ky and Ks.

Proof. Let t < s <t + 7, for any fixed 7 > 0, and notice
|COU (Xntan,t+T,j7 anan,s+T,j) |
< B (Xti X t7,5 Xnsi Xn,stor,g)| + 1B (XntiXn4rg) | E (XnsiXn,sirg)l . (A1)

Under our assumptions, |E (XptiXn t4+r,5)] < A <5Aa¥71/7‘ n 2“[10 (see Gallant and White,
1 4

1988, pp. 109-110). Hence,

2
nti<An,t+1,j nsiXn,st+ri)| < K3 | o,y T"‘”; . .
B (s Xor B (i) < K (3701 (A2)

4

] (XnthnszXn t+7 ]) and write

To bound |E (Xntan:t+T,jXTLS’an75+7—7j)| let Y'L] = Et+7’+[ }

ntt {

|E (Xntan,t+T,janz’Xn,erT,j)| < )E (ngTXn s+T,j) ‘

+ )E (Xn,s—l—T,j (Xntansan,t+T,j - YAZ#)) ) . (A3)

Because Y, _ is measurable- .7-'”7*{5;}, Holder’s inequality implies

ntt

nit

s—t s—t
‘E <Y Xn s+7’,j)) < HXntansan,t—i—T,jHQ "Et+7+[ 2 ] (Xn’S—H—’j)HQ < As HEt+T+[ 2 ] (Xn,s—i—’r,j))

’
2

where we used Holder’s inequality twice in writing || Xy Xnsi Xn,t475llo < 1 Xntillsy ([ Xnsillzy | Xn,tr,5]l5,

< A3 < co. McLeish’s inequality and the NED property can be used to bound ) foaandtonl (Xn,s54+7.5) H2
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appropriately, delivering
1_1
ns+7j)‘ < A* (5AQ?,_§y + vt | -
? [ 1 ] [ 4 ]

)E (YmTX

To bound the second term in (A.3), by the Cauchy-Schwartz inequality,
vl
2

)E ( n,5+7,J (Xntansan,t+T,j - Ynt’r))) < HXn 5+T,]H2 HXnthnszXn t+7,7 — Intr

Theorem 4.2 of Gallant and White is used to prove that {Xi XpnsiXn t4-,;} is NED on {g;} under
our assumptions. In particular, by a reasoning similar to the proof of corollary 4.3.(b) of Gallant

r—2
2(r—1)

and White (1988, p. 61) we obtain
B (XntiXnsiXnttrg)|ly < Ko
4

HXntansan,t—s—T,j -
-2
(A.5)

1)

~Vi))| = AKU{(T}

This implies
)E (Xn73+77j (Xntansan,t+T,j

PRI

[e5t)

Combining (A.4) and (A.5) with (A.3) yields
’E (Xntan,t+T,ansan,s—i—T,j)’ < Kl (

1
T
t

_F'U{szt

which implies the desired result once we insert (A.6) and (A.2) into (A.1). W
Proof of Theorem 2.1. The proof consists of two steps. In particular, for j = 1,2, we prove

that
Step 1: &i,j -0 Lo.
Step 2: 62 ; — (&%j "‘“ij) Lo.
n,; Which is identical to o2 ; except that it

In step 1, we consider an infeasible estimator O'
replaces X, and X, in (2.1) and (2.4) for j = 1,2, respectively, with the populatlon means fi,,;

So, e.g. for j =1 we consider
-1 ]7‘] n—|7|
~7211 - Z < > Z ﬁn,t,T - :unt) <Xn,t+|7'\ - :un,tJr\ﬂ) 5
T=—{+1
To prove step 1, we show that the bias and the

where we let 3,,, = (3, (t,7) throughout.

variance of 5%7 ; tend to zero as n — oo.
Proof of step 1. (j = 1): letting Zn; = Xpt — iy and Ry (1) = E (ZmZn t+|T\) it follows

that
ZﬁntOR’ﬂt +22(1__)Zﬁnt7 nt

E (5
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Because 02 =n" S R, (0) +25 " 1n~! Z?;lm Ry, (1), it follows that

