
Montréal
Mai 2000

Série Scientifique
Scientific Series

2000s-19

Rolling-Sample Volatility
Estimators: Some New Theoretical,
Simulation and Empirical Results

Elena Andreou, Eric Ghysels



CIRANO

Le CIRANO est un organisme sans but lucratif constitué en vertu de la Loi des compagnies du Québec. Le
financement de son infrastructure et de ses activités de recherche provient des cotisations de ses organisations-
membres, d’une subvention d’infrastructure du ministère de la Recherche, de la Science et de la Technologie, de
même que des subventions et mandats obtenus par ses équipes de recherche.

CIRANO is a private non-profit organization incorporated under the Québec Companies Act. Its infrastructure and
research activities are funded through fees paid by member organizations, an infrastructure grant from the
Ministère de la Recherche, de la Science et de la Technologie, and grants and research mandates obtained by its
research teams.

Les organisations-partenaires / The Partner Organizations

•École des Hautes Études Commerciales
•École Polytechnique
•Université Concordia
•Université de Montréal
•Université du Québec à Montréal
•Université Laval
•Université McGill
•MEQ
•MRST
•Alcan Aluminium Ltée
•Banque Nationale du Canada
•Banque Royale du Canada
•Bell Québec
•Développement des ressources humaines Canada (DRHC)
•Fédération des caisses populaires Desjardins de Montréal et de l’Ouest-du-Québec
•Hydro-Québec
•Imasco
•Industrie Canada
•Raymond Chabot Grant Thornton
•Téléglobe Canada
•Ville de Montréal

© 2000 Elena Andreou et Eric Ghysels. Tous droits réservés. All rights reserved.
Reproduction partielle permise avec citation du document source, incluant la notice ©.
Short sections may be quoted without explicit permission, provided that full credit, including © notice, is given to
the source.

ISSN 1198-8177

Ce document est publié dans l’intention de rendre accessibles les résultats préliminaires
de la recherche effectuée au CIRANO, afin de susciter des échanges et des suggestions.
Les idées et les opinions émises sont sous l’unique responsabilité des auteurs, et ne
représentent pas nécessairement les positions du CIRANO ou de ses partenaires.
This paper presents preliminary research carried out at CIRANO and aims at
encouraging discussion and comment. The observations and viewpoints expressed are the
sole responsibility of the authors. They do not necessarily represent positions of CIRANO
or its partners.
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Theoretical, Simulation and Empirical Results*
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Résumé / Abstract

Nous proposons des extensions de la théorie asymptotique de Foster et
Nelson pour l’estimation de variance. Nous proposons une approximation
asymptotique qui permet de comparer des estimateurs obtenus à partir de données
avec fréquences d’échantillonnage différentes. Une autre extension consiste à
appliquer les arguments de Foster et Nelson à des processus plus généraux tels
que la volatilité intégrée.

We propose different extensions of the continuous record asymptotic
analysis for rolling sample variance estimators developed by Foster and Nelson
(1996). First, despite the difference in information sets we are able to compare
the asymptotic distribution of volatility estimators involving data sampled at
different frequencies. We focus on traditional historical volatility filters involving
monthly, daily and intra-daily observations. Second, we introduce a continuous
record asymptotics approach for estimating the so called integrated volatility,
which represents the cumulative integral of instantaneous volatility. The new
approach treats integrated volatility as a stochastic process sampled at high
frequencies and suggests rolling sample estimators which share many features
with spot volatility estimators. We discuss optimal weighting schemes for
integrated volatility estimators. Thirdly, we establish the links between various
spot and integrated volatility estimators. Theoretical results are complemented
with extensive Monte Carlo simulations and an empirical investigation.
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Introduction

There are many strategies for estimating time-varying conditional variances and covariances
of �nancial market data. Some involve parametric models, the most popular belong either
to the ARCH or the SV class of models, while others are purely data-driven. We focus ex-
clusively on the latter type of estimation strategies which typically involve a rolling or block
sample approach. Data-driven volatility estimates can be distinguished by (1) the sampling
frequency, (2) the data window length and (3) the weighting scheme. There are indeed various
schemes, some consist of slicing the returns data into non-overlapping blocks (of equal size)
while others rely on a moving window. The block-sampling approach estimates a time series
process of conditional variances or covariances using exclusively data from a single block. This
approach has its roots in various academic papers, such as Merton (1980), Poterba and Sum-
mers (1986), French, Schwert and Stambaugh (1987), Schwert (1989 1990a,b) and Schwert and
Seguin (1990). Another commonly used approach relies on sliding spans of data generating
rolling regressions. Early contributions include Fama and MacBeth (1973), O�cer (1973) and
Merton (1980). Asset pricing applications often involve sampling at a monthly frequency with
rolling windows between 5 to 10 years. Recent examples include Campbell and Lettau (1999),
Chan, Karceski and Lakonishok (1999), Fleming, Kirby and Ostdiek (2000) and Malkiel and
Xu (1999). Practitioners compute daily volatilities using the same schemes applied to a daily
and monthly sampling frequency, a prominent example are the RiskMetrics volatility measures.

There are no clear rules regarding the choice of data sampling frequency nor the number
of lags to include. Some authors use monthly data and take a 60-month �lter, following Fama
and MacBeth (1973). Others have used daily data and take monthly sums and cross-products
of (squared) returns, following French, Schwert and Stambaugh (1987). Some authors report
estimators involving di�erent data frequencies to check for robustness or emphasize di�erent
features. For instance, Schwert (1990b) considers volatility estimates based on yearly averages
of monthly squared returns, daily returns squared and averaged across a month and �nally
15-minute squared returns across a trading day. Likewise, Campbell et al. (2000) consider a
12-month span rolling sample estimator of volatility, daily averages across a month as well as
a quarter. How do these various volatility estimation schemes compare and could we verify
robustness via di�erent sampling frequencies? The main purpose of this paper is to provide
answers to some of these questions. The theoretical work of Foster and Nelson (1996) formally
establishes that with su�ciently high frequency data one can estimate instantaneous volatility,
denoted by �t and sometimes also called spot volatility, using rolling and block sampling �lters.
They provide some powerful results about the estimation of spot volatility and establish the
e�ciency of di�erent weighting schemes. They also show that for a large class of continuous
path stochastic volatility models the optimal weighting scheme is exponentially declining and
provide formulas for the optimal lag (lead) length of various estimation procedures. The
advent of intra-day high frequency �nancial data has made it possible to carry this approach a
step further. In a recent set of papers Andersen and Bollerslev (1998), Barndor�-Nielsen and
Shephard (1999) and Andersen et al. (1999) suggest the sum of squared high frequency (say
5 minutes) returns as an approximation to the integrated volatility,

R t
t�H �2�d� , i.e. an integral

of instantaneous volatilities which we will call QH
t since it relates to the quadratic variation
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of a process over a time interval from t to t + H: Various related earlier measures were also
proposed such as the cumulative absolute returns studied by Hsieh (1991) and the (monthly)
sum of squared returns augmented by cross-products to account for correlation as suggested
by Merton (1980), Poterba and Summers (1986) and French, Schwert and Stambaugh (1987).

We propose di�erent extensions of the continuous record asymptotic analysis of Foster and
Nelson for data-driven variance estimators. First, despite the di�erence in information sets we
are able to compare the asymptotic distribution of estimators involving data sampled at di�er-
ent frequencies. A priori it may seem impossible to compare rolling sample estimators involving
data sampled at di�erent frequencies. However, Foster and Nelson impose certain regularity
conditions, which enable us to maintain the same asymptotic distributional properties of the
mean squared errors of volatility �lters involving data sampled at di�erent frequencies. This
insight is the key to the �rst extension of the Foster and Nelson results presented in this paper.
Next we transfer the Foster and Nelson continuous record asymptotic analysis to the e�cient
estimation of the integrated volatility process such as QH

t : We view QH
t as a continuous time

process in t for �xed H which is sampled discretely at high frequencies. The advantage of this
approach, also suggested by Barndor�-Nielsen and Shephard (1999), is that the optimal weight
design for integrated volatility estimators can be obtained directly from Foster and Nelson's
analysis with the appropriate modi�cations. This leads to the introduction of a large new
class of integrated volatility estimators. The same arguments are also applied to cumulative
absolute return measures which also yields a new class of such estimators.

It obviously takes Monte Carlo simulations to back up the accuracy of any asymptotic
distribution theory in sample sizes encountered in practice. For our comparison of sampling
frequencies this wisdom certainly applies even more so than is usually the case. The continuous
record asymptotic arguments provide only an approximation to what we encounter in practice.
Moreover, the core idea of the asymptotics is ever �ner sampling while we use the distribution
theory to compare asymptotic e�ciency of schemes involving di�erent sampling frequencies. To
validate our asymptotic reasoning we report an extensive Monte Carlo study. The design is built
on stochastic volatility models which describe FX and equity markets data. We follow Andersen
and Bollerslev (1998) and take advantage of the elegant GARCH temporal aggregation results
of Drost and Nijman (1993) and Drost and Werker (1996).

The paper is organized as follows: In the �rst section we brie
y review the relevant the-
oretical results from Foster and Nelson which support the comparison of rolling sample esti-
mates with various sampling frequencies. The second section introduces the continuous record
asymptotics for integrated volatility estimation. The third section provides the details about
the Monte Carlo design. The simulation results are described in the fourth section. The
�fth section reports empirical comparisons of intra-day sampling schemes using 5-, 15- and
30-minute FX series to examine the e�ciency of daily volatility �lters and daily S&P 500 data
to study the e�ciency of alternative monthly data-driven �lters. A �nal section concludes the
paper.
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1 Comparing Estimators for Spot Volatility with Di�er-

ent Sampling Frequencies

The focus of this �rst section is on data-driven estimators for spot volatility which �gure
prominently in many asset pricing applications. Spot volatility estimators are also a natural
starting point since the work of Foster and Nelson refers to this type of estimators. For
convenience we assume a continuous time process and model the instantaneous returns rt � dpt;

where pt is the log price, as a stochastic volatility process.
1 In particular, let:

dpt = �(pt; �t)dt+ �tdW1t

d�2t = �(pt; �t)dt+ �(pt; �t)dW2t (1.1)

where W1t and W2t are standard Brownian motions (possibly correlated) and the functions
�(�; �); �(�; �) are continuous and �(�; �) strictly positive. In a �rst subsection we propose ex-
tensions of the continuous record asymptotic analysis for rolling sample variance estimators of
Foster and Nelson (1996) which enable us to compare the asymptotic distribution of estimators
for �t involving data sampled at di�erent frequencies. In a second subsection we discuss some
comparisons of �lters which maintain asymptotic e�ciency across various sampling frequencies.

1.1 Theoretical Extensions

The powerful results in Foster and Nelson are driven by a continuous record asymptotic theory
which assumes that a �xed span of data is sampled at ever �ner intervals. The basic intuition
driving the results is that normalized returns, rt=�t; over short intervals appear like approxi-
mately i.i.d. with zero conditional mean and �nite conditional variance and have regular tail
behavior which make the application of Central Limit Theorems possible. Foster and Nelson
impose several regularity conditions for the di�usion process appearing in (1.1) which we will
not review here. Instead, we will only highlight certain assumptions which are critical for our
analysis. We will adopt a notation slightly di�erent from Foster and Nelson, but similar to
that used by Drost and Nijman (1993), Drost and Werker (1996) and Andersen and Bollerslev
(1998). Namely, let r(m);t � pt � pt�1=m be the discretely observed time series of continuously
compounded returns withm observations per day, per month, or whichever benchmark applies.
Henceforth, we will call m = 1 the benchmark frequency, which in the context of our paper
will be either daily or monthly. Hence, the unit interval r(1);t is assumed to yield the daily or
monthly return.2 The r(m);t process is a discrete step function with the 1=m horizon returns

1As noted by Foster and Nelson, their analysis applies not only to SV di�usions but also, with appropriate
modi�cations, to discrete time SV, to ARCHmodels and to certain types of random coe�cient models. While we
start with a continuous time SV framework, we will focus later on a particular case which yields a GARCH(1,1)
model using exact discretization methods (see also Drost and Werker (1996), Meddahi and Renault (1997) and
Andersen and Bollerslev (1998)).

2The notion of a benchmark frequency will be used extensively, particularly when simulating models. We
use the daily and monthly examples as they are most commonly encountered in applications. The benchmark
frequency will also serve as a reference frequency to normalize simulation results and make them comparable
across frequencies as will be discussed later.
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determining the step size. Therefore, when calculating monthly volatility estimates, one can
either rely on daily data, i.e. use r(22);t with approximately 22 trading days per month, such
as Merton (1980), French, Schwert and Stambaugh (1987), Schwert (1990a), among others, or
else use sliding spans of squared monthly returns r(1);t such as in O�cer (1973), Merton (1980),
Schwert (1989), among others. Similarly, to obtain daily volatility estimates, one can rely on
high frequency �nancial data, e.g. �ve minute data (with m = 288 for FX data, as for instance
in Andersen and Bollerslev (1998) and Andersen et al. (1999) or m = 78 for equity markets
as in Chin, Chan and Karolyi (1991)), or use daily data as for instance in the RiskMetrics

schemes. In general, with ever �ner sampling intervals, i.e. m!1, we approach the contin-
uously compounded returns, or equivalently r(1);t � rt: The process fr(m);tg is adapted to the
�ltration fF(m);tg and conditional expectations and variances will be denoted as E(m);t(�) and
V ar(m);t(�) respectively, whereas unconditional moments follow a similar notation, E(m)(�) and
V ar(m)(�). From (1.1) we obtain the discrete time dynamics:

r(m);t = �(m);tm
�1 +M(m);t �M(m);t�1=m � �(m);tm

�1 +�(m)M(m);t;

which is the so called Doob-Meyer decomposition of the 1=m horizon returns into a predictable
component �(m);t and a local martingale di�erence sequence. Consequently:

V ar(m);t(r(m);t) � E[(�(m)M(m);t � �(m);t)
2jF(m);t] = �2(m);tm

�1

where �2(m);t measures the conditional variance per unit of time. Various data-driven estimators

for �2(m);t can generically be written as:

�̂2(m);t =
X
�

w(��t)(r(m);t � �̂(m);t)
2 (1.2)

where w(��t) is a weighting scheme and �̂(m);t is a (rolling sample) estimate of the drift. To

facilitate the discussion, we restrict our analysis to 
at weighting schemes involving nLm
�1=2

lags and nRm
�1=2 leads. Other weighting schemes, including optimal ones, will be covered at

the end of this section. When nR = 0, the �lter is one-sided and backward-looking, a case of
most practical interest. Please note also that m = 1 implies that nL is simply the number of
days, or months, of squared returns used to compute the conditional volatility (again assuming
nR = 0):3 These schemes include the most commonly used volatility estimators involving
equally weighting observations throughout the day, across all days of a month, or a sliding span
of daily or monthly returns. The asymptotic e�ciency of �̂2(m);t only depends on the process
characteristics once the �lter weights are �xed, in this particular case once nL and nR are
determined.4 Theorem 2 of Foster and Nelson establishes that m1=4(�̂2(m);t��2t )! N(0; C(m);t)

3This includes the zero lag, since we assume end-of-day, or end-of-month, volatilities. For the 24-hour FX
market we pick a particular time, like 21:00 hours GMT every day, similar to Andersen and Bollerslev(1998).

4Foster and Nelson assume that the Sup�f� : w��t > 0g - Inf�f� : w��t > 0g = O(m�1=2) and hence
shrinks as m increases and is bounded in probability by m�1=2 (see Foster and Nelson (1996, Assumption
D)). For 
at weights involving nLm

�1=2 lags and nRm
�1=2 leads the weighting scheme can be characterized as

w(m);t = m�1=2(nL + nR)
�1If��[�nLm

�1=2; nRm
�1=2]g:
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asm!1, where the continuous record asymptotic variance for a 
at weighting scheme equals:

CF
(m);t �

�(m);t

nR + nL
+
q
�(m);t�(m);t �(m);t

nR � nL

nR + nL
+ �(m);t

n3R + n3L
3(nR + nL)2

: (1.3)

The superscript F in (1.3) refers to the 
at weighting scheme. Besides the window length
parameters nL and nR, three other elements determine the asymptotic e�ciency of the �lter
�̂2(m);t: They are �(m);t; �(m);t and �(m);t; each depending on the sampling frequency m and the
characteristics of the underlying process (1.1). The process �(m);t represents the \variance of
the variance", and therefore any increase of its value will increase CF

(m);t and deteriorate the
asymptotic e�ciency of �ltering. The process �(m);t represents the conditional fourth moment.
When the data span increases, namely when nR + nL increases, then the �rst term on the
right hand side of equation (1.3) decreases, as the usual asymptotics would predict. Note,
however, that the third term in the same equation increases with wider data spans, a result
driven by the fact that only local cuts of the data exhibit a relatively stable variance. Finally,
the process �(m);t measures the correlation between the empirical second moment and the
conditional variance. As Foster and Nelson observe, the correlation is unity for ARCH-type
processes and zero for continuous path di�usions. To streamline the discussion we do not
provide explicit characterizations of the three processes since details appear in Foster and
Nelson.

We are interested in comparing CF
(1);t; which is based on the benchmark sampling frequency,

with CF
(m);t form > 1, or equivalently compare the asymptotic e�ciency of volatility estimators

involving data sampled at di�erent frequencies. The comparison can be demonstrated by the
following illustrative example: Suppose one starts with a 30-day historical volatility estimate
and instead of sampling only once a day one slices the trading period in half and therefore
has twice as many returns. Now we ask the following hypothetical question: How many lags
of half-day returns does it take to attain the same e�ciency as the historical 30-day �lter?
Please note that we do not change the weighting scheme. We only sample twice more often
and try to �nd out how many lags of half-daily returns attain the same e�ciency as a 30-day
�lter using daily returns. The answer is not 15 days worth of lagged returns sampled twice
daily, i.e. the same number of observations which was thirty. Indeed, to maintain the same
(asymptotic) e�ciency we obviously do not have a simple linear trade-o� between sampling
frequency and number of observations. It takes in fact more than 15 days (or 30 half-day
observations) of data to maintain the same e�ciency. Hence, we need more and more lags
as the sampling becomes �ner to maintain a particular level of e�ciency. It is important to
note here that we only try to maintain a certain level of e�ciency, and therefore sidestep
the issue whether the e�ciency one attains is adequate. Bai, Russell and Tiao (1999) have
recently argued that Merton's (1980) result may be an utopia since the precision of volatility
estimates may vary substantially depending on the features of the return process. As the result
in (1.3) clearly shows, one may have a very large or small asymptotic MSE depending on the
magnitude of the conditional higher moment terms. Bai et al. (1999) examine the accuracy of
several data-driven and GARCH �lters as one changes the sampling frequency and the process
characteristics. Instead, we investigate how one can maintain a certain level of e�ciency as
one changes the sampling frequency. While the theoretical analysis in this section sidesteps the
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issue of e�ciency levels, it should be noted that the Monte Carlo simulations reported later
will examine the actual e�ciency levels attained for data generating processes which resemble
actual observed series. We will also join the discussion of Bai et al. (1999) in examining the
e�ects of excess kurtosis in our simulation and empirical analysis.