—1  n—71 n—|7|
B (521) =02 <2353 [Buse| [Ruc (D42 >0 078 > |Rus (7)
=1 t=1 (<7<n—1 t=1
n £2—1 n—|7|
+ Z }ﬁn,t,o - nil} ’Rn,t (O)’ +2 Z Z ‘6n,t,7’ - nil‘ ‘Rn,t (T)‘
= =1 t=1

n—|7| 2
¢ ¢
Z —12 O O
_n—f—l—l ? [ Bt (7)] + ( €+1)+ <n—€—|—1)’

given that |8, .| < for all n,t and where the order of magnitudes of the two last terms

n— €+1
in the first inequality were obtained using the expression for 3, ;. (cf. (2.3)). Given that ¢ =
0 (nl/ 2), these terms are negligible asymptotically. Under the same assumption on ¢, T L
and therefore we only need to show that the limit of £, = > """ % In Y 7l |Rpt (T)] is zero to

prove that the bias of 5%71 is zero.

An argument similar to that in Gallant and White (1988, pp.109-110) delivers
1— 1
Rt () <K (o
)
1

Thus, for fixed 7, n ™1 Y 7 [ |Rpt (T)| < K <ozgf_% —|—v[£]> and ¢,, < KZT 17 (oag]%_% +U[ﬂ> )

By taking limits on both sides of this inequality, an application of the Lebesgue dominated con-

_1
"+ i }) , for any p > 2 and r > 2 (Gallant and White’s result uses p = 2).

T
4

vergence theorem as in Gallant and White (1988, p. 111) is used to show that lim, . &, = 0. In
particular, we note that for each 7, ; — 0 as n — oo given that ¢, — co. To find a dominating
function, we note that the size conditions on ay imposed by Assumption 2.1 are sufficient to obtain
that > > 7 <ozgﬁ_% + v[z]) < oo if we let p =17 > 2. Thus, lim,,_, ‘E (6’%71) — (f%} =0.

Next, we show that var ((f ) — 0. Letting Rno (1) = Z?;'T' Bt rZnt Zn,t+|r|, We have that

@)= S Z( B (1= B cov (a9 Rua ). (A

T=—L0+1 A=—L+1

By the Cauchy-Schwartz inequality, it suffices to bound var (Rn,o (7')) for any fixed 7 :

n—|T] n—=|7| n—||
var( ) Z BntTvar th,t+\T|) +2 Z Z /6’)’L7t77'/8’n7877' ‘COV (Znth,tJr\ﬂaZnSZn,s+|T|)‘
t=1 s=t+1
Ly L Yy
< ——2 > var(Zulnip) + —— [0V (ZutZn 1715 Zns Zns7))|
(n_€+1)2 P n n T ( €+12 £ t+1 n . T ns n,s T
9 n—|r|  n—|7|
Rrm——y Z Z [0V (Zut Zn 1715 Zns Zsi71) |

t=1 s=t+|7|+1
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for all t and 7. Given Assumption 2.1 and noticing that Z,; has mean

. 1
given that 3, ; ; < =7

zero by construction, by Lemma A.1 it follows that
5 n—|7| n—|7| t+|7] 1 n—|7| t+|7| =2
(n— £+ 1 var (oo (7)) < megz 3 < T )+K 3 > o
t=1 s=t+1 t=1 s=t+1

N i .
Do) +my S ( L)
: ) i

»’;E lol»—‘

eSS (o4

t=1 s=t+1
Notice that Lemma 6.7 (a) in Gallant and White (1988, pp.99-100) is used above to bound the

last term when s >t + |7|.