The asymptotic e�ciency of �̂2(m);t only depends on the process characteristics once the
�lter weights are �xed, in this particular case once nL and nR are determined. Therefore, to
compare CF

(1);t with CF
(m);t we must be able to appraise the di�erence between �(m);t and �(1);t;

and also compare �(1);t, �(1);t with �(m);t and �(m);t: Fortunately, this comparison is possible
as a result of a critical assumption in Foster and Nelson, namely their Assumption B, which
states that:

Supt���t+1=
p
m

����(m);� � �(m);t

��� = op(1)

Supt���t+1=
p
m

����(m);� � �(m);t

��� = op(1)

Supt���t+1=
p
m

����(m);� � �(m);t

��� = op(1):

This assumption implies that the conditional fourth moments, variance of variance and corre-
lation roughly stay constant over small intervals, where small is interpreted as an interval of
size 1=

p
m. This assumption guarantees that the process (1.1) is regular enough with higher

moments changing slowly over time. We will replace Assumption B of Foster and Nelson with
a slightly di�erent condition, namely:

Supt���t+1=
p
m

����(m);� � �(1);t
��� = op(1)

Supt���t+1=
p
m

����(m);� � �(1);t

��� = op(1)

Supt���t+1=
p
m

����(m);� � �(1);t

��� = op(1)

This assumption is in the same vein as that used by Foster and Nelson, the main di�erence is
that in Assumption B of Foster and Nelson the �ltration is kept constant at fF(m);tg:We require
the stronger condition that relative to the benchmark �ltration fF(1);tg we have local stability
of the conditional higher moments at all �ner sampling frequencies. In particular, we can
write Supt���t+1=

p
m

����(m);� � �(1);t
��� � ����(m);t � �(1);t

��� + Supt���t+1=
p
m

����(m);� � �(m);t

��� : Hence,
Assumption B of Foster and Nelson implies our condition provided

����(m);t � �(1);t
��� is op(1): One

can interpret this condition as saying that at the daily (monthly) level (and beyond) we have
reached stability of all relevant conditional higher moments. To a certain degree this is what
underlies the empirical application in Foster and Nelson who consider optimal �ltering of daily
volatility for the S&P 500 index.

Though the regularity condition is fairly mild it is not innocuous of course, and warrants
some further discussion. First and foremost, it should be noted that the assumption pertains
to conditional higher moments after the volatility dynamics are taken into account. Uncon-
ditional kurtosis can vary dramatically as one changes the sampling frequency (see Bai et al.
(1999) for recent empirical evidence). Several observations can be made about the assump-
tion. First, for �(m);t this condition is often trivially satis�ed when ARCH or SV type processes
are considered, since �(m);t is constant across m and t: Second, Foster and Nelson propose
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estimators for �(m);t and �(m);t (see formula (10) and (11) in their paper). Hence, one can
inspect the time series of point estimates of conditional higher moments, say �(1);t and �(m);t

for m � 1 where t is for instance at the daily frequency. Third, there are several papers which
document the behavior of conditional higher moments, particularly the kurtosis, as sampling
frequencies increase. For instance, Baillie and Bollerslev (1989) �nd that GARCH parameter
estimates and tail characteristics for FX daily data carry over to weekly, fortnightly, whereas
the degree of leptokurtosis and time-dependent heteroscedasticity is reduced as the length of
the sampling interval increases to monthly data. Engle, Ito and Lin (1990) also examine four
hourly FX data series and �nd that although all have excess kurtosis, these do not, however,
deviate dramatically from the daily kurtosis levels encountered in the literature.5 Hsieh (1991)
presents results pertaining to equity markets, namely he examines 15-minute and daily S&P
500 returns and �nds comparable results. Chin, Chan and Karolyi (1991) also examine S&P
500 returns at 5-minute sampling frequency and report sample kurtosis which do not substan-
tially deviate from the daily sample kurtosis levels. This evidence suggests that at least for
daily benchmark frequencies our assumption appears to be satis�ed. For data sampled at the
monthly frequency it is well known that the conditional kurtosis increases when one moves
from monthly to weekly and daily sampling frequencies. Hence, one may be more comfortable
with this assumption when the benchmark frequency is daily and one samples at �ner intra-
daily frequencies. Therefore, when the monthly frequency is the benchmark frequency and we
compare �lters involving, say daily data, with monthly data �lters our comparison may not be
very accurate, even on asymptotic grounds, since we ignore the variation of higher moments.
It should also be noted that for some models, such as the GARCH di�usion which we will
consider in the Monte Carlo section, we can compute for each m the entries to (1.3).

The great advantage of these results is that we can simply drop all the subscripts in (1.3)
and write the expression as:

CF
(m);t �

�

nR + nL
+
q
���

nR � nL

nR + nL
+ �

n3R + n3L
3(nR + nL)2

(1.4)

for m � 1: It is worth noting that to facilitate their discussion Foster and Nelson also simply
drop all the subscripts to (1.3), see in particular their equation (9). This representation allows
us to make relatively simple comparisons of asymptotically equivalent sampling schemes in-
volving sampling at di�erent frequencies m: For instance, when nR; nL; �; � and � are �xed,
then a one-sided window of length nL with daily data yields the same asymptotic e�ciency as
a one-sided window of length nLm

�1=2 with intra-daily sampled data at frequency 1=m:

1.2 Some Examples of Equivalent Filters

We present asymptotically MSE-equivalent one-sided volatility �lters for di�erent sampling
frequencies. First we consider the case where the benchmark frequency is daily data. Panels A
through C of Table I report numerical comparisons for both the 24-hour foreign exchange and

5More recently, Goodhart and Figliuoli (1991), Bollerslev and Domowitz (1993) and Andersen and Bollerslev
(1998) also report FX intra-daily results which con�rm the stability of the conditional kurtosis at high sampling
frequencies.
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6.5 hour trading equity markets. The top panel pertains to 22-day historical volatility �lters,
Panel B covers the 26-day �lter and the third panel pertains to 30-day �lters. These three
cases of nL correspond roughly to the range of lags often encountered in practice. We examine
�lters which yield the same asymptotic CF

(m);t for intra-day sample frequencies such as m = 2,
24, 13, 288, 78, 1440 and 390. These sampling frequencies correspond respectively to half-daily
sampling, hourly FX, half-hourly equity, �ve-minute FX, �ve-minute equity and �nally, one-
minute FX and equity markets. We report the number of lags nLm

�1=2 for nL = 22, 26 and 30
days and all values of m and translate these lags in number of days of FX and equity market
high frequency observations. We note from Table I that for a 22-day �lter we need 374 lags of
�ve-minute observations in FX markets and 195 lags in equity markets to maintain the same
asymptotic MSE. This amounts to 1.3 days FX data and 2.5 days stock data. When four daily
observations are added, i.e. nL equals 26, the trade-o� gets obviously worse, with respectively
442 (FX) and 230 (equity) 5-minute lags (or 1.5 and 2.9 days, respectively). Adding four more
daily returns yields lags equal to 510 and 265, i.e. roughly 2 days of �ve-minute FX data or
3.5 days of equity returns sampled at the same high intra-day frequency. Sampling at the less
realistic one-minute level gets the lag length data for FX under one day for all values of nL
but fails to reach below one day of equity markets (the shortest historical volatility �lter nL =
22 yields 1.1 days of one-minute data).

The remaining two panels in Table I cover two monthly benchmark frequency cases. These
are the 60-month and 12-month �lters, again two cases commonly found in the literature. From
Panel D we note that a 60-month �lter and a 282-lag �lter of daily returns are asymptotically
equivalent, i.e. it takes 13 months of daily data to attain the same e�ciency as a �lter with
60 monthly observations. Half-daily sampling yields a four month gain, namely 398 lags or 9
months of data are necessary to maintain the same e�ciency. Taking hourly data reduces this
further to slightly less than a quarter of observations (i.e. 2.6 months). The �nal panel shows
a similar trade-o�. The commonly used annual lag length of monthly returns is equivalent to
about the same quarter length of daily data. This is in fact an interesting comparison. For
instance, Campbell et al. (2000) use the annual �lter with monthly data to extract volatility
and decompose it into a market, industry- and �rm-speci�c component and also use a quarterly
block sampling scheme to compare the three volatility components with GNP growth rates.
The results in Panel E of Table I show that these two schemes are roughly asymptotically
equivalent (at the monthly and hence also quarterly frequency).

The arguments presented so far can be reversed as well. In Table II we report asymptotically
equivalent historical window one-day and one-month lengths for spot volatility �lters. The
entries to Table II report numerical calculations based on equation (1.4) using nL =

p
m as

the number of daily or monthly observations in a one-sided historical volatility �lter which
is asymptotically equivalent to a one-day or one-month �lter with sampling frequency 1=m.
The top panel covers the daily benchmark frequency whereas the second panel covers the
monthly benchmark frequency. From Table II we learn that an hourly FX �lter (i.e. m = 24)
is equivalent to a 5-day historical volatility �lter, while half-hourly equity market data �lter
with m = 13 is worth one day less. The more interesting case of a �ve minute FX market �lter
(i.e. m = 288) is asymptotically equivalent to a 17-day historical volatility �lter. The equity
market �lter with the same frequency, is as e�cient as a 9-day �lter. We know from the �gures
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reported in Table I that we only gain the e�ciency of the usual historical volatility once we
sample at one minute intervals. Indeed, as the results in Table II indicate a one minute FX
�lter with m = 1440 is as e�cient as a 38-day historical volatility estimate and a one-minute
stock market �lter is equal to a 20-day one.

The lower panel of Table II deals with one month worth of data and reports comparable
monthly frequency historical �lters. For example, the �rst entry in the lower panel shows that
a 22-day historical volatility �lter is equivalent to a 5-month �lter. One month of hourly FX
data corresponds to a �lter of monthly data almost two years long. The most extreme case
reported is that of �ve-minute FX data when sampled for an entire month correspond to an
80-month historical volatility �lter.

Obviously, at this point we do not know whether the theoretical asymptotic trade-o�s
described in Tables I and II are a good approximation of what we encounter in practice, hence
the need to conduct a thorough Monte Carlo investigation to which we return in Section 3.
Before turning our attention to simulations it is worth noting that the arguments presented
in this section easily extend to weighting schemes other than the 
at scheme discussed so far.
For instance, Theorem 6 of Foster and Nelson covers the so called dominating 
at weights,
which have the same sliding span of data as the 
at scheme but where the actual weights are
reshaped (see formula (17) in Foster and Nelson). The resulting CD

(m);t, where D stands for the
dominating 
at scheme, is again a function of �(m);t; �(m);t and �(m);t: Hence, under the same
regularity conditions we can compare dominating 
at weighting schemes for di�erent m on
the basis of nL and and nR: The optimal exponentially declining weighting scheme considered
in Theorem 5 of Foster and Nelson is slightly more complicated as it involves, at least in
principle in�nite weighting schemes. It is noted though that in practice such weights need to
be truncated (otherwise they would also violate Assumption D of Foster and Nelson). Our
analysis would also apply to truncated optimal exponentially declining weights.

2 Continuous record asymptotic analysis of integrated

volatilities

The analysis of Foster and Nelson applies not only to SV di�usions but also to a variety of other
processes, including the integrated volatility processes over some horizon H: For instance, Tay-
lor (1986), Hsieh (1991) and Schwert (1989) estimate conditional volatility as the distributed
lag of the absolute value squared) residuals from an autoregressive model for returns.6 Hence,
one examines

Pt
t�H jrtj (ignoring the conditional mean correction) as a measure of integrated

volatility, which sometimes also called the cumulative absolute returns. Andersen and Boller-
slev (1998) considered

R t
t�H �2�d� , i.e. an integral of instantaneous volatilities which we will call

QH
t since it relates to the quadratic variation of a process. They suggest the use of 5-minute

squared returns FX data to approximate the integral. French, Schwert and Stambaugh (1987),
Schwert (1989, 1990a) used a similar measure involving the (monthly) sum of squared daily

6Absolute returns are taken instead of squared returns since it is argued that in the presence of deviations
from normality absolute values could be more robust than squared values for conditional variance estimation
(see e.g. Davidian and Caroll (1987)). This will be discussed later in greater detail.
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returns augmented by cross-products to account for correlation. We will �rst focus on the
case of QH

t ; and subsequently broaden our analysis to alternative measures like the cumulative
absolute returns.

The analysis in this section considers QH
t ; or related processes, as a continuous time process

in t for �xed H which is sampled discretely at high frequencies. Hence, instead of block-
sampling the quadratic variation once a day, as in Andersen and Bollerslev (1998), we construct
rolling samples, say every 5 minutes, of integrated volatilities and rely on the Foster and Nelson
results to establish optimal estimators for integrated volatilities. The daily (block sampling)
scheme is a particular case of the generic context considered in this section. The advantage of
the approach taken here is that the optimal weight design for integrated volatility estimators
can be directly obtained with appropriate modi�cations from Foster and Nelson's analysis. In
a �rst subsection we discuss the extension of the Foster and Nelson analysis to the quadratic
variation process. Then, in a second subsection we discuss the link between rolling sample
estimators for conditional spot volatility and its quadratic variation. In a �nal third subsection
we cover the cumulative absolute return estimator.

2.1 Asymptotic distribution of Quadratic Variation Filters

We consider the integrated volatility process:

QH
t =

Z t

t�H
�2�d� (2.1)

which relates to the quadratic variation of a process. The latter is a semi-martingale (see for
instance Shiryaev (1999, p. 303-304) for details) whenever the original returns process is a
semi-martingale, an assumption made by Foster and Nelson. The process has its own natural
(continuous time) �ltration fFQ

t g: One can also consider the approach of Barndor�-Nielsen
and Shephard (1999) who introduce a class of non-Gaussian Ornstein-Uhlenbeck processes for
which one can easily characterize analytically the quadratic variation.

Throughout this section we will assume that the benchmark frequency is daily data. We
will be interested in discretizations QH

(m1;m2);t
where the double index refers to the fact that we

sample m1 times a day integrated volatilities using sums of squared returns sampled m2 times
a day. We will at �rst look at the QH

(m;m);t discretization and then examine the Andersen and

Bollerslev scheme QH
(1;m);t: The former has a Doob-Meyer decomposition (see again Shiryaev

(1999) for details):

QH
(m;m);t = �

Q
(m);tm

�1 +M
Q
(m);t �M

Q
(m);t�1=m � �

Q
(m);tm

�1 +�(m)M
Q
(m);t

where the process QH
(m;m);t is adapted to the �ltration fFQ

(m);tg which contains the �ltration of
discretely sampled spot volatilities. Extending the Foster and Nelson analysis to integrated
volatilities suggests the following generic data-driven estimators:

Q̂H
(m1;m2);t

=
X
i

w(m1);i

X
j

r2(m2);(t�i=m1)�j=m2
�X

i

w(m1);iIV
H
(m2);t�i=m1

(2.2)
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where w(m1);i is a weighting scheme involving discrete (rolling) sampling at frequency 1=m1; of
integrated volatilities IV H

(m2);t
de�ned as:

IV H
(m2);t

�
Hm2X
j=0

r2(m2);t�j

which are based on sampling squared returns at a frequency 1=m2. It is important to note
that the class of estimators de�ned in (2.2) is very large and contains many new estimators
which were not considered in the literature. Moreover, the direct link with the design of spot
volatility estimators makes their structure very transparent and attractive. Our main focus
will start again with equal weighting schemes applied to a �nite data window. Analogous
to the analysis in the previous section, we have for 
at weights the scheme characterized as
w(m1);i = m�1=2(nL + nR)

�1If��[�nLm�1=2
1 ; nRm

�1=2
1 ]g: An extension of Theorem 2 in Foster

and Nelson yields that m1=4(Q̂H
(m;m);t � QH

t ) ! N(0; CQ
(m);t) as m ! 1 where the continuous

record asymptotic variance for a 
at weighting scheme equals:

C
QF
(m);t �

�
Q
(m);t

nR + nL
+

r
�
Q
(m);t�

Q
(m);t �

Q
(m);t

nR � nL

nR + nL
+ �Q

(m);t

n3R + n3L
3(nR + nL)2

(2.3)

and the superscript QF refers to the equal weighted 
at weighting scheme (applicable to the
quadratic variation). The formal proof of the result in (2.3) is omitted as it is a straightfor-
ward extension of Theorem 2 in Foster and Nelson applied to the quadratic variations. The
asymptotic variance of the normalized extraction error m1=4(Q̂H

(m;m);t � QH
t ) has again three

components, which have the same interpretation as those in the previous section, though ap-
plied to the quadratic variation. For instance, the process �Q

(m);t represents the \variance of the

quadratic variation", whereas �Q(m);t represents the conditional second moment of the quadratic
variation, which is implicitly related to the conditional fourth moment of the process. We have
the same e�ects of the window parameters on the asymptotic e�ciency as in the rolling sample
estimation of conditional variances.

We noted in Section 1 that the regularity condition allowing us to treat higher moments as
being roughly constant is not innocuous. We noted that for FX market volatility we have some
evidence regarding the behavior of, say the conditional kurtosis, as one changes the sampling
frequency. Most of these results apply to spot as well as integrated volatility. Therefore, we
should be equally at ease (or not at ease) with the maintained regularity condition to compare
integrated volatility estimators across di�erent sampling frequencies.