It follows that

o Sl (ofh o) < - DS (o o)

t+|7] 2(r il
]

e Z,M D s 141 [34

|7|

7]
IDIAEUD D t+|7]+1

t+
o s s (

For K sufficiently large,
(n—€+1)2var (R,L,O(T)) < KH{AQ—FZOZ[%E_}%—FZU{E]‘FZ FE(TT]__QI)}
k=1 * k=1 = k=1
Kn (w Tg]‘?uw ) 211 EE];)”[%])

Given the size conditions on ay and v, the sums in the curly brackets are finite. Therefore

we can write
Kn

v (Ruo () < o=
Kn (1 a0-0) a2, |
) <||{ +||[ ]+2||{ T]>7(A8)

(n—0+1) d

for some finite constant B. But the size conditions on aj and on v, their monotonicity and the

I~

[

»b|~! N

Il
1

_|_

fact that they converge to 0 as k — oo implies the last term in (A.8) tends to 0 as |7| — co. Hence
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there exists some finite constant K independent of n and 7 such that var (f?,,%o (7‘)) < (n_lx 072

for every |7| > 0. By the Cauchy-Schwartz inequality we have that cov <Rn,0 (1) ;Rn,O ()\)) <

= €+ 1)2 for every 7 and A. Given (A.7) and given that £, = o (n 1/ ?) and ¢, — oo, this implies

the desired result.
Proof of step 2. (j = 1): Let 5%71 = Z£;£e+1 (1 - ‘—Z') Z?:_lw B t.r Xt Xn t4|r|- We have
that

n—|7|

(-1

A T >

Byo= st Y (1—7) > e (Koot ~ KX+ K2, ond
T=—(+1

ITI

-1
N I7|
0-727,,1 = 8721,1 + Z ( Z ﬁn T (_Mn,t+|T|Xnt - MntXn,t+|T\ + :untun,t—HT\) )

T=—0+1
where Xo, = Y11 0t Xnt. We let ayy = v, (t) throughout. If we let Pon = D1 Onthly and

note that Y ;' ; a, = 1 and Z;:lm I} =1 for each 7, after some manipulations we can write

n,t,T
(A’i,l - UEL 1 = Am+ A+ Ans + Apg,  where
-1 ‘ ’ n—|7|
A = — (Xan — fian) Z ( T) Z Buir (Zut + Znyiinl) »
T=—(+1
/-1 ’7_‘ n—|7]
Az = Z ( ) Z ﬁn,t,T Hing — e n) nyt+|7|s
T=—L(+1
-1 ’7_‘ |T\
Ay = Z ( ) Z Brtr (ﬂn t|r] — Ha n) Znt, and
T=—0+1
-1 |7_| n—|7| )
Ang = = Z ( ) Z ﬁnt’r ( a,n <,unt +Mn,t+|7—\) Xa,n + ﬂnt#n7t+\r\> .
T=—{+1 =

Notice that if we assume p,,, = p for all ¢, i, = p since ), a, s = 1, which implies A, =
Apz =0 and Ay = — (Xapn — ﬁa,n)Qﬂ, because Z:;'T‘ Bt = 1 for every 7. Thus, if p,, = p
for all ¢, the result follows by showing that A, = op (1) and (X, — ﬁa,n)Q =op (1), If py
is not constrained to be equal to u for every t, the expression for A,4 is more complicated. In

particular, we obtain

Ay = A, + un 1, Wwhere
;’L4 = (Xa,n - ﬂa,n)2 4 +2 (Xa,n - ﬂa,n) ﬂa,ng
-1 n—|7|
- (Xa,n - laa,n) Z < |T|> Z Bn t,T <:unt +Mn,t+|7’\) , and
T=—{+1
=1 n—|7|
u?L,l = Z < |T|> Z ﬁntT Hpg — ﬂa,n) <:un,t+|7'\ - ﬂa,n) .
T=—(+1
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That u2 , = var* ( “tj2yn >) follows by Theorems 3.1 and 3.4 of Kiinsch (1989), when we
apply the MBB resampling scheme to the time series {u,,} . Thus, to complete the proof of step
2 we need to show that A1, Az, Ang and Al , converge to zero in probability.

We first show that (Xa,n — pam) ¢ = op (1). By definition, Xa,n T Sy Ot Zpny and

0 < apt < for every t. Thus, arguing as in Gallant and White (1988, p. 103), by an

1
n—~_{+1
application of Chebyshev’s inequality and McLeish’s inequality (McLeish, 1975), we obtain for
anys>0and£z€n:o(n1/2),

2 2 n SR
S — < (" —
EZamZ ] st |12 (ZlZntl> <% <n_e+1) KA™ =0,

since under our assumptions, it follows that {|Z|, 7} } is a mixingale of size —4 with mixingale
constants ¢,y < A < oo for all n,t (apply e.g. Theorem 17.12 and Corollary 17.6 in Davidson,
1994). Thus, (Xan — Fan) £ = op (1). This immediately implies that A7, = op (1) since under

our assumptions |u,,| < K for all n,t and Z?;lm B,;. =1 for any fixed 7.

n,t, T
Next, we consider A,;. Because Xa,n — fon = oOP (1) it suffices to prove that
Zf—_:l—éJrl (1 — %‘) Z?;lm BrirYnt = op (1), where Yot = Znt + Zyyqyr- An application of

Markov’s inequality, Cauchy-Schwartz inequality, and McLeish’s inequality yields for any ¢ > 0,

T=—0+1 =—(+1

K 7 n 0
— —
enl/2\n—0+1 ’

given our assumptions on the block size /. We can show that A,2 and A,3 converge to zero in

probability by a similar argument as the one used for Ay, by letting Yo = (ftnr — Fan) Zntt|r|
and Yy = (Hn,t+\7| — ﬂam) Znt, respectively (and noting that },unt — pa,n} < 2K < oo for all
n). This completes the proof of step 2 for j = 1.

The proof of the theorem for the SB follows closely that for the MBB and we omit the details.

Proof of step 1. (j = 2):

Let 62 5 = R0 (0) +2 3721 by (7) Ry (1), where Ry (T) =01 30 Zt Zngior and Zyy =
Xnt— iy as before. Given that E <Rn,0 (7')) =n"1Y 0 Ryt (1), where Ryt (T) = E (Znt Zntir)
it follows that E (63 ) —0% = 2> ") L(by (1) = 1) 0~V 277 Ryt (1) . We use exactly the same ar-
gument as before to prove that E (57 2)—035 — 0 (in particular, we remark that lim,, e0 by (1) = 1

for each 7 and that |b, (7)| < 2 for all n and 7. We then apply the Lebesgue dominated con-
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vergence theorem and use the size conditions on «; and v to find a dominating function, which
yields the desired result).

To show that the variance of 6,2172 tends to 0, we follow the same steps as for the MBB and
show that var (Rn,o (7')) is bounded by %, where S is a constant independent of 7 and n. In

particular, we can show that

n—1ln-—1

Var(n2)§§ 4— Zb +4SZan(7—)bn()\)=O<(npi)—1).

=1 =1
Given that p, = ¢,,!, the assumption that £, = o (n'/2) implies that np2 — oco. Thus, var(52 ) —
0, which completes the proof of step 1.

Proof of step 2. (j = 2): Let sfﬂ =n Y0 X2 +2300) Lo (1) n 1 Yoy XotXnpyr. We

obtain n—1
63,2 = %,2 - XTQL - 2)_(7% Z (1 - %) (1-p)", and (A9)
=1

n n
~2 2 -1 -1 2
Op2 = Sp2 — 2n E Xnt:unt +n E Hnt

n—1
_22<1_%> (1-p) ( 1ZXntHnt+T+n ZXntJrTﬂnt)
=1

t=1
+2Z<1——) 1-p ( 1Zumum+f>- (A.10)