2.2 The Relationship between Rolling Quadratic Variation and Spot

Volatility Filters

Andersen and Bollerslev (1998) propose an estimator for integrated volatility which is based
on a very di�erent argument, namely an estimator of QH

t using the following approximation of
the quadratic variation by a �nite sum:

plim
m�!1

0
@Z t

t�H
�2�d� �

X
j=1;:::;m

r2(m);t�j=m

1
A = 0
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which suggests (using our notation) the following estimator for the m sampling frequency
estimated IV:

QH
(1;m);t � IV H

(m);t =
HmX
j=0

r2(m);t�j

In this subsection we would like to compare the QH
(1;m);t estimator with Q

H
(m;m);t proposed in the

previous section. We are particularly interested in estimators which involve equal weighting
schemes, i.e. QH

(m;m);t involving weights w(m);j = 1=nL; which we will call for convenience

historical integrated volatility denoted HIV H
(m);t, namely:

HIV H
(m);t =

1

nL

nL�1X
j=0

IV H
(m);t�j=m:

There are two immediate relationships that can be established between HIV -type estimators
and estimators previously used in the literature. First, it is straightforward to note that
the case when nL equals one corresponds to the IV estimator. More interestingly, we can also
express the HIV estimator as an IV -type estimator replacing r2(m);t�j by ~�2(m);t�j ; i.e. replacing
squared returns by estimated instantaneous volatilities:

HIV H
(m);t �

HmX
j=1

~�2(m);t�j

where ~�2(m);t�j =
Pls

l=1 ~w(m);lr
2
(m);t�j�l: In general it is not straightforward to �nd a direct rela-

tionship between the weights ~w(m);j involved in the estimation of the intra-daily spot volatility
components of the daily integrated volatility and the weights of the HIV estimator, namely
w(m1);i in (2.2). It also follows that the weights for the spot volatility estimators are not
particularly optimal weights. Nevertheless, one expects that the historical integrated volatil-
ity estimator will be more e�cient since one replaces a noisy r2(m);t�j by (albeit sub-optimal)

~�2(m);t�j: The analysis in Andersen and Bollerslev (1998) indeed suggests that replacing r2(m);t

by volatility estimates yields a more e�cient scheme.
There is one particular case where the relation between the historical integrated volatility

weights and the spot volatility weights is rather straightforward. This is the case when nL
equals m, i.e. one takes a day's length of integrated volatilities. In this particular case the
weighting scheme for the ~�2(m);t�j is also an equal weighting scheme of length m: Hence, one
takes a daily sum of spot volatility estimates each involving equal weights covering one day
of data points.7 This particular case is worth pursuing further since it allows us to say more
about the comparison of the estimator IV H

(m);t of Andersen and Bollerslev and our historical
integrated volatility estimator. In some sense, one can view the former as being a one-sided
�lter with one lag, i.e. nLm

�1=2 = 1; whereas the HIV H
(m);t has nLm

�1=2 = m lags. Using
(2.3) one can calculate the relative e�ciency as the ratio of the asymptotic mean squared
error of the HIV estimator relative to that of the IV estimator. This ratio of MSEs is:

7Note that the HIV estimator involves two days worth of data because the last component ~�2(m);t�m involves
an entire extra day of data. This will be taken into account when we compare simulated data-driven �lters.
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[3�Qm3�3
p
�Q�Q�Qm7=2+�Qm4]=[3�Q�3

p
�Q�Q�Qm3=2+�Qm3]: Unfortunately, we cannot

make any e�ciency comparisons unless we specify �Q, �Q and �Q: This precludes us from
calculating generic e�ciency gains similar to the asymptotic equivalence results reported in
Tables I and II.

It should also be noted that the discussion of optimal weights for extracting integrated
volatility is easier to address when QH

t is viewed as a continuous time process since it leads us
to the results of Foster and Nelson regarding optimal window and weighting schemes. Before
we discuss these extensions let us note that it would not be easy to proceed from QH

(m;m);t =PHm
j=1 ~�

2
(m);t�j and formulate optimal weighting schemes for ~�2(m);t�j for all j = 1; : : : ; Hm:

Indeed, it would be di�cult to handle the intra-daily cross-correlation between spot volatilities.
Approaching the design of optimal �lter weights directly via (2.2) is relatively straightforward
as it applies directly to the mean squared error of the quadratic variation instead of the mean
squared error of the individual spot volatilities. Hence, we can apply Theorem 6 of Foster
and Nelson which covers dominating 
at weights (as noted before, using the design of formula
(17) from Foster and Nelson). The resulting C

QD
(m);t obviously depends again on �

Q
(m);t; �

Q
(m);t

and �Q
(m);t: Last, but certainly not least, we can consider the optimal exponentially declining

weighting scheme considered in Theorem 5 of Foster and Nelson.

2.3 Cumulative Absolute Returns

To conclude this section we should note that we can also investigate other processes in contin-
uous time, such as:

CARH
t =

Z t

t�H
jr� jd� (2.4)

which is the cumulative absolute return (CAR) process and relates to estimators of conditional
volatility used by Taylor (1986), Hsieh (1991) and Schwert (1989). In order to avoid repetition
we will only brie
y mention that the analysis of the previous two subsections can be modi�ed
to handle CAR processes. Moreover, one can also derive by analogy the following estimator
for the m sampling frequency estimated CAR:

CARH
(m1;m2);t

=
X
i

w(m1);i

X
j

jr(m2);(t�i=m1)�j=m2
j �X

i

w(m1);iCAR
H
(m2);t�i=m1

(2.5)

where w(m1);i is again a weighting scheme involving discrete (rolling) sampling at frequency
1=m1; of Cumulative Absolute Returns CAR

H
(m2);t

de�ned as:

CARH
(m2);t

=
Hm2X
j=0

jr(m2);t�jj

which are based on sampling at frequency 1=m2. Similar to Q
H
(m;m);t we are particularly inter-

ested in CARH
(m;m);t involving weights w(m);j = 1=nL; which we will call historical cumulative
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absolute return denoted HCARH
(m);t, namely:

HCARH
(m;m);t � HCARH

(m);t =
1

nL

nL�1X
j=0

CARH
(m);t�j=m:

As noted before, there is interest for this type of estimators when the process features condi-
tional heavy tail behavior. In light of these arguments, and the arguments of Bai et al. (1999)
noted earlier, we will also study these �lters in the context of the Monte Carlo simulations
and the empirical analysis. The novelty of the estimators in (2.5) is that we use sliding spans
of cumulative absolute returns over �ne sampling intervals, similar to the historical integrated
volatility estimators. The �lters of Taylor (1986), Hsieh (1991) and Schwert (1989) can again
be viewed as special cases, similar to IV being a special case of HIV -type �lters.

3 Monte Carlo Design

The objective of the Monte Carlo study is twofold. First we want to examine whether the
predictions of the continuous record asymptotic theory describe adequately the sampling be-
havior of �lters when applied to actual data. Therefore, we aim for a design tailored to (1)
applications routinely found, and (2) predictions derived from continuous record asymptotics.
The second scope of the Monte Carlo study is to examine the optimal �lter design of integrated
volatility estimators. We organize the section in subsections. The �rst subsection describes the
processes we simulate. The second subsection covers issues pertaining to the implementation
of the design. A third subsection introduces the various �lters which will be considered. A
fourth subsection presents the sample sizes and diagnostics.

3.1 Simulated Models

The models used for the simulation study are representative of the FX and equity �nancial
markets, popular candidates of which are taken to be returns on DM/US$, YN/US$ exchange
rates and S&P 500 stock index. We consider the following continuous time stochastic volatility
model which is based on the results of Drost and Nijman (1993) and Drost and Werker (1996):

dlnYt = �tdWpt

d�2t = �(! � �t)dt+ (2��)1=2dW�t:
(3.1)

The so-called GARCH di�usion yields exact GARCH(1,1) discretizations which are represented
by the following equations:

lnYt � lnYt�1=m = r(m);t = �(m)z(m);t

�2(m);t = �(m) + �(m)r
2
(m);t�1=m + �(m)�

2
(m);t�1=m

(3.2)

where z(m);t is NIID(0; 1) and r(m);t is the returns process sampled at frequency 1=m. The dif-
fusion parameters of (3.1) and the GARCH process parameters of (3.2)are related via formulas
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appearing in Drost and Werker (1996, Corollary 3.2). Likewise, Drost and Nijman (1993) de-
rive the mappings between GARCH parameters corresponding to processes with r(m);t sampled
with di�erent values of m. This allows us to estimate a GARCH process using, say daily data
with m = 1, and computing the GARCH parameters �(m), �(m), �(m); for any other frequency
m as well as the di�usion parameters �, ! and �:

For the two FX series we take the results of Andersen and Bollerslev (1998), mainly for
comparison purposes. The DM/US$ parameter estimates are � = 0:035, ! = 0:636 and
� = 0:296 and the YN/US$ parameters are � = 0:054, ! = 0:476 and � = 0:480: Based on
these the implied GARCH(1,1) parameters �(m), �(m) and �(m) are computed for alternative
intra-day frequencies. For instance, in the FX markets the daily, 30-minute, 5-minute and
1-minute frequencies are based on m = 1; 48; 288 and 1440, respectively. These high intra-day
sampling frequencies are intended to mimic the continuous record asymptotic analysis and to
gauge its accuracy given certain frequencies encountered in practice. The computations of the
GARCH parameters for alternative m are reported in Table III and were obtained using the
software available from Drost and Nijman (1993).8

Following the same paradigm we consider an analogous example for the equity market with
only a 6.5 hours of trading as opposed to the 24 hour trading in FX markets. We, therefore,
estimate a GARCH(1,1) model for daily S&P 500 returns and using the above disaggregation
results we consider the equivalent intra-day frequencies for m = 1; 13; 78 and 390: The results
in the top panel of Table III refer to the daily frequency Normal-GARCH(1,1) estimated
parameters for the S&P 500 and the disaggregated models are also reported in the panels that
follow. Note that the following sample sizes are considered: 02/04/86-29/08/97 (T = 2884)
and the post stock market crash sample 04/01/88-29/08/97 (T = 2443).

In the light of the most widely early as well as recent empirical applications of data-
driven volatility �lters (outlined in the Introduction), we carry this analysis to the monthly
frequency. We now aggregate the daily GARCH parameters for the monthly frequency using
the approximation of 22 trading days per month (see for instance, French et al., 1987 and
Schwert, 1989) to obtain the monthly GARCH parameters in the last panel of Table III.

3.2 Asymptotics and Reality

Certain adjustments are required in order to translate some of the continuous record asymptotic
results into a meaningful simulation design. There are two issues we need to highlight.

First, it should be noted that when Foster and Nelson discuss spot volatility, they consider
a measure of volatility normalized by the sampling interval, i.e. a measure of volatility per unit
of time. We need to incorporate this in our simulation design in order to make for instance
comparisons across sampling frequencies. We have tailored our discussion around a benchmark,
or reference, frequency, i.e. m = 1; which refers to the daily and monthly frequencies. We
will use the reference frequency as a benchmark to measure volatility. This implies that if

8Note that the daily frequency GARCH parameters, obtained from Andersen and Bollerslev (1998, Table 1,
p.889), refer to the QMLE estimates under the assumption of conditional Normality for the daily FX returns
from 01/10/87-30/09/92. The estimated daily GARCH(1,1) parameters for the extended sample until 30/11/96
(in the empirical section), does not produce signi�cantly di�erent estimation results.
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we sample at, say 5-minute intervals and the benchmark frequency is daily we will actually
rescale the 5-minute volatility estimates by the sampling frequency m so that they have a
daily volatility interpretation. Schwert (1990b) is a practical example of a comparison of daily
volatility computed from rescaled intra-daily returns (see Schwert (1990b, Figure D)). The
rescaling will make some of the spot volatility estimators introduced in the next subsection
look like integrated volatilities. Despite the rescaling we will still call them spot volatility
estimators, as they are at the intersection between the classes of spot and integrated volatility
estimators.

Second, the distinction between block and rolling sampling schemes may get blurred once we
vary the sampling frequency. The continuous record asymptotic analysis involves ever shrinking
sampling intervals. In practice, we deal with a discrete grid of points. Recall that for 
at
weights involving nLm

�1=2 lags and nRm
�1=2 leads the weighting scheme can be characterized

as w(m);t = m�1=2(nL + nR)
�1If��[�nLm�1=2; nRm

�1=2]g: Take for instance the case of a daily
benchmark sampling frequency. In practice, a �lter with m = 1 and nL = 26 appears like a 26-
day rolling sample estimator. However, when we shrink m such that nLm

�1=2 is below one, i.e.
the lag length is shorter than a day, then the �lter starts to look like a block-sampling scheme
since we measure spot volatility at the end of the day with only intra-day non-overlapping
blocks of data. This will make the Monte Carlo simulations deviate somewhat from the ideal
setup of the theoretical analysis. From the results in Foster and Nelson we know that block-
sampling schemes tend to be less e�cient, so we would expect that the calculations in Tables I
and II will be less favorable for the block-sample intra-daily �lters in our simulation experiment.

3.3 Data-Driven Volatility Filters

We de�ne both spot and integrated volatility estimators. We begin by the former which are
most widely used in practice and are covered in a �rst subsection, whereas integrated volatility
estimators appear in a second subsection.9

3.3.1 Spot Volatility Filters

In light of the asymptotic properties of various types of data-driven spot volatility measures
discussed in Section 1.1 we will consider the following selection of �lters, starting with the
daily benchmark frequency:

(1) Exponentially Weighted Moving Average Volatility �̂RMt which is de�ned following the
industry standard introduced by J.P. Morgan (see Riskmetrics Manual, 1995) as:

�̂RMt = ��̂RMt�1 + (1� �) r2(1);t t = 1; :::; ndays: (3.3)

where � = 0:94 for daily data, r(1);t is the daily return and ndays is the number of trading days.
Henceforth we will denote for convenience this �lter by RM:

9The main simulation analysis does not assume conditional mean e�ects for the return process. Hence, we
do not allow for them in the data-driven volatility de�nitions. Nevertheless, the study addresses the MA e�ects
in intra-daily returns for the simulated �lters.
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(2) One-day Spot Volatility �̂SV 1t as the intra-daily (rescaled) mean of the log of squared
returns r(m);t for di�erent values of m, to produce the end-day spot volatility measure:

�̂SV 1t =
mX
j=1

r2(m);t+1�j=m t = 1; :::; ndays: (3.4)

where for the 5-minute sampling frequency the lag length take values, m = 288 for �nancial
markets open 24 hours per day (e.g. FX markets) and m = 78 for a stock market open 6.5
hours per day. The �lter will be denoted SV 1 although, as discussed in Section 3.2, this �lter
is rescaled to yield daily volatility estimates and therefore resembles an integrated volatility
measure.

(3) k-day Spot Volatility, �̂SV kt ; is a one-sided moving k-day average of �̂SV 1t : The purpose
of selecting k is to make e�ciency comparisons with the daily return �lters. In our analysis we
will set k = 2 and 3 days. Here we will for convenience refer to SV k; where k takes the values
2 or 3:

(4) One-sided Rolling daily window Volatility, �̂RVt , de�ned as:

�̂RVt =
nLX
j=1

wj

�
r(1);t+1�j

�2
t = 1; :::; ndays: (3.5)

where nL is the lag length of the rolling window in days. When the weights wj are equal to
n�1L then one considers 
at weights. Geometrically declining weights are wj = exp(��j) with
� = 0:0665. In our simulations we will consider nL equal to 26 and 52 days to conform with
the optimality in Foster and Nelson and the common practice of taking (roughly) one month
worth of data (see e.g. Schwert (1989) among others). We also consider the 52-day window to
make an indirect comparison with the 26-day two-sided �lter discussed in Foster and Nelson.
Note that we mainly consider one-sided windows since we also wish to examine their long-
run forecasting performance. This �lter will be denoted RV followed by the number of lags
involved in the �lter. We will consider 
at weights in the simulation and empirical design.

The above �lters are also de�ned for the monthly benchmark frequency: In the one-month
spot volatility, we have 22 trading days, which we extend to 2 and 3 months (or approximately
44 and 66 days). In the rolling monthly volatilities we de�ne windows, nL, of 12, 24 and 60
months (e.g. O�cer (1973), Merton (1980), Campbell et al. (2000), Chan et al. (1999)). In
addition we also consider in the daily case a two-sided �lter, namely:

(5) Two-sided rolling window, �̂RV�2t , de�ned by:

�̂RV�2t =
nLX
j=1

wj

�
r(1);t�j

�2
+

nRX
j=1

wj

�
r(1);t+j

�2
; t = 1; :::; ndays (3.6)

where nL lags and nR leads are involved and alternative weighting schemes can be considered
again. In accordance with the one-sided �lters we take nL = nR = 26: This �lter will be
denoted RV 26� 2:
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3.3.2 Integrated Volatility Estimators

Following the analysis of various types of data-driven integrated volatility measures discussed
in Section 2 we will consider the following selection of �lters:

(1) One-day Integrated Volatility �̂IV 1t (de�ned by Andersen et al., 1999) as the sum of the
log of squared returns r(m);t for di�erent values of m, to produce the daily volatility measure:

Q1
(1;m);t =

mX
j=1

r2(m);t+1�j=m t = 1; :::; ndays: (3.7)

where for the 5-minute sampling frequency the lag length take values, m = 288, for �nancial
markets open 24 hours per day (e.g. FX markets) and m = 78 for a stock market open 6.5
hours per day. We will refer to this �lter as IV k with k equal to one.10 The IV 2 and IV 3
�lters will also be considered and are de�ned analogous to SV k:

(2) One-day Historical Integrated Volatility, which was discussed at length in Section 2,
namely (for H = 1 and nL = m):

HIV 1
(m);t =

1

m

mX
j=1

IV 1(m);t+1�j=m: t = 1; :::; ndays: (3.8)

In the remainder of the paper we will refer to this �lter as HIV k with k equal to one. The
HIV 2 and HIV 3 �lters will also be considered.

(3) Exponentially weighted Historical Integrated Volatility, in order to appraise the e�ciency
gains of using optimal weighting schemes to extract Q1

t we consider exponential declining
weights, namely:

EHIV 1
(m);t = A�1

kmX
j=1

a�jIV 1
(m);t�1�j=m: t = 1; :::; ndays: (3.9)

where we select the decay rate a; equal to a range of values (:94; :96; :99) for daily �lters.
Finally, A is a scaling constant to guarantee that the �lter weights sum to one. These �lters
will be denoted EHIV k with k equal to 1; 2 and 3 days.

By analogy the monthly integrated volatilities and historically integrated �lters of k = 1; 2
and 3 months are based on an approximation of 22; 44 and 66 trading days, respectively.

3.3.3 Cumulative Absolute Return Estimators

Following the analysis of various types of data-driven spot and integrated volatility measures
we will also consider the following selection of CAR �lters:

10Andersen et al. (1999) present an additional transformation to this by looking at the logarithm of the
standard deviation of the integrated volatility. Similarly, French et al. (1987) show that the logarithm of
monthly IV estimates the skewness e�ects. We do not consider this transformation as we are primarily concerned
with the MSE of extraction �lters and not the distribution of normalized returns.
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(1) One-day Cumulative Absolute Return used by Taylor (1986), Hsieh (1991) and Schwert
(1989) as the sum of absolute returns jr(m);tj for di�erent values of m, to produce the daily
volatility measure:

CAR1
(m);t =

mX
j=1

jr(m);t+1�j=mj t = 1; :::; ndays: (3.10)

This �lter will be called CAR1: The CAR2 and CAR3 �lters will also be considered and are
de�ned analogous to SV k and IV k:

(2) One-day Historical Cumulative Absolute Return, discussed in Section 2, namely (for H
= 1 and nL = m):

HCAR(m);t =
1

m

mX
j=1

CAR1
(m);t+1�j=m: t = 1; :::; ndays: (3.11)

and also extended to 2 and 3 trading days, similar to HIV k: By analogy the monthly CAR and
historically CAR �lters of k = 1; 2 and 3 months are based on 22; 44 and 66 days, respectively.

3.4 Sample Sizes and Diagnostics

In the Monte Carlo design we consider the following sample sizes, n:

24hrs FX Market 6.5hrs Equity Market

nyears nmonths ndays n30min : n5min : n1min : n30min : n5min : n1min :

5 60 1,250 60,000 360,000 1,800,000 16,250 97,000 487,500

10 120 2,500 120,000 720,000 3,600,000 32,500 195,000 975,000

We assume that 1 year has 250 trading days. The monthly simulation analysis is based on a
sample size of 30 years, often encountered in practice.11 Each experiment is performed with
1000 replications. Note that for the one-sided rolling estimates we create su�cient data before
the e�ective sample (equivalent to one year).

3.4.1 Daily and monthly benchmark frequency simulations

We begin with the daily benchmark frequency case. First we simulate r(m);t for the 1-minute
frequency, m = 1440 and m = 390, based on the FX and equity GARCH(1,1) models in Table
III, respectively. Hence, we obtain the highest intra-day sampling frequency which we consider
to be the true generating process. Next, we apply the GARCH dynamics to obtain the spot
volatility, �(m);t, which for m = 1 refers to the daily spot volatility. The extraction error
is the di�erence between the simulated volatility, which is model-based, and the model-free
data-driven spot volatility �lters:

"it = �(m);t � �̂it (3.12)

11With nyears = 30; we have nmonths = 360 and ndays = 4; 320:
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for i = RM;SV 1; SV 2; SV 3; RV 26 and RV 52. Obviously, for the rolling window schemes we
have di�erent lag lengths. Moreover, for the SV schemes we will consider the 24-hour market
cases as well as the shorter equity trading opening hours. In each case we consider �ve and
thirty minute intra-day sampling schemes with the samples given above. A similar analysis
applies to the integrated volatility �lters. Since we take H = 1 we will denote the quadratic
variation by Q1

t : Then we can write the extraction error as:

"it = Q1
t �Qi

(m;m);t (3.13)

for i = IV k;HIV k and EHIV k, CARk, HCARk k = 1; 2; 3:12 For the true daily inte-
grated volatility to approximate the integral Q1

t we take the sum of one-minute instantaneous
GARCH(1,1) estimates over a day. Hence, we take advantage of the exact weak GARCH ag-
gregation properties of the data generating process to compute the true quadratic variation.
We will consider the di�erent cases arising from the 24-hour FX market and the shorter-trading
equity market, as well as the 5-minute and 30-minute sampling frequencies.

The same analysis is followed in the monthly Monte Carlo design where we simulate the
daily GARCH models for the FX and equity markets and apply the GARCH dynamics to
obtain the monthly spot volatility whereas we aggregate the daily GARCH variance to obtain
the true monthly integrated volatility. To avoid further complicating the notation we will
denote the monthly spot volatility �lters by SV 1; SV 2; SV 3; RM; RV 12; RV 24; and RV 60:
It will always be clear from the context that we refer to the monthly �lters when SV k and RM
will be discussed. The monthly integrated volatility �lters will be denoted by IV 22; IV 44;
IV 66; HIV 22; HIV 44; and HIV 66: The simulated sample is 30 years.

3.4.2 Measures of appraisal

The behavior of the extraction error, "it; is examined according to the following four dimensions:
(a) We examine the e�ciency of �lters using the Mean Square Error (MSE) which we

compare across di�erent �lters and sample sizes. Note that we also obtain the Mean Absolute
Error (MAE) since Andersen, Bollerslev and Lange (1999) argue that the this criterion is more
robust than the RMSE which is susceptible to outliers.13 The relative e�ciency of one �lter
vis-�a-vis another is studied by computing ratios of MSE's. To facilitate comparison, the MSE
of all spot volatility �lters will be benchmarked against the MSE of the one-day spot �lter.
Likewise, the MSE ratios for the family of integrated volatility �lters will be computed relative
to the MSE of the one-day integrated volatility. We therefore obtain the following ratios:

MSEi=MSESV 1 or MAEi=MAESV 1 (3.14)

MSEi=MSEIV 1 or MAEi=MAEIV 1 (3.15)

where i refers to the MSE's obtained from �̂it for di�erent windows and weights, i.e. for the
daily case i = RM;SV k;RV 26 and RV 52 for spot volatility and the MSE's obtained from

12We take some liberty in (3.13) with regard to notation by using Qi
(m;m);t to facilitate the de�nition of

extraction process.
13Andersen, Bollerslev and Lange also consider analogous statistics which are adjusted for heteroskedasticity

and which are found to have signi�cant improvements in the volatility forecasting analysis.
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Qi
(m1;m2);t

for i = IV k, HIV k and EHIV k with integrated volatility (where k = 1; 2; 3). This
analysis extends to the monthly frequency where the benchmarks are the 12-month rolling
volatility and the one-month integrated volatility.

(b) We study the out-of-sample forecast performance analogous to Andersen, Bollerslev
and Lange (1998). Following Baillie and Bollerslev (1992) the h-period linear projection from
the weak GARCH(1,1) model with returns that span 1=m day(s) is expressed as:

P(m);t(r
2
(1=h);t+h) = m � h � �2(m) + (�(m) + �(m)) � (3.16)

[1� (�(m) + �(m))
m�h] � [1� �(m) � �(m)]

�1 � (�2(m);t � �2(m))

where �2(m) � �(m) � (1��(m)��(m))
�1 and �2(m);t would be the alternative spot and integrated

volatility �lters analyzed above. We shall consider h = 20 days as in Andersen, Bollerslev
and Lange (1998) and obtain the MSE and MAE for each 20 day (or long-run) out-of-sample
volatility �lter forecast. For the monthly experiment we consider h = 12 months. It is in-
teresting to note that if we ignore parameter uncertainty, which is the case for our Monte
Carlo simulations, we can view (3.16) as a functional transformation of �2(m);t; and therefore
the asymptotic distribution of the forecast MSE is easily obtained from the asymptotic distri-
bution of the volatility estimator using the usual delta method. This is quite useful as we can
easily compare MSE's of forecasts in empirical applications, whereas MSE's of �lters can only
be computed in a simulation context where the true data generating process is observed. We
therefore consider the forecast MSEs as a bridge between the simulation-based results and the
empirical results.

(c) The coe�cient of multiple determination is obtained from the regression equation of each
daily data-driven volatility against the daily GARCH(1,1) volatility as suggested by Andersen
and Bollerslev (1998) in the spirit of the Mincer and Zarnowitz (1969) regression:

�̂i(m);t = a+ b:�(m);t + ut; (3.17)

where i = RM;SV 1; SV k; RV 26 and RV 52: A similar regression for integrated volatilities is
considered involving Qi

(m1;m2);t
for i = IV k, HIV k and EHIV k on the left hand side and Q1

t

as regressor.
(d) We study the ine�ciency of �lters by examining the cross-covariances between extrac-

tion errors and �ltered volatilities. Non-zero cross-covariance between the extraction error and
the corresponding �lter imply that the �lter does not fully exploit all the information in the
sample. We will consider cross-covariances up to 5 days, i.e. j = 1; :::; 5: Finally, we exam-
ine the MSE of the autocorrelation functions between the theoretical GARCH(1,1) and the
autocorrelation coe�cients of the alternative data-driven volatilities.

4 Monte Carlo Results

The Monte Carlo simulation results are analyzed in view of the theoretical extentions in sec-
tions 1 and 2 for the two categories of data-driven volatilities, spot and integrated.14 We

14Some simulation results also refer to cumulative absolute returns which we compare to integrated volatilities.
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investigate whether the Monte Carlo design presents supportive evidence for the theoretical
predictions that relate to the following four broad results. We examine whether there is sim-
ulation support of the data window length and sampling frequency equivalence discussed in
Section 1.2 and particularly in Tables I and II. Moreover, we assess whether for a given fam-
ily of data-driven volatilities, there exists a relatively most e�cient data window length and
sampling frequency and compare block-sample and rolling-sample volatility �lters. Finally, we
evaluate the optimality of alternative weighting schemes for data-driven volatilities.

There are many results and to try to keep the discussion clear we will start with spot volatil-
ity estimators in a �rst subsection, a second one deals exclusively with integrated volatility, a
third presents some additional criteria of comparison and a �nal subsection covers the e�ects
of MA and excess kurtosis and presents results on cumulative absolute return �lters.

4.1 Spot Volatility Estimators

Table IV reports the Monte Carlo simulation results of the contemporaneous MSE (and MAE)
ratios de�ned in (3.14) for spot volatility. For the daily instantaneous volatility MSE (and
MAE) ratios, presented in the top panel, the benchmark is the 1-day Spot Volatility (SV 1),
whereas for the monthly spot volatilities, appearing in the lower panel, it is the 12-month
Rolling Volatility (RV 12 which is often used in practice). The daily spot volatilities are ob-
tained from inter-day and intra-day (5-minute and 30-minute) sampling frequencies. Similarly,
the monthly spot volatilities are de�ned in terms of monthly and daily frequencies. The theo-
retical results are based on MSE e�ciency and hence we focus our discussion on this criterion,
though it should be noted that the MAE results appear to be similar to the MSE �ndings.
Similarly, the two intraday sampling frequencies of 5- and 30-minutes also sketch the same
picture. Hence, in order to provide a concise discussion we focus on the 5-minute intraday
results.

4.1.1 Data window length

We focus �rst on the lag length selection for spot volatility estimators. This covers all estima-
tors except for the RiskMetrics �lter RM since it does not involve any lag length selection. The
contemporaneous MSE ratios for the daily spot volatilities (in Table IV) show that the MSE
e�ciency for the 2-day spot volatility SV 2 based on the 5-minute frequency relative to that of
SV 1 varies between 0:84 (for S&P 500) and 0:92 (for YN/US$). This means that adding one
extra day, i.e. SV 2 �ltering versus SV 1, may result in e�ciency gains of up to 25 % (in the
case of S&P 500). Adding a second day, i.e. comparing SV 1 with SV 3, we note that the ratios
range from 0:78 (for S&P 500) to 0:91 (for DM/US$). Hence adding two days can result in
even higher e�ciency gains, namely up to 28 %. We can also examine the ratio of SV 3=SV 2
and compute the e�ciency gains of adding a day to SV 2. In the case of equities measured
by the S&P 500 index this is 0:93; which implies that adding the third day yields only a 7
% e�ciency gain relative to the two-day spot volatility �lter. We can do the same excercise
with the rolling sample daily �lters, i.e. compare RV 26 and RV 52. Again for the S&P 500
index this yields an e�ciency gain of 85 %, i.e. doubling the length of the daily �lter from
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RV 26 to RV 52 has a more pervasive impact on e�ciency. Foster and Nelson argue that for
the S&P 500 index, a 26-day window is optimal.15 The daily spot volatility simulation results
in Table IV show that RV 26 is not optimal. The contemporaneous MSE (and MAE) of the
S&P 500 daily RV 52 is considerably more e�cient compared to the one- and two-sided 26-day
�lter, a relative e�ciency of 0:29 versus 0:80: Finally, the contemporaneous MSE ratios for
the daily spot volatilities (in Table IV) show that the 2- and 3-day spot volatilities (SV 2 and
SV 3) based on the 5-minute frequency are not as e�cient as the 26-day or the 52-day rolling
volatilities (RV 26 and RV 52), but only approximately so for RV 26� 2 in the S&P 500 case.
On the other hand, it is worth noting that the MAE supports the asymptotic equivalence of
e�ciency.

We now turn to the comparison of monthly spot volatility �lters. Unlike the contemporane-
ous MSE results in Table IV, it appears from the MAE ratios that all �lters are asymptotically
equivalent since their ratios are approximately equal to unity. This result suggests that for the
monthly spot volatilities we can not identify a signi�cantly optimal window length for rolling
volatilities, as opposed to the daily spot volatilities. The MSE results are a bit more heteroge-
neous though the variation of the ratios is considerably smaller compared to the daily �lters.
For equity markets, if we exclude SV 1 (and RM not discussed here), we note e�ciency gains or
losses of at most 15 %. Hence the Monte Carlo results suggest that the various �lters encoun-
tered in the empirical literature which employ both daily and monthly frequencies to obtain
data-driven monthly volatility estimates, (such as O�cer (1974), Merton (1980), French et al.

(1987), Schwert (1989, 1990a,b) and Chan et al. (1999)), are approximately equally e�cient.
The results so far are based on the contemporaneous MSE criterion and the h-horizon MSEs

may provide some additional useful insigths. Recall that if we ignore parameter uncertainty,
we can view (3.16) as a functional transformation of �2(m);t; and therefore the asymptotic
distribution of the forecast MSE is easily obtained from the asymptotic distribution of the
volatility estimator. We also noted that we can consider the forecast MSEs as a bridge between
the simulation-based results and the empirical results. We therefore examine whether high-
frequency intradaily returns improve long-run volatility forecasts. Table V reports the MSE
(and MAE) ratios for the h-day ahead forecast using (3.16) for spot volatilities. We also
examine whether daily data can improve the long-run forecasting performance of monthly spot
volatilities.

The optimality of RV 52 for the S&P 500 is also supported by the MSEs of the long-
run forecasts. In addition, Table V shows that the daily frequency is only marginally more
optimal than the monthly one for forecasting monthly spot volatilities. Furthermore the long-
run forecasts show that the two frequencies are asymptotically equivalent in terms of MSE
(and MAE) e�ciency given that all the ratios are approximately equal to one. Hence, in

15To be more precise, the window length is calculated from sqrt3�=� (see their Theorem 3). They �nd an
estimate for � equal to 2:72 and for � equal to 0:012, yielding nL equal to 26: Because the generated process
is GARCH, the optimal window (again according to Theorem 3) is a one-sided backward looking �lter, i.e.
RV 26: Note that the sample covered by Foster and Nelson is 01/1928 - 12/1990, the same as French et al.

(1987). We use a much smaller sample to �x the parameters 04/01/86 - 29/08/97 (T=2884 observations) and
the post-1987 crash period 04/01/88 - 29/08/97 (T=2443). In the empirical section we will use a large sample,
namely 03/01/1928 - 29/08/1997, and �nd that the parameter estimates don't change very much, indicating
that our simulation experiment is reasonable to compare with the Foster and Nelson setup.

23



the monthly spot volatilities all window lag-lengths perform equivalently and for long-run
forecasting the MSE and MAE criteria shows that both daily and monthly sampling frequencies
are asymptotically equivalent. This result is consolidated or veri�ed by both the h-period ahead
forecasts and contemporaneous MSEs.

4.1.2 Comparing sampling frequencies

In Section 1 we presented theoretical results pertaining to the MSE asymptotic equivalence of
the data window length for di�erent sample frequencies of spot volatility estimators. For daily
spot volatilities we found, from the summary results in Table I, that a 26-day window of daily
data is asymptotically equivalent to a 1.5-day and 3-day window of 5-minute data, for the FX
and equity markets, respectively. Similarly, a 52-day window of daily frequency is equivalent
to a 3.1-day and 6-day window for the 5-minute spot volatilities in FX and equity markets,
respectively. We examine whether the simulation results of the MSE ratios de�ned in (3.14)
provide support for these theoretical predictions.

The analysis in Section 1 pertains to the comparison of, for instance, SV 3 and RV 26
which are asymptotically equivalent for equity markets. While the simulations are not fully
supportive of this theoretical prediction, they tell us that the relative e�ciency of RV 26=SV 3
for the S&P 500 index is 0:68: For FX markets RV 26 and SV 1 should be roughly equivalent,
while the ratio in Table IV is about 0:57: It is interesting to note here that the results obtained
with the MAE are closer to the asymptotic predictions. Namely, the RV 26=SV 1 ratio for FX
markets is 0:81 whereas for equity markets RV 26=SV 3 is a comparable 0:79: We consider next
the monthly spot volatilities. In light of the same theoretical predictions we expect that the
12-month spot volatility based on a monthly benchmark sampling frequency is approximately
equivalent to a 3-month window of daily data. The second panel in Table IV refers to monthly
simulation results of the contemporaneous MSE and MAE ratios. Note that these ratios use
the 12-month rolling volatility (RV 12) benchmark. The MSE ratios for both the FX and S&P
500 markets show that the 3-month spot volatility (SV 3) is approximately MSE-equivalent
(and MAE) with RV 12, given that the ratios of SV 3=RV 12 are close to unity.

So far, the simulation results are mixed. We �nd that the inter-day 26-day rolling volatility
�lter is a more e�cient �lter, contrary to the predictions of the continuous record asymptotic
analysis which predicted its equivalence to the 2- and 3-day intra-day spot volatilities for
the 5- or 30-minute frequency in either the FX or equity markets. The MAE ratio provides
slightly better results in terms of being closer to the asymptotic predictions. The results
so far are based on the contemporaneous MSE criterion. The MSEs for long-run volatility
forecasting of daily spot volatilities for S&P 500 in Table V are almost perfectly in line with
the asymptotic predictions. The RV 26 and SV 3 daily equity market results are identical,
both yielding a relative e�ciency of 0:74 as predicted by asymptotic theory.16 For the monthly
spot volatilities MSE (and MAE) ratios, the results also conform with the continuous record
asymptotics predictions. Namely, in terms of long-run forecasting a 12-months window of
rolling volatility based on monthly data is asymptotically equivalent on MSE (and MAE)

16In contrast, for FX they are again a bit out of line, namely RV 26 and SV 1 are not equivalent, the latter
is about 30 % more e�cient.
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grounds to the 3-month window of block-sample volatility based on daily data. This result is
consistent with the theoretical predictions based on Table I.

In an attempt to explain some of the di�erences between the theoretical and simulation
results regarding the window length equivalence in spot volatilities, we must note the following
observations: First, as discussed in Section 3.2, the comparison is based on di�erent estimation
methods for spot volatilities; RV's are based on rolling-sample estimation whereas the SV's are
based on block-sample estimations. A more direct comparison would involve, for instance, a
3-day spot volatility based on rolling-sample (instead of block-sample) estimation of intraday
frequency. Second, the continuous record asymptotics may not apply due to the invalidity
of certain assumptions. Fortunately, this argument is not the explanation for the di�erence
between the simulation results and the continuous records asymptotic �ndings. In Table III
we report besides the GARCH parameter values also the kurtosis at the various sampling
frequencies considered in the Monte Carlo simulations. Comparisons across �(m) for the
various values of m indicate that, even for the monthly frequency, the kurtosis does not vary
very much neither for equity nor for FX series. Hence, the variation of higher moments is most
likely only a minor contributing factor that does not explain some of the deviations from the
continuous record asymptotics.

4.1.3 Weighting schemes

The most e�cient procedure for all the �ltering methods covered in Table IV is one which we
did not discuss so far. It is the RiskMetrics exponentially weighted moving average �lter RM:

The MSE (and the MAE) ratios show, with one exception, that RM is more e�cient compared
to the rolling volatility �lters. The e�ciency gains between, say RM and RV 26 (daily) or RM
and RV 24 (monthly), can still be considerable. This observation brings us to the question of
�lter weights.