If we let i, = n=1 Y} | fiyy, it follows that the difference between (A.9) and (A.10) can be

simplified to

(}721 2 U Cnl + CnQ + CnS + Cn4 + un 25 where

)

n—1

G = (B ) Co= 2% i)Y (1- 1))
=1

<n3 = _1 Z :unt :unt) )

n—Tt

Cn4 = _Zan (T [ - Z :unt — Hn t+T) + n”! Z (Xn,t+7' o 'un:t+7') (ﬁn - 'unt)] ;
T7=1

t=1

U’72’L,2 = {n_l Z (:unt - lan)2 +2 z_: bn (T) n_l z_: (Hnt - ﬁn) (/”(‘n,t+7’ - ﬁn)} :

t=1 =1 t=1

By a CLT for the sample mean, /n (X,, — fz,,) = Op (1) and it follows that ¢,,; = — (X, — ﬁn)Q =
Op (n™') = op (1). This also implies that ¢, = Op (7") = op (1) because >"~1 (1-I)(1-p" <
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pln and because p, = £} and ¢, = o (nl/ 2) by assumption. The remaining terms are op (1) by
an argument similar to the one used for the MBB to show that A,; = op (1). In particular, we
can show that (,,3 = Op ( - ) and (4 = Op <n1/2 ) .

By Lemma 1 in Politis and Romano (1994), 7, , = var* (\/ﬁﬁfz@ ) Hence, 65 9— (55 5 + ud 5) —
0 in probability, which completes the proof of step 2 for 5 = 2, and completes the proof of Theorem
21. 1

Proof of Lemma 2.1. For j = 1, apply Theorems 3.1 and 3.4 of Kiinsch (1989) to {1t} »
and for j = 2 apply Lemma 1 of Politis and Romano (1994) to {s,,}. B

Proof of Corollary 2.1. Immediate from Theorem 2.1 and the remark that follows it. W

Proof of Theorem 2.2. By Theorem 5.3 in Gallant and White (1988) and under our
assumptions, o, 'v/n (X,, — i1,,) = N (0,1) . (i) follows then by an application of Polya’s theorem
(e.g. Serfling, 1980) given that the normal distribution is continuous.

To prove (ii), we first remark that for both 7 = 1,2, we can write

o \n (X;;(j) _ )‘(n) ) (Z*U) _ B (Z*U )) roWn(E ( (z*u ) _ Zn)
+o/n ( () — )
=AY + BY) +CP,

where Z,; = Xy — 14,,; has mean zero by construction and Z, *(] ) = =X, (j ) un(t] ),

Proof for j = 1. For the MBB, E* ( *(1)) # Z,, hence B 75 0. In particular (cf. Kiinsch,
1989, expression 3.14, p. 1226),

E* (Z;;w) (n—C+1)"" e 1nze§ejzmﬂ (A.11)
j=0 t=1

Thus, we start by proving that under our assumptions B, L (T easy to show that
E* (Z*(l)) = Zn+Op (%) (e.g. Lemma A.1 of Fitzenberger (1997, p. 263)). Therefore, B, =
Op ( 1/2> given that o;1 = O (1) by the assumption that 02 > x > 0. Since ¢ = £, = o (n1/2),
it follows that B,, = op (1).

Next, we show that A, = N (0,1), given Zp1, ... , Zny in a set with probability converging to
one. Following Kiinsch (1989), we can write Z;;(l) =k! Zle Un,i, where {Up;} are i.i.d. with
p* (Un = Zngnt A2 m) = 4, j=0,...,n— ¢ Thus, E* (Z;;(D) = E*(U,,), and it

follows that

29



k k
AD — o1 (w S [Uns — B ) - ZZ
i=1 i=1

where Z,,; = o tnt/2E1 Uni — E* (Up1)] = o tn=1/2¢ [Un,i — E* (Up,1)], given that k = 7. In

~ ~ ~ 2
particular, {Zm} are 1.i.d. with E* (Zm-) =0 and var* (Zn1> =0, 2nk™2var* (Up) = k™ 17,
By Katz’s (1963) Berry-Esseen Bound, for some small § > 0,

02'

2+6
an

veR \/Var* (Zle Zm) var* (an)