In the case of spot volatilities, Foster and Nelson show that the exponential weights perform
better than the 
at ones for rolling volatilities. In Table IV we observe that for the daily FX,
the smallest contemporaneous MSEs are due to the RiskMetrics �lter. For the DM/US$ the
RM represents a 25 % e�ciency gain compared to RV 26, which is the most e�cient among
the 
at-weighted schemes. For the YN/US$ the gain is even larger. For equity markets we
�nd the same e�ciency gains, comparing RV 26 and RM , but the RV 52 �lter is more e�cient.
The relative e�ciency of the RiskMetrics volatility is due to the fact that it is an EWMA
�lter which is consistent with the optimal exponential weighting scheme for rolling sample
volatilities presented in Foster and Nelson. In the monthly spot volatility category, the RM
performs equally well and is also found to be the relative most e�cient volatility �lter based on
monthly frequency. It is interesting to re-evaluate the comparative perfomance of this �lter for
long-run forecasting which is relevant for practical applications such as Value-at-Risk (VaR).
Indeed, the h-horizon MSE (and MAE) ratios in Table V show that RM is the relatively most
e�cient estimator for both daily and monthly spot volatilities in both markets and sampling
frequencies.
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4.2 Integrated Volatilities

It was argued in Section 2 that we could transplant the continuous asymptotic analysis for
spot volatility processes to other processes, such as the integrated volatility. By analogy
with the discussion of spot volatility we examine the integrated volatility results presented
in Table VI for the contemporaneous MSE (and MAE) ratios (3.15). The 1-day and 22-day
Integrated Volatilities (IV 1 and IV 22) are taken as the benchmarks for the daily and monthly
integrated volatilities, respectively. We examine again the lag length of �lters and their e�ect
on e�ciency �rst. Subsequently we compare the block-sample versus rolling-sample estimations
of integrated volatilities.

4.2.1 Data window length and weighting schemes

We focus �rst on the comparison of IV 2 and IV 3 (relative to IV 1), and hence examine the
window length for IV type estimators. By analogy, we concentrate next on the comparison of
HIV k for di�erent values of k: Recall that when the data span increases, namely when nR+nL
increases, then the �rst term on the right hand side of equation (2.3) decreases, whereas the
third term increases with wider data spans, a result driven by the fact that only local cuts
of the data exhibit a relatively stable variance. Consequently, increasing the data span may
improve or harm e�ciency. In Table IV, for spot volatility �lters, we only found e�ciency
gains when the window lengths increased, though some of the gains were modest. We revisit
the lag length issue here, and �nd in Table VI that indeed more (lags) is not always better. In
general we �nd that for the S&P 500 index there are e�ciency gains for moving from IV 1 to
IV 2 and to IV 3. Likewise, for HIV k we �nd gains as k increases and for EHIV k the same
is true. The picture is quite the opposite for FX market series. E�ciency is reduced by half
when we move from IV 2 to IV 3, both for the DM/US$ and YN/US$ series. The deterioration
is even more dramatic for some of the HIV and EHIV �lters. For instance the MSE ratio for
the YN/US$ EHIV 1 �lter is 0:68, while that for the EHIV 3 �lter is 5:94: Clearly lag length
selection is a very critical issue in the estimation of IV-type �lters, contrary to spot volatility
�lters. From the asymptotic analysis this seems to indicate that the e�ect of �Q

(m);t on C
QF
(m);t

(taking the example of 
at weights) can be considerable, suggesting that the variance of the
IV process can change considerably, at least for FX markets. In contrast for equity markets
and for spot volatility estimators (the later involving �(m);t) the perverse e�ect of increasing
lag lengths on e�ciency appears to be neglible, suggesting also that the variance of variance
for FX and equity markets is relatively stable for longer horizons.

We further investigate the optimal window length of integrated volatilities based on the
MSE e�ciency of long-run volatility forecasts. Table VII reports the MSE and MAE ratios
from a 20-day ahead forecast applying (3.16) for integrated volatilities. The general picture is
dominated by the fact that most MSE ratios are very close to unity for the two FX market
series, which implies that the window length does not play an important role for the long-run
forecasting performance of integrated volatilities. The exception to this result are the S&P 500
simulated MSE ratios for the 20-day forecasts. In the daily integrated volatilities, a window
data length of 3 days seems to improve the long-run volatility forecasts by approximately 60%
judged by the MSE criterion. This is the case for the IV 3, HIV 3 as well as EHIV 3, all
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compared to IV 1. This result is consistent with the contemporaneous MSE ratios for the S&P
500 daily integrated volatilities.

The comparison of HIV k and EHIV k also enables us to appraise to what extent exponen-
tial weighting of IV-type estimators translates into e�ciency gains. The optimal decay rate
of 0:99 yields the lowest MSE among an a priori choice of 0:94; 0:96 and 0:99: The results in
Table VI show that there are no signi�cant (compare HIV1 and EHIV1 for YN/US$) gains to
be made by changing the weights to exponentially declining when MSE criteria are used. It
should be noted however, that the MAE criteria present a di�erent picture, namely at short lag
lengths, i.e. when we compare HIV 1 and EHIV 1, there are e�ciency gains when exponential
weights are used for FX series. For the S&P 500 index the di�erence is negligible.

4.2.2 Block-sample versus rolling-sample volatility �lters

A further interesting aspect of the integrated volatility simulation results is that we can compare
directly block-sample versus rolling-sample volatility estimators for a given sampling frequency
and a given data window length. We noted in Section 2 that we cannot a priori predict the
e�ciency of IV and HIV type integrated volatility estimators unless we know something
about the behavior of higher moments. The daily integrated volatility simulation results in
Table VI show that the lowest MSEs for the S&P 500 are the IV 3, HIV 3 and EHIV 3
estimators. Between the �rst two estimators HIV 3 is relatively more e�cient since the MSE
ratio of HIV3/IV3 suggests that HIV 3 is 87% more e�cient than IV 3. Similarly, in the
YN case the EHIV 1 is the relatively most e�cient estimator among all those studied. This
�lter is also de�ned in terms of rolling sampling techniques. Hence the S&P 500 and YN
simulation results suggest that a historically integrated volatility estimator which involves
rolling sample estimation is more e�cient than block-sample type estimators for integrated
volatility. However, for the DM series, the relatively most e�cient estimator is the block-
sample 2-day IV (IV 2) which is 87% more e�cient than HIV 1 and 70% more e�cient than
EHIV 1. Hence, it seems that for one out of three cases considered the block-sample estimation
technique is more optimal than the rolling one for daily integrated volatilities. To be fair, it
should be noted that HIV k and EHIV k estimators should be compared with IV m where
m = k + 1; since the rolling scheme entails one extra day of data in a block-sampling context.
Taking this into account we still �nd that EHIV 1 is more e�cient than IV 2 for both FX
series. It is also interesting to note that (E)HIV 2 is also more e�cient than IV 1 in all cases
(if we consider either weighting scheme for HIV-type estimators).

We further examine these estimation methods in the context of the monthly integrated
volatility results (in the lower panel of Table VI). In all simulated cases we �nd that the 22-day
block-sample estimator for monthly volatility (IV 22) is the relatively least e�cient estimator
shown by all the MSE ratios being less than unity. On the other hand, the 22-day historical
integrated volatility (HIV) appears, in all cases, to be more e�cient than IV 22. In particular,
for the S&P 500, HIV 22 is 35 % more e�cient than IV 22. Similarly, the contemporaneous
MSE ratios for the DM and YN show that the HIV 22 is 37% and 48% more e�cient than
IV 22, respectively. Hence, we conclude that for monthly integrated volatilities the rolling
sampling used by HIV is more e�cient than the block-sampling IV for 22-days. However, a
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more direct comparison is between HIV and IV �lters both of which employ the same window
length of 44 days, given by IV 44 and HIV 22. The former is based on a 44-day block-sample
and the latter on 44-days rolling-sample estimation. From the simulation results we derive
the MSE ratio of IV 44=HIV 22 which is 0:79 for the S&P 500, 0:91 for the DM and 0:91 for
the YN. In the FX cases the IV 44 is only marginally more e�cient than HIV 22. Hence, on
average the monthly simulation results show that a window length of 44-day as opposed to a
22-day one is optimal for the estimation of monthly integrated volatilities. In addition, given
this window length, FX block-sample monthly integrated volatilities are more e�cient than
historical ones, on MSE criteria. On the other hand, the S&P 500 results show that the HIV 66
is the relative most e�cient estimate on MSE terms.

4.3 Further evidence for the evaluation of volatility �lters

So far we focused on two measures of appraisal, namely the Mean Square Error (along with the
Mean Absolute Error), and the out-of-sample forecast performance. We turn now to the three
remaining measures of appraisal, namely the coe�cient of multiple determination in regression
(3.17), the cross-covariances between extraction errors and �ltered volatilities and the MSE of
the ACFs between the GARCH and data-driven volatilities. Table VIII, top panel, presents the
R2 obtained from the regression in (3.17). The lower panel deals with integrated volatilities.

The daily spot volatility R20s show that the interdaily spot volatilities are highly correlated
with the simulated volatility process de�ned by the Normal-GARCH(1,1) process. In all cases
the daily RM has on average the highest R2 being 0:8955, 0:9068 and 0:8058 in the S&P 500,
DM and YN, respectively. Similarly, the RV �lter for 52 and 26 days have equally high R20s

(0:9199 and 0:807 for the S&P 500 and DM simulations). These results are consistent with
the MSE ratios and provide additional support for the optimality of rolling volatilities with a
given window length, as presented in Foster and Nelson. It is interesting to note the di�erence
between the R20s presented by the inter- and intra-day spot volatilities. The latter show a
relatively lower multiple correlation coe�cient which may be the result of their more noisy
nature, as opposed to the RM and RV smooth volatility estimates. Similarly, the monthly
spot volatilities also show that the RM and RV 12 have the highest R20s as opposed to the
SV for 1-3 months. Nevertheless, comparative analysis shows that the level of the R2 drops
signi�cantly for the monthly frequency, especially for the DM and YN cases.

The correlation coe�cients of each data-driven volatility with the extraction error, (3.12),
is an additional criterion for assessing the e�ciency of the particular volatility �lter. Negative
correlations are obtained (which are not reported here for economy purposes) for lags 1-5 days
and 1-5 months of the extraction error for the daily and monthly spot volatilities, respectively.
The daily spot volatilities show that for the three cases, the RV 52 and RM �lters have the
lowest correlations with the extraction error. Hence, they appear relatively more e�cient than
the intra-day volatilities. These results are also consistent with the MSEs conclusions. On
the other hand, the monthly results suggest that the spot volatilities based on daily frequency
are more e�cient than those based on monthly frequency, since as the lag length increases the
SV's have the lowest correlations with the extraction error, for the two FX series.

A �nal criterion for comparing the data-driven volatility estimates is based on the MSE
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of the autocorrelation functions (ACF) between the simulated Normal-GARCH(1,1) volatility
and the alternative non-parametric volatility estimates. These results are also not reported
for economy purposes but are available from the authors upon request. The lowest MSE of
the autocorrelation function (ACF) between the theoretical GARCH(1,1) and di�erent spot
volatilities shows that the RV 52 and the RV 60 are the relatively most e�cient �lters for daily
and monthly frequencies, respectively. They exhibit the lowest MSEs for a range of lags (5,
30, 60 and 120 minutes in the daily case and 1, 5, 20 days in the monthly case). Although
most �lters and especially the high frequency spot volatilities also exhibit low MSE for the
ACFs, they do not seem to perform so well at longer lags of 120 minutes and 20 days for the
intra-day and intra-month frequencies, respectively. In general, these results provide additional
supportive evidence of the relative e�ciency of the 52-rolling volatility which is in conjuction
with the rest of results. Moreover, they present a new dimension for monthly spot volatilities
for which we are now able to distinguish a relatively optimal �lter, namely the RV 60 which
has on average the lowest ACF MSE (especially for the longer lag of 20 days). Hence, although
the contemporaneous and long-run forecast MSEs showed that the monthly rolling volatilities
are asymptotically equivalent on e�ciency, the analysis of their ACF structure vis-�a-vis the
theoretical GARCH shows on one hand, that this argument is valid for short lags of 1 and 5
days, but on the other hand, that RV 60 is more e�cient for the longer lag of 20 days.

4.3.1 Integrated Volatitilities

The lower panel of Table VIII presents the R2 obtained from the regression (3.17) for integrated
volatilities. In the daily frequency, all types of integrated volatilities seem to have very high
R20s: These results extend the Andersen and Bollerslev (1998) empirical �nding of a relatively
high R2 for the IV 1 �lter. In addition, the daily integrated volatilities R20s show that the
�lters with the highest R2 are the ones which were found to be the most e�cient based on
MSEs. In particular, the highest R20s for the S&P 500 are the HIV 3 and IV 3, for the YN the
EHIV 1 and IV 1 and for the DM the IV 2 and HIV 1. These results consolidate the evidence
presented above. A similar picture is sketched by the monthly integrated volatilities which
show that the highest R20s correspond to the MSE most e�cient volatilities.

We also examine the correlation coe�cients of each integrated volatility estimate with the
extraction error, for lags 1-5 (also not reported for economy purposes). We �nd that in all
cases these correlations have a relatively small size. This observation applies to all integrated
volatilities and to both frequencies (daily and monthly) as well as to all three simulated cases.
The correlation coe�cients of all the IV's with the extraction error, range from 1% to 26%.
The daily IV 1 has the lowest correlation coe�cients for all three series, followed by HIV 1.
Similarly, in the monthly case the lowest correlation coe�cients apply to IV 22 followed by
HIV 44. This result also holds for both the equity and FX markets. It is interesting to note is
that although the historical integrated volatilities are also rolling regression volatilities, they
have very low correlations with their extraction error.

The lowest MSE of the autocorrelation function (ACF) between the theoretical GARCH(1,1)
and di�erent types of integrated volatilities shows that among the class of daily block-sample
integrated volatilities IV 1 has the lowest MSE, whereas in the class or the rolling-sample in-
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tegrated volatilities HIV 3 and EHIV 1 exhibit the lowest MSE. These simulation results hold
for the S&P 500 but not for the FX series which show that all MSEs of ACFs are on average
equal. Similarly, the MSEs of the ACFs integrated volatilities present the same behaviour.
Generally, IV 22 has the lowest MSE at lag 1 but for longer lags both monthly IVs and HIVs
have similar MSEs. This evidence is in conjuction with the contemporaneous MSEs of the
extraction error for the daily and monthly integrated volatilities reported above.

4.4 Tail behavior and MA components

The above Monte Carlo analysis is extended to a simulated process given by MA(1)-GARCH(1,1).
Bai et al. (1999) suggest that intraday autocorrelation patterns in returns a�ect the MSE of
spot volatilities (such as SV 1 and the French et al. (1987) correlation adjusted). In particular
they report that the MSE triples and may be even larger if the MA(1) coe�cient is large or
negative. Similar e�ects are reported for excess kurtosis which reduces the precision of spot
volatility estimators by a half of the kurtosis coe�cient. Therefore we perform the above sim-
ulation experiment for a range of MA(1) coe�cients (0:2;�0:5; 0:85) in the case of the S&P
500 models (reported in Table III). We also �nd that for a relatively high (0:85) and negative
but moderate (-0:5) moving average coe�cient, the MSEs ratios of all integrated volatilities
rise and are almost equivalent. Hence it is becomes di�cult to di�erentiate between them. In
contrast, for smaller moving average coe�cients the results stay broadly the same with the
initial analysis reported above. The existence of MA e�ects largely depends on the empirical
features of the particular data frequency which we examine in the empirical section. In addi-
tion, the theoretical analysis can allow for the presence of excess kurtosis given that the fourth
conditional moment remains constant for alternative intraday as well as daily vis-�a-vis monthly
frequencies. Hence, we also study the e�ects of excess kurtosis in the simulation design and
examine the empirical validity of this assumption in the next section.

We �rst examine the e�ect of conditional leptokurtosis on spot volatilities. In the top panel
of Table IX we report the contemporaneous MSE (and MAE) ratios of daily volatility �lters.
These are based on a 5-minute sampling frequency for the S&P 500 t(�)�GARCH(1,1) model
parameters (reported in Table III) and for alternative degrees of freedom, �. Two interest-
ing results arise: First, the relative e�ciency of rolling volatility �lters with respect to SV 1
drops dramatically in the presence of excess kurtosis. This is also the case for the monthly
frequency (reported in the lower panel of the table) as well in anticipation of the Foster and
Nelson conclusions that the rolling estimator's e�ciency drops in the presence of thick-tailed
distributions. Yet, it is worth noting that RV 52 still appears as the relatively most e�cient
�lter. Hence we conclude that in the presence of excess kurtosis the MSE e�ciency levels drop
especially for rolling volatility estimators. The relative e�ciency of intraday spot volatilities
appears to be more robust to leptokurtosis. Second, the continuous record asymptotic predic-
tions for the MSE (and MAE) e�ciency equivalence are signi�cantly weakened in the presence
of a conditional Student's t process. Nevertheless, it is interesting that under conditional t (as
opposed to Normal) the spot volatilities (especially at the monthly frequency) show signi�cant
variability on e�ciency grounds. The daily sampled spot volatilities are more e�cient than
RV 12, yet the 24- and 60-month rolling volatilities are more e�cient than RV 12 and the rest
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of the daily based block-sample volatilities. The Riskmetrics �lter consistently appears to be
the relative most e�cient volatility �lter under both conditional Normality and Student's t
distributed returns.

We now turn to examine the e�ect of conditional leptokurtosis on the relative e�ciency of
integrated volatilities and cumulative absolute returns. In Table X the �rst two panels report
the daily and monthly integrated volatilities MSE (and MAE) ratios. Based on a comparison
of the simulation results under conditional Normality and Student's t we can make several ob-
servations. First, the rolling-sample estimation method of integrated volatilities results in more
e�cient daily volatility �lters (HIV 3 is more e�cient than IV 3). Similarly, for the monthly
frequency the HIV 66 is the most e�cient �lter. It is interesting to point that the e�ciency
of HIV 66 is robust to these alternative conditional distributional assumptions. Although the
MSE ratio of HIV 66 falls signi�cantly in the presence of excess kurtosis, the HIV 22=IV 22
appears to maintain approximately similar levels of e�ciency under both conditional normality
and t distributions. Second, for the monthly frequency we �nd that block-sample integrated
volatilities of alternative window lengths do not present any e�ciency gains. This result is
consistent under both conditional normality and Student's t distributions as shown by all IV k
MSE (and MAE) ratios being close to one.

The last panel of Table X presents the Cumulative Absolute Returns MSE (and MAE)
simulation results for the monthly S&P 500 under the assumption of conditional normality
and Student's t with various degrees of freedom.17 The results show that the block-sampling
estimation method using either absolute (or squared) returns produces MSE ratios close to
unity. Instead, rolling-sample estimation in historical cumulative absolute returns (HCAR)
produces relatively more e�cient estimators. In fact, the HCARs are relatively more e�cient
than the HIVs (comparing the last two panels), for alternative degrees of leptokurtosis. Last
but not least, the results in the last panel show the ratios of CAR type volatilities under both
conditional normality and t. It appears that the e�ciency of this type of volatilities remains
robust to excess leptokurtosis. Hence the simulation evidence is supportive of the results
in Taylor (1986), Davidian and Carroll (1987), Schwert (1990b), and extend the conjecture
presented in the conclusions of Foster and Nelson (1996).

5 Empirical Illustration

The e�ciency of data-driven volatility �lters based on their out-of-sample forecast performance
is evaluated for equity and FX series. The empirical results complement the simulation analysis
by considering a number of horizons and sampling frequencies. Following Baillie and Bollerslev
(1992), the h-period linear projection from the weak GARCH(1,1) model with returns that
span 1=m day(s) is given in (3.16) where �2(m);t would be the alternative spot and integrated

volatility �lters.18 For daily volatility we consider h = 1; 5; 20 days and obtain the MSE and

17We do not report all the results in Table X. Unlike in Table IX we only focus on � equal to 8 and 12:
Results for � = 10 were deleted from the table to save space.

18Recently Bollen and Inder (1999) also undertake an empirical evaluation of various spot volatility estimators
and IV 1 using a number of other criteria.
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MAE for each out-of-sample volatility �lter forecast. Similarly, for monthly volatility �lters
we de�ne h = 1; 6; 12 months.

The empirical illustration is based on two datasets representing the FX and equity market
series, respectively. The �ve-minute intraday DM/US$ and YN/US$ returns cover a ten year
period, 1/12/1986 to 30/11/1996, and were obtained from Olsen and Associates.19 Using this
FX dataset we calculate intra-day volatilities for three frequencies (�ve-, �fteen- and thirty-
minute) and compare them with the daily frequency volatility �lters. The second dataset
utilizes the daily Standard Poor's composite price index to compare daily and monthly volatil-
ity �lters which have been traditionally employed in the empirical literature. This dataset
extends the sample used by Gallant, Rossi and Tauchen (1992) to cover the period 03/01/1928
- 29/08/1997 producing a sample of 18,571 daily observations. The empirical results are ex-
amined in conjuction with the Monte Carlo analysis and are also expected to present further
empirical evidence of the theoretical asymptotic predictions analyzed in sections 1 and 2.

The estimation of AR(1)-GARCH(1,1) models for the S&P 500 and DM/US$ data are
reported in Table XI.20 Although the estimation results are not directly comparable, we may
observe how the sampling frequency a�ects higher moments. For the monthly and daily S&P
500 frequencies, it seems that the volatility persistence and the higher moments are broadly
constant. On the other hand, the intraday frequencies show that there is a large variability in
the kurtosis coe�cient. As noted in Foster and Nelson (1996), Bai et al. (1999) and in Section
1 this is anticipated to a�ect the MSE's of volatility estimators examined in the context of the
empirical results below.

5.1 Spot Volatilities

We �rst consider the relative e�ciency of empirical intra- and inter-daily volatility measures.
The h�period ahead MSE and MAE ratios of spot volatilities derived from the linear projection
formula in (3.16) are presented in Table XII for the short-run forecast horizon of one day (h = 1)
and the longer-run horizons of one week and one month (h = 5 and 20, respectively). Following
the Monte Carlo analysis, the benchmark MSEs and MAEs, in the ratios (3.14) and (3.15),
refer to the 1 day spot volatility forecasts. The analysis is performed for the two FX series and
for three intra-day sampling frequencies (�ve-, �fteen- and thirty-minutes).

The results show that for both exchange rates the relatively most e�cient daily volatility
�lter is the 52-day rolling volatility. This result holds for all the sampling frequencies and
forecasting horizons considered. Hence, the empirical FX results are in broad agreement with
the Monte Carlo simulations which show that the relatively most e�cient daily �lters are
inter-day rolling volatilities (of 26 and 52 day window). Similarly, the RiskMetrics �lter (RM)
is also found empirically e�cient for all h's, relative to all SV's and RV 26. This is also in

19The original sample is 1,052,064 �ve-minute return observations (2,653 days � 288 �ve-minute intervals per
day). The returns for some days were removed from the sample to avoid having regular and predictable market
closures which a�ect the characterization of the volatility dynamics. For the description of the data removed
refer Andersen, Bollerslev and Lange (1998) and Andersen, Bollerslev, Diebold and Labys (1999). The �nal
sample includes 705,312 �ve-minute returns re
ecting 2,449 trading days.

20Similar results were obtained for the YN/US$ series, and although we do not report the AR(1)-GARCH(1,1)
estimations we, nevertheless, evaluate the e�ciency of volatility forecasts using the YN/US$ series.
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harmony with the Monte Carlo results as well as the theoretically optimal exponential-type
weights suggested in Foster and Nelson. The robustness of the MSE e�ciency for the RM in
both simulation and empirical paradigms reinforces its use for VaR.

We further compare the e�ciency of spot volatilities using intra- and inter-daily frequencies.
Recall that according to the FX theoretical results, a 26-day window of interdaily data is
asymptotically equivalent in terms of e�ciency with the 1.5-day window of 5-minute intra-day
data, and with a 2.7-day window of 15-minute data, as well as with a 3.8-day window of 30-
minute data. Similarly, a 52-day window of daily data is MSE equivalent to a window of 3.1, 5.3
and 7.5 days of intra-day 5-, 15-, 30-minute sampling frequency, respectively. The MSE ratios
in Table XII show that the window length for spot volatilities plays a signi�cant role. The
intra-day 2 and 3 day spot volatilities (SV 2 and SV 3) are more e�cient than the respective
1 day spot volatility. This observation is based on MSE and MAE criteria and applies to
short-run (h = 1 day) and long-run (h = 5; 20 days) forecasting horizons. In addition, it holds
for both the DM/US$ and the YN/US$ series and it can also be generalized to the three intra-
day frequencies (5-, 15- and 30-minute data). In fact, the SV 3 is the relatively most e�cient
intra-day spot volatility �lter which is on average 65% more e�cient than SV 1. This result
is consistent with the theoretical results, just mentioned, that for the intraday frequencies of
spot volatilities a window length beyond that of a day and at least three days, is required to
reach the asymptotic e�ciency of a 26- and 52-day rolling volatility. The results in Table XII
also show that the higher the sampling frequency (e.g. for 5-minute frequency as opposed to
15- and 30-minute), the more e�cient is SV 3 than SV 1 and the MSE of SV 3=SV 1 for 20-day
ahead forecasts decreases. The latter presents empirical support of the theoretical result, that
the higher the frequency, the more e�cient is SV 3 for the long-run forecasting of spot volatility.

We observe that the MSE ratios decrease as we move from the 5-minute sampling frequency
to the 15-minute. Note that this e�ect does not apply to the MAE which is regarded as a more
robust criterion. Andersen, Bollerslev and Lange (1998) also documented this result (for IV 1)
and suggest that it may be due to microstructure e�ects.

This analysis is also performed for the traditional frequencies of volatility �lters derived
from daily and monthly data. The relevant MSE and MAE ratios in Table XIII use the 12-
month rolling volatility (suggested by O�cer (1974) and Merton (1980)) as a benchmark. The
forecast MSEs for h = 6; 12 months show that for the S&P 500 the 12-month rolling volatility
is more e�cient than the 24- or 60-months rolling volatilities. On the contrary, the MAE ratios
suggest that all spot volatilities based on monthly frequency (RV 12, RV 24, RV 60 and RM)
are approximately equivalent on MAE e�ciency grounds. The latter result is in conjuction with
the Monte Carlo simulations in Table VI. In addition, as mentioned, the MAE is more robust to
outliers than the MSE. Hence, we present theoretical, simulation and empirical justi�cation for
the relative equivalence on e�ciency grounds of alternative rolling volatilities in the empirical
literature (e.g. Chan et al., 1999, Fleming et al., 2000, Campbell et al., 2000). The results
in Table XIII also show that the monthly spot volatility based on the daily frequency for a
3-month window is a relatively e�cient volatility �lter in MSE and MAE terms. This is also
in agreement with the simulation results.
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5.2 Integrated Volatilities

We now examine the empirical e�ciency of integrated volatility �lters. First, we study the
e�ciency of the daily �lters obtained from alternative h period ahead forecasts for the DM/US$
and YN/US$ intra-day sampling frequencies. These results are reported in Table XIII.

The Monte Carlo analysis showed that in the 5-minute sampling frequency, the MSE and
MAE ratios for the 20-day ahead forecast of FX series is approximately one, implying that
all these volatility measures have the same long-run forecasting performance. The notable
exception was the daily S&P 500 simulation results which showed that all integrated volatilities
have a lower MSE than IV 1 (e.g. Andersen and Bollerslev, 1998). In particular, the 5-minute
sample simulations showed that the IV 3 and HIV 3 were the relatively most e�cient �lters for
the 20-day ahead forecast. Turning now to the empirical results in Table XIV we are able to
make a direct comparison and obtain additional evidence using the 5-minute as well as other
intra-day sampling frequencies. Both the DM/US$ and YN/US$ empirical MSE (and MAE)
ratios are less than one, suggesting that IV 1 is the relatively least e�cient �lter among the
integrated �lters considered. Therefore, the empirical results suggest that a window length
beyond that of one day improves the empirical MSE volatility e�ciency for both exchange
rates, for short and long forecast horizons and for alternative intra-day sampling frequencies.
This result is in conjuction with the simulation results of the extraction (rather than the
forecast) error MSEs. Based on all the MSE ratios in Table XIV we conclude that the 3-day
data window length is the relatively most e�cient intra-day volatility �lter for daily volatility
forecasting. Consequently, the integrated and spot volatility results present a coherent picture
in the sense that for the three intra-day frequencies considered a 3-day data window improves
the MSE volatility e�ciency for alternative forecast horizons.

The second dimension of the analysis refers to the estimation method of integrated volatility
�lters. For the given optimal window length of three days, we compare the MSEs of the block-
sample �lter, IV 3, with the rolling-sample �lter, HIV 3. Both estimation methods suggest
almost equivalent MSE e�ciency levels, with HIV 3 being only marginally more e�cient than
IV 3. Extending this observation to other window lengths and sampling frequencies we conclude
that both block and rolling-sample estimation methods are empirically optimal and that on
average the rolling-sample is only marginally more e�cient. This conclusion is in conjunction
with the Monte Carlo simulations for the FX 5-minute sampling frequency in the context of
which both IV's and HIV's were found to be asymptotically e�cient. A related aspect of the
estimation method refers to the choice of the weighting scheme. The exponential weighting
scheme for a decay factor equal to 0.99 results in the lowest MSEs (a result also consistent
and guided from the Monte Carlo analysis). Comparing the exponential and 
at HIV's, they
perform approximately equally on MSE grounds, especially for the 15- and 30-minute sampling
frequencies.

Andersen, Bollerslev and Lange (1998) also evaluate the e�ciency of IV 1 for alternative
sampling frequencies and �nd that as the sampling frequency increases the e�ciency of the
�lter drops. This result is not in agreement with the concept that the higher the frequency, the
more e�cient estimators are obtained. They �nd that the latter is empirically valid for hourly
(and not 5- and 10-minute) sample frequency. We examine whether the results in Table XIV
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also present a similar picture for the three sample frequencies. The 5-, 10- and 15-minute MAE
ratios for the most optimal �lters (IV 3 and HIV 3) do not signal any dramatic change in the
e�ciency lost from these high frequency samples. On the contrary, they seem quite similar.
This observation generalizes to almost all integrated volatilities. The hourly frequency has
also been examined (yet not reported) and it seems that those MSE/MAE ratios are only
insigni�cantly lower, which is in agreement with the Andersen, Bollerslev and Lange �ndings.

Following the above analysis we also examine the empirical results for monthly S&P 500
integrated volatility �lters based on daily frequency, reported in Table XV (top panel). Al-
though the MSE ratios suggest that a window length of 3 months (approximately 66 days)
is more optimal for both IV's and HIV's, the MAE ratios show that there are no signi�cant
gains in e�ciency. The latter result is also consistent with the simulations of MSEs and MAEs
obtained for the 12-month ahead forecasting horizon. Given the overall picture, we conclude
that the window length choice does not seem to play an important role for forecasting monthly
integrated volatilities based on daily data.

In an attempt to compare and consolidate our empirical results we extend the empirical
analysis to other types of integrated volatilities, presented in the literature French et al. (1987)
provide a correction for serial correlation in the estimation of block sample integrated volatili-
ties. They add a second term to the IV which is the sum of the cross product of returns at t and
t+1:Following their methodology we compute this estimator (denoted, IV 22 + SC2) which is
used as the benchmark. By analogy we extend this measure to allow for longer window lengths
of 2 and 3 months (or approximately 44 and 66 days, respectively). The empirical MSE and
MAE ratios presented in the second panel of Table XV present two interesting results: First, the
MAEs show that alternative window lengths do not improve signi�cantly the e�ciency gains.
However, on MSE grounds the 3 month window length for block sample integrated volatilities
adjusted for serial correlation appears more e�cient. These results are consistent with those
obtained for the integrated volatilities in the �rst panel. The comparison of the MSE/MAE
ratios, in the two panels, suggests that the correction for serial correlation by French et al.

improves the e�ciency of monthly S&P 500 data-driven volatility estimators using daily data.
Second, the relatively most e�cient estimator is the one month rolling sample volatility which
corrects for serial correlation within that month (HIV 22+SC22). It appears twice as e�cient
as the respective block sample estimator (IV 22+SC2). Hence, the combination of the rolling
estimation and the correction for serial correlation has shortened the optimal data-window
length and produced the relatively most e�cient estimator in terms of MSE.

Another data-driven volatility �lter which is in the spirit of the cumulative quadratic vari-
ation of returns is the Cumulative Absolute Returns (CAR) �lter (e.g. Hsieh, 1991). The
CAR is also computed for 1-3 months and the MSE ratios are based on the 1-month (or
approximately 22 days) CAR benchmark. The results are in broad agreement with the IV
type estimators and therefore strengthen our empirical conclusions. Moreover, they provide
additional support, as shown by the range of the MSEs being close to unity, that there are
no signi�cant gains from alternative daily data windows for estimating monthly cumulative
quadratic variations of returns.
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6 Conclusions

The paper presents a comprehensive theoretical, simulation and empirical analysis of the e�-
ciency of spot and integrated types of volatilities. The theoretical results extend the Foster and
Nelson (1996) analysis in the following ways. First, equally e�cient spot volatility estimators
are derived for alternative sampling frequencies based on the continuous record asymptotics.
Second, the continuous record asymptotics arguments are applied to the new class of volatility
estimators de�ned in terms of the cumulative quadratic variation of returns or cumulative ab-
solute returns yielding various types of historical integrated volatilities. Third, the block- and
rolling-sample estimation methods and alternative weighting schemes for both spot and inte-
grated types of volatilities are discussed. The theoretical results are examined by an extensive
Monte Carlo study and complemented by an empirical illustration.

The exponential weighting scheme is found to be the most optimal in terms of e�ciency
gains for spot volatilities. An example of that is the RiskMetrics �lter which is an exponentially
weighted moving average �lter and seems to perform consistently well for both daily and
monthly frequencies and for both markets in short-run and long-run volatility forecasting.
These results support the theoretical argument that exponential weights for spot volatilities
are expected to be more optimal. Examining the same argument for integrated volatilities we
present empirical and simulation evidence that (for a priori) exponential weights, there are not
substantial e�ciency gains among the the 
at-weighted and exponentially-weighted integrated
volatilities.

Comparing the daily and monthly spot volatility simulation results on a number of criteria,
we draw three broad conclusions. First, daily spot volatilities for 1 to 3 days based on 5-minute
intra-day frequency are less e�cient than inter-day volatilities, such as the rolling volatilities
for 26- and 52-days. On the other hand, we �nd that monthly block-sample volatilities (based
on daily frequency) are only marginally more e�cient than the 60-month rolling volatility �lter.
Second, the data window length for rolling or block sample volatility estimation plays a more
signi�cant role in daily spot volatilities. The 52-day window is the relatively most optimal
one for the S&P 500 (contrary to the much shorter �lter which Foster and Nelson found to
be optimal) and the 26-day window for the DM and YN. In contrast within the monthly spot
volatilities the windows of 12, 24 and 60 months perform asymptotically equivalently on MSE
grounds, for all the simulated cases with some evidence that the 60-month rolling volatility
performs marginally better. Thirdly, the RiskMetrics �lter which is consistently found to be
the most e�cient �lter performs comparatively better for daily rather than monthly frequency.

Turning now to the comparison of the daily and monthly integrated volatility simulation and
empirical results, we draw the following broad conclusions. First, the optimal window length
for integrated volatilities extends beyond one day and one month. In particular, the optimal
window length is 2 days for daily integrated volatilities and 2 months (equivalently 44 days) for
monthly IV 's in the FX market simulations. This result also holds in the S&P 500 since the 3-
day and 3-month windows are optimal for estimating daily and monthly integrated volatilities,
respectively. Second, the weighting schemes of exponential and triangular weights appear to be
equally optimal for the daily integrated volatilities. In general, historical integrated volatility
estimates are found to be relatively e�cient �lters. Third, the integrated volatility �lter attains
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optimality for certain of the simulated cases, once the estimation window is extended to 2-days
and 2-months for the daily and monthly integrated volatilities, respectively.

The e�ects of excess kurtosis on the relative e�ciency of the above estimators are exam-
ined. We �nd that the MSE e�ciency of spot estimators (and especially rolling volatitities)
drops dramatically in the presence of excess kurtosis. In contrast, high frequency spot volatil-
ities appear to be less suscecible to excess kurtosis. Nevertheless, the conclusions discussed
above (found in the presence of conditional normality) are still generally valid. The e�ect
of leptokurtosis on integrated volatilities show that the historical integrated volatilities are
relatively more robust. It is interesting that a comparative analysis suggests that the e�-
ciency of CAR-type estimators is more robust to alternative distributional assumptions (such
as conditional normality and Student's t).

The broad conclusion from our results is the fact that window length, data frequency,
weighting scheme and estimation methods of volatility �lters play a relatively more important
role for high frequency intra-day �lters that are used to extract daily volatilities. The typical
asset pricing applications involving monthly sampling frequencies are fairly insensitive to �lter
designs. In contrast, high-frequency data �lters are very much dependent on judicious choices of
the �ltering scheme. For instance, we found that intra-day high frequency spot and integrated
volatilities are non-optimal �lter designs and do considerably worse than inter-daily �lters such
as rolling volatilities and the RiskMetrics �lter. Moreover, we introduce HIV and HCAR

�lters which aim to improve the e�ciency of high-frequency cumulative volatility �lters. We
also found that CARs and HCARs may be an improvement in the presence of excess kurtosis.
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Table I: Asymptotically Equivalent One-Sided Equal Weighting Schemes
for Volatility Filters

Frequency m Lags Days FX Days Eq.