< Kk %2 ’var* (Zm) ’_1_6/2 E

P .
; an —
sup | P* 2iz1 <z|-®@)| <Kk ?E*

N 246
an

~92 +6
But 00"2’1 — 1 by Theorem 2.1 for j = 1. Thus, it suffices to show that kE* | Z,; Zo. By

Markov’s inequality, it suffices to show that E |kE* — 0. Now, given the definition of

Zn1 and the fact that k = 7, it follows that

n—~t Y 246
E ‘kE* Zni 2+0| _ E(TTM JX;E oo lp 12 (; Zoniss — LE" (Un,1)>
n n—¢ 246\ 1/(249) * e 246
< Cn—0+1) n1+%(7%+6 ]z% n,t+j + <E [CE* (Un,1)] )
n—~¢ l 246
~I(n —né 1) pl+5g2+8 ]z% ;Zmﬂ' » + |E* (Un,1)|l2+6] : (A.12)

where the inequality follows by Minkowski inequality. We now show that

J4
> Znty < KA0Y? (A.13)
t=1 2+6

and  [[0E* (Un1)llgys < KACYZ (A.14)

To prove (A.13) and (A.14) we use an extension of a maximal inequality for mixingales (Hansen,

Lemma 2, 1991) to a double array setting. According to this result, if {Zm, Ft } is a Lays —mixingale
for some ¢ > 0 and the mixingale coefficients {1} satisfy > 7= ¢ < oo, then HZT” Y Zot

1/2
Zt:Tfl Dt ’2+5 <K ( Zi:fl C?n) ,where ¢,; are the mixingale constants. Un-

der Assumption 2.1 strengthened by 2.1.1') it follows that {Z,;} is a Lo, s—mixingale with mixin-

2+6

S ‘manST

2+6

gale coefficients v, = 6a, " 4+ v and constants ¢ < A < oo (see e.g. Davidson, Corollary

17.6, 1994). Hence, it suffices to assume «y is of size —%élf% and vy is of size —1. But, under
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Assumptions 2.1. strengthened by 2.1.b'), it follows that these conditions are satisfied, which
proves (A.13). To prove (A.14), notice that E* (U, 1) = E* (Z*L(l)) . Thus, by (A.11),

n—~{ /¢ n—~{ J4
1
* _ —1 pp—1 1/2
IILE (Un,1)||2+5— (n—0+1) "0 jgongmﬂ Sin_g_‘_ljgo El ntg 2+§§KA£/7

246

where the first inequality follows by Minkowski’s inequality and the second inequality follows by
the maximal inequality for Lo s-mixingales. Therefore, it follows from (A.12) that

n—~t

< n Z (2KA£1/2) o (5"~
“l(n—L+1) 1+2(,2+6 n

Jj=

2+6

E'kE* Z

given our assumption on ¢,. Finally, under our assumptions, we can show that E*(C,) =
(0] (%) — 0 and var* (C),) = U_2u2 — 0. Thus, ¢V 0 and by the Asymptotic Equivalence
Lemma (e.g. White, 1984, Lemma 4.7),

sup P*[ 1\/_(X*(1)— ) <x}—<1>(x)‘£>0,

z€R

given that BT(LD L 0 and that 07(11) = 0, where the convergence is uniform by Polya’s theorem
given that ® (.) is continuous. This completes the proof of Theorem 2.2.(ii) for j = 1.

The idea of the proof for the SB is similar to that for the MBB in that the sample mean is
also expressed as the sum of i.i.d. blocks of observations and the Berry-Esseen Bound is used to
prove the (uniform) convergence of this sum to a standard normal distribution. However, for the
SB the number of blocks and the number of observations within each block are random, which
renders the proof more complicated than for the MBB. We follow Politis and Romano (1994) and
refer to the proof of their Theorem 2 for the relevant details.

First, note that BT(?) = 0 since for the SB E* (Z;;(l)> = Z,. Hence, it suffices to show
that with probability approaching one Ag) = N (0,1), conditional on the original sample, and
P Bo.