Panel A: Equivalence to 22-day �lter
Half-daily 2 32 16 16
Hourly FX 24 108 4.5 -
Half-hourly Equity 13 80 - 6.1
Five-min. FX 288 374 1.3 -
Five-min. Equity 78 195 - 2.5
One-min. FX 1440 835 0.6 -
One-min. Equity 390 435 - 1.1

Panel B: Equivalence to 26-day �lter
Half-daily 2 37 18.5 18.5
Hourly FX 24 128 5.3 -
Half-hourly Equity 13 94 - 7.2
Five-min. FX 288 442 1.5 -
Five-min. Equity 78 230 - 2.9
One-min. FX 1440 987 0.7 -
One-min. Equity 390 514 - 1.3

Panel C: Equivalence to 30-day �lter
Half-daily 2 43 21.5 21.5
Hourly FX 24 147 6.1 -
Half-hourly Equity 13 109 - 8.3
Five-min. FX 288 510 1.8 -
Five-min. Equity 78 265 - 3.4
One-min. FX 1440 1139 0.8 -
One-min. Equity 390 593 - 1.5

Frequency m Lags Months

Panel D: Equivalence to 60-month �lter
Daily 22 282 13
Half-daily 44 398 9
Hourly FX 528 1379 2.6
Half-hourly Equity 286 1015 3.5

Panel E: Equivalence to 12-month �lter
Daily 22 57 2.56
Half-daily 44 80 1.81
Hourly FX 528 276 0.5
Half-hourly Equity 286 203 0.7

Notes : The entries to the table report numerical calculations based on equation (1.4) using CF

(1);t
evaluated at nR = 0 and

nL = 22; nL = 26 and nL = 30 for the daily �lters, and nL = 60 and nL = 12 for the monthly, as �xed. All asymptotically

equivalent CF

(m);t
�lters require nLm

�1=2 lags, e.g. 22m�1=2:
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Table II: Equivalent Historical and Benchmark Frequency Volatility Filters

Panel A: Daily Benchmark Frequency

Frequency m Historical Volatility Equivalent
Number of days

Hourly FX 24 5
Half-hourly Equity 13 4
Five-min. FX 288 17
Five-min. Equity 78 9
One-min. FX 1440 38
One-min. Equity 390 20

Panel B: Monthly Benchmark Frequency

Frequency m Historical Volatility Equivalent
Number of months

Daily 22 5
Hourly FX 528 23
Half-hourly Equity 268 17
Five-min. Equity 1716 41
Five-min. FX 6336 80

Notes : The entries to the table report numerical calculation based on equation (1.4) using nL =
p
m as the number of daily

observations in a one-sided historical volatility �lter which is asymptotically equivalent to a one-day (top panel) or one month

(lower panel) volatility �lter with sampling frequency 1=m. All results are rounded o� to the next integer.
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Table III: GARCH(1,1) Models Used in Simulation Design

Daily frequency
m = 1 m = 1

S&P 500 S&P 500
DM/US$ YN/US$ 1986-97 1988-97

Parameters
�(m) 0:022 0:026 0:033130 0:282641
�(m) 0:068 0:104 0:028523 0:022832
�(m) 0:898 0:844 0:967347 0:972683
�(m) 3 3 3 3
v(m) 0:647 0:250 8:021792 62:39316

�(m)� (v(m))2 1:256 0:750 193:0474 11678:72

One-minute frequency
m = 1440 m = 390

Parameters
�(m) 0:0000155 0:0000185 0:0000851 0:0007293
�(m) 0:0026574 0:0041994 0:00165600 0:0013715
�(m) 0:9973186 0:9957635 0:9983334 0:9986170
�(m) 2:6412370 2:4754561 2:8461378 2:8758057
v(m) 0:645833 0:498652 7:736364 6:315652

�(m)� (v(m))2 1:101663 0:615532 170:3451 111468:80

Five-minute frequency
m = 288 m = 78

Parameters
�(m) 0:033130 0:282641 0:004260 0:0036318
�(m) 0:028523 0:022832 0:0036702 0:0030328
�(m) 0:967347 0:972683 0:9962767 0:9969096
�(m) 3 3 2:8568004 2:8848233
v(m) 8:021792 62:39316 8:022599 63:05208

�(m)� (v(m))2 193:0474 11678:72 183:8695 11468:800
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Table III Continued

Thirty-minute frequency
m = 2 m = 2

S&P 500 S&P 500
DM/US$ YN/US$ 1986-97 1988-97

Parameters
�(m) 0:007456 0:008891 0:0011064 0:009441
�(m) 0:0173169 0:027265 0:0058594 0:0048296
�(m) 0:9815309 0:9709569 0:9940027 0:9950206
�(m) 2:7076174 2:5653969 2:971635 2:8946778
v(m) 6:472222 5:000281 8:023205 63:02403

�(m)� (v(m))2 113:4212 64:14213 191:28960 11497:74

Monthly Frequency
n = 22 days n = 22 days

Parameters
�(m) 0:34475 0:34556 0:69811 5:93385
�(m) 0:05917 0:05944 0:07704 0:05526
�(m) 0:40803 0:29313 0:83594 0:85058
�(m) 3:44359 3:77329 3:41591 3:26471
v(m) 0:64707 0:49999 8:02241 63:01947

�(m)� (v(m))2 1:44184 0:94331 219:844 12965:64

Note: The GARCH model parameters are, �(m); �(m) and �(m), as de�ned in (3.2). The kurtosis parameter is �(m): The

unconditional variance is v(m) = �(m)=(1��(m)��(m)): The daily parameters (on the top panel) for the DM/US $ amd YN/US

$ were obtained from Andersen and Bollerslev (1998) and cover the period 01/10/87 - 30/09/92. The S&P 500 estimated parameters

cover the daily samples 04/01/86 - 29/08/97 (T=2884 observations) and the post-1987 crash period 04/01/88 - 29/08/97 (T=2443).

The disaggregated GARCH parameters, in the panels that follow, refer to the one-, �ve- and thirty-minute frequencies, which are

computed via the software available from Drost and Nijman (1993). The �nal panel in the table refers to the aggregated daily

GARCH parameters for monthly frequency using the approximation of 22 trading days per month.
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Table IV: Monte Carlo Simulated Contemporaneous MSE and MAE Ratios
of Spot Volatilities

Daily Frequency, Benchmark: SV 1

SV 2 SV 3 RM RV 26 RV 52 RV 26� 2

S&P 500
MSE 0.8422 0.7815 0.3914 0.5338 0.2884 0.7968
MAE 0.9275 0.8981 0.5883 0.7110 0.5509 0.8266

DM/US$
MSE 0.9477 0.9097 0.4508 0.5792 0.7497 0.6313
MAE 0.9812 0.9676 0.8208 0.8290 0.9286 0.8700

YN/US$
MSE 0.9182 0.8555 0.3844 0.5641 0.7447 0.6069
MAE 0.9689 0.9434 0.7601 0.8116 0.9544 0.9018

Monthly Frequency, Benchmark: RV 12

SV 1 SV 2 SV 3 RM RV 24 RV 60

S&P 500
MSE 1:3200 1:1310 1:0500 0:7872 0:9474 0:9281
MAE 1:0030 0:9677 0:9525 0:9896 1:0070 1:0140

DM/US$
MSE 1:2210 1:0930 1:0360 0:8541 0:9091 0:8600
MAE 1:0240 1:0230 1:0230 1:0050 1:0010 1:0050

YN/US$
MSE 1:3140 1:3160 1:0560 0:8459 0:9025 0:8495
MAE 1:0240 1:0230 1:0230 1:0050 1:0010 1:0050

Note: The MSE and MAE are the mean square error and mean absolute error ratios, respectively, de�ned in (3.14), and obtained

from the extraction error (3.12). The daily spot volatilities are: SV 1, SV 2 and SV 3 are the 1-day, 2- and 3-days Spot Volatilities,

respectively. RM is the textitRiskMetrics, RV 26 and RV 52 are the 26-days and 52-days one-sided Rolling Volatilities, respectively.

RV 26 � 2 is the two sided 26-days Rolling Volatility. The monthly spot volatilities are: SV 1, SV 2 and SV 3 are the 1-month,

2-months and 3-months Spot Volatilities, respectively. RV 12, RV 24 and RV 60 are the 12-, 24- and 60-months Rolling Volatilities,

respectively. These daily simulation results refer to the 5 year sample and the 5-minute intraday frequency as reported in section

3.4. Similar results apply to 30-minute intraday frequency as well as the 10 year sample. The monthly simulation results refer to

a 30 year sample size.
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Table V: Monte Carlo Simulated 20-day and 12-month ahead MSE and MAE Ratios of Spot
Volatilities

Daily Frequency, Benchmark: SV 1

SV 2 SV 3 RM RV 26 RV 52

S&P 500

MSE 0.8071 0.7357 0.5141 0.7374 0.4345

MAE 0.9066 0.8702 0.6912 0.7899 0.6275

DM/US$

MSE 0.9443 0.9158 0.9406 1.3500 1.6180

MAE 0.9765 0.9654 0.9949 1.1550 1.2950

YN/US$

MSE 0.9758 0.9714 1.249 1.408 1.607

MAE 0.9872 0.9828 1.066 1.161 1.240

Monthly Frequency, Benchmark: RV 12

SV 1 SV 2 SV 3 RM RV 24 RV 60

S&P 500

MSE 1.1390 0.9176 0.8338 0.6893 0.9283 0.9391

MAE 1.0010 0.9123 0.8798 0.9388 0.9992 1.0700

DM/US$

MSE 1.1050 0.9844 0.9362 0.8254 0.9121 0.8606

MAE 1.0280 0.9662 0.9397 0.8773 0.9412 0.8948

YN/US$

MSE 1.0150 0.9786 0.9650 0.9488 0.9749 0.9621

MAE 1.0110 0.9855 0.9743 0.9543 0.9745 0.9596

Note: The h-period ahead forecast MSE and MAE are the mean square error and mean absolute error ratios, respectively, de�ned

in (3.14), and obtained from the extraction error in (3.12), using the h-period linear projection GARCH(1,1) equation in (3.16).

The daily spot volatilities are: SV 1, SV 2 and SV 3 are the 1-day, 2- and 3-days Spot Volatilities, respectively. RM is the

textitRiskMetrics, RV 26 and RV 52 are the 26-days and 52-days one-sided Rolling Volatilities, respectively. The monthly spot

volatilities are: SV 1, SV 2 and SV 3 are the 1-month, 2-months and 3-months Spot Volatilities, respectively. RV 12, RV 24 and

RV 60 are the 12-, 24- and 60-months Rolling Volatilities, respectively. These daily simulation results refer to the 5 year sample

and the 5-minute intraday frequency as reported in section 3.4. Similar results apply to 30-minute intraday frequency as well as

the 10 year sample. The monthly simulation results refer to a 30 year sample size.
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Table VI: Monte Carlo Simulated Contemporaneous MSE and MAE Ratios of Integrated

Volatilities

Daily Frequency, Benchmark: IV 1

IV 2 IV 3 HIV 1 HIV 2 HIV 3 EHIV 1 EHIV 2 EHIV 3

S&P 500
MSE 0:4517 0:2868 0:5999 0:3543 0:2534 0:6088 0:3897 0:3203
MAE 0:6723 0:5359 0:7741 0:5956 0:5034 0:7801 0:6243 0:5678

DM/US$
MSE 0:6143 1:1210 0:7052 1:2560 2:0290 0:5860 1:427 2:635
MAE 0:7825 1:054 0:8365 1:1160 1:4170 0:7712 1:132 1:516

YN/US$
MSE 1:091 2:643 1:190 2:964 4:947 0:6757 3:049 5:939
MAE 1:040 1:615 1:085 1:713 2:220 0.8233 1:565 2:211

Monthly Frequency, Benchmark: IV 22

IV 44 IV 66 HIV 22 HIV 44 HIV 66

S&P 500
MSE 0.2762 0.1265 0.3507 0.1372 0.1234
MAE 0.5270 0.3623 0.5870 0.3687 0.3509

DM/US$
MSE 0.3346 0.4691 0.3673 0.5487 0.7718
MAE 0.5962 0.6989 0.6166 0.7513 0.8937

YN/US$
MSE 0.4362 0.5630 0.4770 0.6360 0.8188
MAE 0.7242 0.7959 0.7507 0.8363 0.9155

Note: MSE and MAE are the mean square error and mean absolute error ratios, respectively, de�ned in (3.15), and obtained

from the extraction error, (3.13). The daily integrated volatilities are: IV 1, IV 2 and IV 3 are the 1-day, 2- and 3-days Integrated

Volatilities, respectively. HIV 1, HIV 2 and HIV 3 are the 1-day, 2- and 3-day Historical Integrated Volatilities, respectively.

EHIV 1, EHIV 2 and EHIV 3 are the 1-day, 2- and 3-days Exponentially Historical Integrated Volatilities, respectively. The

decay rate in the exponential weighting scheme that minimizes the MSE/MAE is 0.99. The monthly integrated volatilities are:

IV 22, IV 44 and IV 66 are the 22-, 44-, and 66-days Integrated Volatilities, respectively, and, HIV 22, HIV 44 and HIV 66 are the

22-, 44- and 66-day Historical Integrated Volatilities, respectively. These daily simulation results refer to the 5 year sample and

the 5-minute intraday frequency as reported in section 3.4. Similar results apply to 30-minute intraday frequency as well as the

10 year sample.The monthly simulation results refer to a 30 year sample size.
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Table VII: Monte Carlo Simulated 20-day and 12-month ahead MSE and MAE Ratios of
Integrated Volatilities

Daily Frequency, Benchmark: IV 1

IV 2 IV 3 HIV 1 HIV 2 HIV 3 EHIV 1 EHIV 2 EHIV 3

S&P 500
MSE 0:6893 0:5959 0:8051 0:6587 0:5964 0.8140 0.6949 0.6549
MAE 0:8304 0:7721 0:8980 0:8120 0:7720 0.9028 0.8327 0.8084

DM/US$
MSE 1:011 1:029 1:022 1:040 1:060 1.009 1.036 1.072
MAE 1:013 1:019 1:007 1:013 1:019 1.003 1.013 1.028

YN/US$
MSE 1:014 1:030 1:023 1:041 1:058 1.012 1.038 1.070
MAE 1:014 1:019 1:008 1:014 1:019 1.004 1.015 1.028

Monthly Frequency, Benchmark: IV 22

IV 44 IV 66 HIV 22 HIV 44 HIV 66

S&P 500
MSE 0:9521 0:9474 0:9804 0:9690 0:9714
MAE 0:9781 0:9748 0:9902 0:9824 0:9805

DM/US$
MSE 1:000 1:001 1:001 1:001 1:001
MAE 1:000 1:000 1:001 1:001 1:001

YN/US$
MSE 1:000 1:001 1:001 1:001 1:001
MAE 1:000 1:000 1:001 1:001 1:001

Note: The h-period ahead forecast MSE and MAE are the mean square error and mean absolute error ratios, respectively, de�ned

in (3.15), and obtained from the extraction error in (3.13), using the h-period linear projection GARCH(1,1) equation in (3.16).

The daily integrated volatilities are: IV 1, IV 2 and IV 3 are nthe 1-day, 2- and 3-days Integrated Volatilities, respectively. HIV 1,

HIV 2 and HIV 3 are the 1-day, 2- and 3-day Historical Integrated Volatilities, respectively. EHIV 1, EHIV 2 and EHIV 3 are the

1-day, 2- and 3-days Exponentially Historical Integrated Volatilities, respectively. The decay rate the minimizes the MSE/MAE

is 0.99. The monthly integrated volatilities are: IV 22, IV 44 and IV 66 are the 22-, 44-, and 66-days Integrated Volatilities,

respectively and, HIV 22, HIV 44 and HIV 66 are the 22-, 44- and 66-day Historical Integrated Volatilities, respectively. These

daily simulation results refer to the 5 year sample and the 5-minute intraday frequency as reported in section 3.4. Similar results

apply to 30-minute intraday frequency as well as the 10 year sample. The monthly simulation results refer to a 30 year sample

size.
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Table VIII: Monte Carlo Simulated R2 of the Mincer-Zarnovitz Regression

Spot Volatilities

Daily SV 1 SV 2 SV 3 RM RV 26 RV 52

S&P 500 0.4671 0.5210 0.5460 0:8955 0:8464 0:9199

DM/US$ 0.4240 0.4542 0.4886 0:9068 0:8070 0:5244

YN/US$ 0.4416 0.4848 0.5209 0:8058 0:6577 0:3498

Monthly SV 1 SV 2 SV 3 RM RV 12 RV 24 RV 60

S&P 500 0:1913 0:2859 0:3403 0:6101 0:7752 0:5370 0:2140

DM/US$ 0:0325 0:1126 0:1410 0:1765 0:1919 0:0936 0:0334

YN/US$ 0:0248 0:1171 0:1327 0:1278 0:1343 0:0652 0:0231

Integrated Volatilities

Daily IV 1 IV 2 IV 3 HIV 1 HIV 2 HIV 3

S&P 500 0:8140 0:9062 0:9379 0:8805 0:9251 0:9449

DM/US$ 0:9716 0:9821 0:9670 0:9797 0:9634 0:9407

YN/US$ 0:9809 0:9786 0:9479 0:9770 0:9421 0:9033

Daily EHIV 1 EHIV 2 EHIV 3

S&P 500 0.8838 0.9220 0.9342

DM/US$ 0:9828 0:9578 0:9226

YN/US$ 0.9870 0.9411 0.8867

Monthly IV 22 IV 44 IV 66 HIV 22 HIV 44 HIV 66

S&P 500 0:6940 0:9169 0:9653 0:9070 0:9738 0:9636

DM/US$ 0:7686 0:9164 0:9409 0:9794 0:7582 0:5514

YN/US $ 0:7478 0:9110 0:7021 0:9770 0:7192 0:4915

Note: The Mincer-Zarnovitz regression is de�ned in (3.17). The daily integrated volatilities are: IV 1, IV 2 and IV 3 are the 1-

day, 2- and 3-days Integrated Volatilities, respectively. HIV 1, HIV 2 and HIV 3 are the 1-day, 2- and 3-day Historical Integrated

Volatilities, respectively. EHIV 1, EHIV 2 and EHIV 3 are the 1-day, 2- and 3-days Exponentially Historical Integrated Volatilities,

respectively. The monthly integrated volatilities are: IV 22, IV 44 and IV 66 are the 22-, 44-, and 66-days Integrated Volatilities,

respectively and, HIV 22, HIV 44 and HIV 66 are the 22-, 44- and 66-day Historical Integrated Volatilities, respectively.The daily

volatilities refer to a �ve year sample and the monthly volatilities to a thirty year sample.
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Table IX: Monte Carlo Simulated Contemporaneous MSE and MAE Ratios
of Spot Volatilities under conditional Student's t (�)