To prove that AP = N (0,1) we verify the conditions (C1), (C2), and (C3) in Politis and

2

Romano’s (1994) proof of their Theorem 2. In our more general case, where o7 is not assumed

to have a limit value 0%, the appropriate version of these conditions is as follows.

(C1) 2% Ly,

NPpn
(C2) Cu(0)+25°2, (1= pn)" Cu(7) — 02 L0

0o n 2+6
(C3) nfﬁg Do 2= |

— &Zn
T,T Dn

(1 _pn)r_lpn 5’ 0,
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where, in (C2), Cy, (7) denotes the circular autocovariance of {Zn;} at lag 7, ie. Cy (1) =
n-1 Yty ZntZntrr — Z2% and in (C3), Srr is defined as the sum of observations in block B; j:
Brb=AZnry Znr41s- - s Znrtr—1}-

Proof of (C1): this follows trivially because nZz = n (X, — ﬁn)Q = Op (1) (by the CLT) and
because np,, — oco.

Proof of (C2): If we let 02, = Cr (0) +252%° (1 = pp)” Cn (1), We can write 02 oo 8S

[e.°]

o)
U?L,oo = a-n,Q Z (]- _pn)n] + C Z 1 _pn
7=0 Jj=1

2y LAy (=p)
n)1_(1_pn)n+Cn(0)1_(1_pn)n7

= O

SN

+ (62 -

2_A

where 62 = C,, (0) +23"21 (1 — p,)” Cy, (7). By an argument similar to the proof of Theorem

2

2.1 for j = 2, we can show that 62 — o2 Zo. Hence, 02 ., — 02 — 0 in probability given that

np, — oo and p, — 0 and that C,, (0) =n~ 137" | Z2, — Z2 = Op (1).

Proof of (C3): this follows provided we ensure E|Y 717! X, e < Kr'*5, where the
constant K only depends on the NED coefficients of {X,,;}. Politis and Romano (1994) use
Yokoyama’s (1980) moment inequality for mixing processes to achieve this. We use the maximal
inequality for mixingales (Hansen, Lemma 2, 1991) referred to above, which holds under our
assumptions.

To prove C2 5 0, note that E* ( nl/2yn (um ,um>) = 0, given the stationarity of
the Politis and Romano resampling scheme. Moreover, var* ( “lzse ( ) unt» = u,,
and by Assumption 2.2, ufw — 0. This completes the proof of Theorem 2.1 (ii) for j =2. W

Proof of Corollary 2.2. Immediate from the proof of Theorem 2.2 for j =1. B

Proof of Theorem 3.1. We consider {Ym A Xnt} for any A € R?, and we assume without
loss of generality that A has unit norm, i.e. N’ = 1. We now verify Assumption 2.1 for {Y,;}.
By hypothesis, each element of {X,,;} satisfies Assumption 2.1. Thus, for some r > 2, ||[Yy|l5, =
H)\' ”tHSr < ZZ 1 1] ([ X il < AVd < oo for all n,t. Moreover, {Ym )\Xnt} is NED on
{et} of size —2( ) . By Theorem 2.1 applied to {Ym} we obtain that for any A € R? such that
NX=1and for j =1,2, N Vnyj)\ — ()\'Vn)\ + )\’Unyj)\) — 0, where

n
Ungp = Zﬁn,t,o (Hnt = Fagn) (Mot — ﬁa,n),
=1

+ Z (1 - _) Z 6nt T |: Hntg — pa,n) (Mn,t—i—’r - ﬂa,n)/ + (:un,t—i—’r - ﬂa,n) (Mn,t - pa,n)/} ;
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n

! Z Hong — Mnt pn),

z_: _1 z_: |: Mg — HTL) (MTL t+7 Mn) (:un,t+7' - :Bn) (:unt - ﬁn)/} .
=1 t=1

Because Uy, ; = var* (\/_ Lin, ) for 5 = 1,2 and A is arbitrary, the desired result follows. B
Proof of Theorem 3.2. That {V,,} = O (1) follows from Assumption 2.1 (see Gallant and
White, 1988, pp. 86 for the details of the proof of a similar result). The remaining results
follow from Theorem 2.2 by considering linear combinations of the elements of X,,; In particular,
consider {Ym A Xnt} where X\ € R? with N\ = 1. By an argument similar to the one used in
the proof of Theorem 3.1 we can prove that {Y;,:} satisfies Assumptions 2.1 and 2.2 strengthened
by 2.1.b') given that each element of {X,;} satisfies these assumptions. Hence, we obtain for
any A € R? such that N\ =1, ()\’Vn/\)_l/2 Ny (Xn — By) = N (0,1), where the assumption
that V;, is uniformly positive definite implies that X'V,\ > k > 0 as required by Theorem 2.2.
Moreover, for j = 1,2, sup,cp ‘P* [/\’\/ﬁ (X'T*L(j) — Xn> < x} - P[Nyn(Xn—hy,) < x]‘ Lo,
which implies part (ii) since A is arbitrary. B
Proof of Theorem 3.3. Parts (i) and (ii) follow trivially by an application of Theo-
rem 3.1 to the double array {h(Xp,:)}. Part (iii) is established by routine arguments, given
part (i). In particular, we apply a mean value expansion to f (Zn) around iy to show that
N e (f (Zn) = f(Bz,)) = N(0,1,), where T, = V'f (fiz, ) 2.V f (fiz,). Hence, to prove
part (iii), it suffices to show that for j = 1,2, \/ﬁfﬁlﬂ (f (Z:L(j)) —f (Zn)> = N (0, 1,) under
the bootstrap probability measure P* for all sequences {X,;} that lie in a set with probability
approaching one.
Consider &,, = {X,,1,..., Xun} such that
Zn—Tiy, — O (A.15)
Jn QL2 (Z;;U) . Zn) = N(0,1,), (A.16)

where = denotes convergence in distribution under P*.
Claim. \/ﬁFT_Ll/Q (f (Z*L(j)) —f (Zn)) = N (0, I,) under P* for every Aj,.

Proof of Claim. Fix X,. For each i =1,... ,p and j = 1,2, apply a mean value expansion to

(79,
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Vi (£ (Z9) = £ (Za)) = |V fi (pz) = V£ (G0 | v (29 - Z)
+ V' fi (i1,) Vi (79 = Z)
*(J +V'fi (g,) vV <ZT*L(J') _ Zn) ’
)

where Cz(i’j ) lies in the segment connecting Z;;(] and Z,, and the superscript (z j) reflects the

fact that the mean value may change for every ¢ and j. We first show that r, (] )P
NV 172 ( w2 Zn) = N (0, I,), where Q, 12 - O (1) given that €y, is O (1) and is uniformly

positive definite. Thus, v/n (Z*L(j) — Zn> =Op- (1) and 729 _ 7 = op (1). Since Z,, — fiy, =

2 0. For any Xn,

o(1) for all &, it follows that for such {X,;}, Cz(i’j) — iy, = op= (1), where fiz is interior to
C=xt, [—2A3T, 2A3T], a compact subset of RP, uniformly in n. Since V'f; is continuous by
assumption, it is uniformly continuous in C. It follows that V' f; (C#i’j )) —V'f; (ﬁzn) =op~ (1)
by Proposition 2.30 of White (1984). Hence, for all i = 1,... ,p, and j = 1,2, r, (]) = op~ (1),
or in vector form, y/n (f (Z:L(j)) —f (Zn)> —V'f(ig,)Vn (Zn(]) - Zn) — 0. The proof of the
Claim follows by an application of Corollary 4.24 and Lemma 4.7 of White (1984), given condition
(A.16).

To complete the proof of Theorem 3.3 by a subsequence argument it suffices to show that the
convergences in (A.15) and (A.16) hold in probability for the original sequence {X,;}. But this
follows trivially by parts (i) and (ii). W
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