S&P500

Daily Frequency, Benchmark: SV1

SV2 SV3 RM RV26 RV52

� = 8

MSE 0.7915 0.6363 0.0405 0.0172 0.0014

MAE 0.8957 0.8042 0.1654 0.1101 0.0262

� = 10

MSE 0.8217 0.6861 0.0556 0.0277 0.0016

MAE 0.9148 0.8381 0.2018 0.1474 0.0303

� = 12

MSE 0.8507 0.7327 0.0668 0.0391 0.0018

MAE 0.9303 0.8655 0.2228 0.1778 0.0312

Monthly Frequency, Benchmark: RV 12

SV1 SV2 SV3 RM RV 24 RV 60

� = 4

MSE 0.7852 0.7089 0.7193 0.1747 0.1613 0.4964

MAE 0.7659 0.7564 0.7737 0.3915 0.3736 0.6381

� = 6

MSE 0.7165 0.7216 0.7364 0.1047 0.1726 0.3343

MAE 0.7920 0.8013 0.8136 0.2743 0.3592 0.5029

� = 8

MSE 0.6702 0.6702 0.6748 0.1394 0.3624 0.2162

MAE 0.7893 0.7933 0.7981 0.3291 0.5506 0.3986

Note: The MSE and MAE are the mean square error and mean absolute error ratios, respectively, de�ned in (3.14), and obtained

from the extraction error (3.12). The simulated process refers to a GARCH(1,1) with conditional Student's t distribution and

degress of freedom �; where � is de�ned as 8, 10 and 12 for the daily frequency and 4, 6 and 8 for monthly frequency. The

parameters of the GARCH(1,1) model for the one-minute S&P 500 are de�ned in Table III. The daily spot volatilities are: SV1,

SV2 and SV3 are the 1-day, 2- and 3-days Spot Volatilities, respectively. RM is the RiskMetrics, RV26 and RV52 are the 26-days

and 52-days one-sided Rolling Volatilities, respectively. The monthly spot volatilities are: SV1, SV2 and SV3 are the 1-month,

2-months and 3-months Spot Volatilities, respectively. RV12, RV24 and RV60 are the 12-, 24- and 60-months Rolling Volatilities,

respectively. These simulation results refer to the 5 year sample and the 5-minute intraday frequency as reported in section 3.4.
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Table X: Monte Carlo Simulated Contemporaneous MSE and MAE Ratios
of Integrated Volatilities under conditional Student's t (�) for S&P 500

Daily Frequency, Benchmark: SV1
IV2 IV3 HIV1 HIV2 HIV3 EHIV1 EHIV2 EHIV3

� = 8
MSE 0.3661 0.1114 0.4024 0.1178 0.0620 0.4521 0.1677 0.1106
MAE 0.6154 0.3235 0.6230 0.3244 0.2080 0.6664 0.3818 0.2980

� = 12
MSE 0.3982 0.1616 0.4741 0.1872 0.1061 0.5124 0.2339 0.1616
MAE 0.6396 0.3985 0.6786 0.4203 0.2991 0.7092 0.4672 0.3792

Monthly Frequency, Benchmark: IV22
IV44 IV66 HIV22 HIV44 HIV66

� = 4
MSE 1.027 1.048 0.3286 0.076 0.025
MAE 1.014 1.024 0.4932 0.2511 0.1296

� = 8
MSE 1.003 1.008 0.1168 0.0496 0.0339
MAE 1.002 1.004 0.2680 0.1894 0.1531

Monthly Frequency, Benchmark: CAR22
CAR44 CAR66 HCAR22 HCAR44 HCAR66

Cond. Normality
MSE 0.999 0.999 0.0692 0.0660 0.0658
MAE 1.000 1.000 0.2561 0.2554 0.2554

� = 4
MSE 1.012 1.023 0.1468 0.0543 0.0193
MAE 1.006 1.011 0.3412 0.2215 0.1226

� = 8
MSE 1.002 1.004 0.0538 0.0335 0.0257
MAE 1.001 1.002 0.1976 0.1705 0.1485

Note: The simulated process refers to a GARCH(1,1) with conditional Student's t distribution and degress of freedom �, where �

is de�ned as 8 and 12 for the daily frequency and 4 and 8 for monthly frequency. The parameters of the GARCH(1,1) model for

the daily S&P 500 are de�ned in Table III. MSE and MAE are the mean square error and mean absolute error ratios, respectively,

de�ned in (3.15), and obtained from the extraction error, (3.13). The daily integrated volatilities are: IV k; for k-day Integrated

Volatilities. HIV k are the k-day Historical Integrated Volatilities. EHIV k are the k-day Exponentially Historical Integrated

Volatilities. The decay rate in the exponential weighting scheme that minimizes the MSE/MAE is 0.99. The monthly Cumulative

Absolute Returns (CAR) refer to the CARk de�ned as the k-day Cumulative Absolute Returns and HCARk the k-day Historical

Cumulative Absolute Returns based on rolling samples of CAR. These simulation results refer to the 5 year sample and the

5-minute intraday frequency as reported in section 3.4.
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Table XI: Empirical GARCH(1,1) Model Estimates

Monthly Daily Intra-day Frequency
15-min. 30-min.

S&P 500 S&P 500 DM/US$ DM/US$
Parameters

(m) 0:1659 0:0389 �0:0108 0:0011 0:0007

(0:0348) (0:0059) (0:0185) (0:0015) (0:0023)
�(m) �0:0679 0:1477 �0:0019 �0:0655 �0:0406

(0:0394) (0:0084) (0:0212) (0:0026) (0:0038)
�(m) 0:0289 0:0089 0:0161 0:0515 0:08633

(0:0147) (0:0012) (0:0055) (0:0009) (0:0018)
�(m) 0:0720 0:0728 0:0462 0:2032 0:2221

(0:0219) (0:0042) (0:0075) (0:0029) (0:0039)
�(m) 0:9000 0:9201 0:9378 0:7836 0:7335

(0:0273) (0:0046) (0:0111) (0:0027) (0:0037)
�(m) 4:6047 7:08292 4:6309 138:0416 70:5397
v(m) 1:0321 1:2535 1:0312 3:8772 1:9444

�(m)� (v(m))2 4:9055 11:1295 4:6599 2057:099 226:6804

Notes: The results refer to the QMLE of and AR(1)-GARCH(1,1) model. The 
(m) and �(m) are the constant

and autoregressive coe�cients in the AR(1). The GARCH model parameters are, �(m); �(m) and �(m), as

de�ned in (3.2). The estimated kurtosis parameter is �(m): The unconditional variance is v(m) = �(m)=(1�

�(m) � �(m)): The S&P 500 is the daily Standard Poor's composite returns covering the daily sample period

of 03/01/1928 - 29/08/1997, T=18,751 daily observations. These were aggregated for every 22 trading days to

approximate the number of trading days within a month. The DM/US $ returns covers the 5-minute sample

period of ten years, 01/12/86 - 30/11/96, (T=2,653 days), obtained from Olsen and Associates. The �nal

sample removes a number of days as described in section 5 and in Andersen, Bollerslev and Lange (1998). The

�nal sample includes 2,449 days or 705,312 5-minutes. These were aggregated to obtain the 15- and 30-minutes

samples of 235,104 and 117,552 observations, respectively.
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Table XII: Empirical Results of h-day ahead MSE and MAE
Ratios of Spot Volatilities

Benchmark: SV 1
SV 2 SV 3 RM RV 26 RV 52

Five-minute Sampling Frequency
DM/US$

h = 1 day
MSE 0:8353 0:7728 0:6182 0:6541 0:5834
MAE 0:9585 0:9382 0:8685 0:8950 0:8355
h = 5 days
MSE 0:8203 0:7526 0:5848 0:6239 0:5513
MAE 0:9542 0:9328 0:8577 0:8898 0:8238
h = 20 days
MSE 0:7473 0:6543 0:4410 0:4960 0:4225
MAE 0:9295 0:8946 0:8063 0:8625 0:7913

YN/US$
h = 1 day
MSE 0:8520 0:7858 0:7387 0:7832 0:6984
MAE 0:9599 0:9380 0:9466 0:9766 0:9129
h = 5 days
MSE 0:8372 0:7653 0:7109 0:7596 0:6719
MAE 0:9560 0:9325 0:9416 0:9766 0:9102
h = 20 days
MSE 0:7741 0:6756 0:5673 0:6281 0:5433
MAE 0:9348 0:9014 0:9156 0:9664 0:8998

Fifteen-minute Sampling Frequency
DM/US$

h = 1 day
MSE 0:8288 0:7646 0:5616 0:5924 0:5298
MAE 0:9568 0:9369 0:8171 0:8423 0:7859
h = 5 days
MSE 0:8129 0:7433 0:5277 0:5634 0:4971
MAE 0:9532 0:9318 0:8042 0:8347 0:7720
h = 20 days
MSE 0:7339 0:6367 0:3813 0:4315 0:3639
MAE 0:9289 0:8918 0:7400 0:7941 0:7249

53



Table XII continued

YN/US$
h = 1 day
MSE 0:8544 0:7903 0:6521 0:6916 0:6164
MAE 0:9591 0:9389 0:8736 0:9015 0:8424
h = 5 days
MSE 0:8399 0:7701 0:6230 0:6662 0:5884
MAE 0:9555 0:9329 0:8646 0:8975 0:8357
h = 20 days
MSE 0:7713 0:6728 0:4771 0:5323 0:4555
MAE 0:9353 0:9030 0:8191 0:8702 0:8074

Thirty-minute Sampling Frequency
DM/US$

h = 1 day
MSE 0:7918 0:7225 0:4817 0:5098 0:4544
MAE 0:9537 0:9305 0:7797 0:8040 0:7500
h = 5 days
MSE 0:7746 0:6999 0:4468 0:4773 0:4207
MAE 0:9497 0:9252 0:7641 0:7935 0:7338
h = 20 days
MSE 0:6912 0:5905 0:3013 0:3428 0:2869
MAE 0:9246 0:8848 0:6895 0:7407 0:6751

YN/US$
h = 1 day
MSE 0:8223 0:7531 0:5754 0:6103 0:5438
MAE 0:9607 0:9401 0:8401 0:8671 0:8100
h = 5 days
MSE 0:5434 0:8061 0:7310 0:5814 0:5128
MAE 0:9577 0:9350 0:8299 0:8619 0:8016
h = 20 days
MSE 0:7292 0:6258 0:3916 0:4394 0:3702
MAE 0:9370 0:9062 0:7751 0:8293 0:7639

Notes: The h-day ahead forecast MSE and MAE are the mean square error and mean absolute error ratios, respectively, de�ned

in (3.14) and obtained from the extraction error (3.12) using the h-day linear projection GARCH(1,1) equation in (3.16). The

forecast horizons of h=1,5,20 days represent the one day, week and month, respectively. The daily GARCH(1,1) parameters for

each series were obtained in Table III (top panel) mainly for consistency purposes with the simulation results and for comparison

with other studies. The DM/US $ and YN/US $ returns cover the ten year period, 01/12/86 - 20/11/96 (removing some days as

described in section 5). The �nal daily sample of 2,449 days covers 705,312 5-minute observations. These were aggregated to obtain

the 15- and 30-minutes samples of 235,104 and 117,552 observations, respectively. The data source is Olsen and Associates. The

daily spot volatilities based on intraday frequency are the 1-, 2- and 3-days spot volatilities, SV 1, SV 2 and SV 3, respectively. The

spot volatilities based on daily frequency are the textitRiskMetrics (RM) and the one-sided 26- and 52-days Rolling Volatilities

(RV 26 and RV 52, respectively.
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Table XIII: Empirical Results of h-month ahead MSE and MAE
Ratios of Spot Volatilities

Monthly Frequency, Benchmark: RV 12

SV 1 SV 2 SV 3 RM RV 24 RV 60

S&P 500

h = 1 month

MSE 1:2519 0:9176 0:8163 0:7915 0:9069 0:9830

MAE 0:7970 0:7990 0:8036 1:1124 1:0388 1:1856

h = 6 months

MSE 1:5649 0:9812 0:8331 0:9208 1:1292 1:4024

MAE 0:8857 0:8226 0:8093 1:1591 1:1234 1:3523

h = 12 months

MSE 1:3327 1:1262 1:0838 1:2025 1:3019 1:4613

MAE 1:1297 1:0759 1:0568 1:0063 1:0632 1:1286

Note: The h-month ahead forecast MSE and MAE are the mean square error and mean absolute error

ratios, respectively, de�ned in (3.14) obtained from the extraction error in (3.12) using the h-month

linear projection GARCH(1,1) equation in (3.16). The forecast horizons are h=1,6,12 months. The

monthly GARCH parameters for the S&P 500 were obtained from Table III (last panel), mainly for

consistency purposes with the simulation evidence. The equivalent monthly sample was approximated

by aggregating every 22 days to obtain a sample of 844 months. The monthly spot volatilities based

on daily frequency for 1-, 2- and 3-months are SV 1, SV 2 and SV 3, respectively. The spot volatilities

based on monthly frequency are the textitRiskMetrics (RM) and the Rolling Volatilities for 12-, 24-

and 60-months, RV 12, RV 24 and RV 60, respectively.
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Table XIV: Empirical Results of h-day ahead MSE and MAE Ratios of Daily Integrated

Volatilities

Benchmark: IV 1

IV 2 IV 3 HIV 1 HIV 2 HIV 3 EHIV 1 EHIV 2 EHIV 3

Five-minute Sampling Frequency
DM/US$

h = 1 day
MSE 0:7338 0:6344 0:9015 0:7049 0:6106 0:9046 0:7218 0:6286
MAE 0:9180 0:8742 0:9602 0:9075 0:8684 0:9531 0:9342 0:9214
h = 5 days
MSE 0:7115 0:6058 0:8958 0:6828 0:5825 0:8975 0:7101 0:6152
MAE 0:9101 0:8605 0:9581 0:9010 0:8560 0:9483 0:9309 0:9208
h = 20 days
MSE 0:7409 0:6543 0:9173 0:7277 0:6455 0:9122 0:7900 0:7452
MAE 0:9342 0:9044 0:9768 0:9359 0:9102 0:9707 0:9675 0:9707

YN/US$
h = 1 day
MSE 0:7575 0:6494 0:9065 0:7264 0:6330 0:9231 1:0556 0:6869
MAE 0:9299 0:8910 0:9706 0:9196 0:8865 0:9714 0:9813 0:9300
h = 5 days
MSE 0:7320 0:6163 0:8984 0:7005 0:6015 0:9157 1:0565 0:6712
MAE 0:9230 0:8807 0:9663 0:9139 0:8758 0:9680 0:9828 0:9337
h = 20 days
MSE 0:7758 0:6835 0:9249 0:7602 0:6805 0:9337 1:0489 0:7724
MAE 0:9541 0:9361 0:9906 0:9614 0:9438 0:9859 1:0166 0:9882

Fifteen-minute sampling frequency
DM/US$

h = 1 day
MSE 0:7179 0:6136 0:8899 0:6847 0:5896 0:8802 0:6826 0:5781
MAE 0:9217 0:8767 0:9612 0:9087 0:8713 0:9561 0:9153 0:8804
h = 5 days
MSE 0:6930 0:5814 0:8819 0:6592 0:5572 0:8708 0:6602 0:5485
MAE 0:9103 0:8609 0:9559 0:8985 0:8552 0:9495 0:9071 0:8682
h = 20 days
MSE 0:7180 0:6224 0:8994 0:6967 0:6096 0:8869 0:7088 0:6211
MAE 0:9300 0:8947 0:9749 0:9270 0:8960 0:9675 0:9328 0:9054
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Table XIV continued

YN/US$
h = 1 day
MSE 0:7533 0:6453 0:9033 0:7221 0:6297 0:8972 0:8196 0:6310
MAE 0:9278 0:8931 0:9707 0:9197 0:8888 0:9688 0:9352 0:8941
h = 5 days
MSE 0:7273 0:6107 0:8954 0:6956 0:5964 0:8879 0:8012 0:6031
MAE 0:9198 0:8788 0:9671 0:9117 0:8746 0:9643 0:9299 0:8859
h = 20 days
MSE 0:7631 0:6662 0:9169 0:7447 0:6622 0:9079 0:8285 0:6852
MAE 0:9465 0:9241 0:9816 0:9492 0:9301 0:9784 0:9639 0:9429

Thirty-minute sampling frequency
DM/US$

h = 1 day
MSE 0:6743 0:5675 0:8659 0:6443 0:5429 0:8579 0:6358 0:5283
MAE 0:9177 0:8750 0:9567 0:9042 0:8679 0:9534 0:9036 0:8674
h = 5 days
MSE 0:6507 0:5380 0:8571 0:6203 0:5130 0:8483 0:6128 0:4991
MAE 0:9068 0:8597 0:9516 0:8931 0:8514 0:9478 0:8939 0:8539
h = 20 days
MSE 0:6738 0:5748 0:8707 0:6521 0:5582 0:8616 0:6491 0:5229
MAE 0:9273 0:8929 0:9694 0:9242 0:8947 0:9653 0:9239 0:8991

YN/US$
h = 1 day
MSE 0:7093 0:5969 0:8686 0:6718 0:5767 0:8546 0:7198 0:5739
MAE 0:9284 0:8940 0:9695 0:9200 0:8886 0:9681 0:9275 0:8875
h = 5 days
MSE 0:6837 0:5634 0:8553 0:6448 0:5733 0:8429 0:6964 0:5411
MAE 0:9186 0:8778 0:9652 0:9091 0:8738 0:9631 0:9179 0:8738
h = 20 days
MSE 0:7143 0:6107 0:8756 0:6876 0:6003 0:8630 0:7315 0:6013
MAE 0:9470 0:9251 0:9874 0:9483 0:9305 0:9858 0:9574 0:9331

Note: The h-day ahead forecast MSE and MAE are the mean square error and mean absolute error ratios, respectively, de�ned

in (3.15) and obtained from the extraction error (3.13) using the h-day linear projection GARCH(1,1) equation in (3.16). The

forecast horizons of h=1,5,20 days represent the one day, week and month, respectively. The daily GARCH(1,1) parameters for

each series were obtained in Table III (top panel) mainly for consistency purposes with the simulation results and for comparison

with other studies. The DM/US $ and YN/US $ returns cover the ten year period, 01/12/86 - 20/11/96 (removing some days

as described in section 5). The �nal daily sample of 2,449 days covers 705,312 5-minute observations. These were aggregated to

obtain the 15- and 30-minutes samples of 235,104 and 117,552 observations, respectively. The data source is Olsen and Associates.

The block-sample integrated volatilities for 1-, 2- and 3-days are the IV 1, IV 2 and IV 3, respectively. The Historical Integrated

Volatilities for 1-, 2- and 3-days are HIV 1, HIV 2 and HIV 3, respectively. The Exponential HIV for 1-, 2- and 3-days are the

EHIV 1, EHIV 2 and EHIV 3, respectively. The decay factor in the exponential weights that yielded the minimum MSE was

0.990 (among the choice of 0.96 and 0.94).
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Table XV: Empirical Results of h-month ahead MSE and MAE Ratios of S&P 500 Monthly

Integrated Volatilities

Benchmark: 1-month IV (IV 22)

IV 44 IV 66 HIV 22 HIV 44 HIV 66

h = 1 month
MSE 0:7255 0:6273 0:8028 0:6900 0:6142
MAE 0:9991 1:0005 1:0024 1:0044 1:0042
h = 6 months
MSE 0:6414 0:5118 0:7491 0:5994 0:5015
MAE 0:9177 0:8892 0:9546 0:9192 0:8943
h = 12 months
MSE 0:9029 0:8719 0:9336 0:8969 0:8752
MAE 0:9697 0:9520 0:9807 0:9630 0:9518

Benchmark: 1-month IV + SC (IV 22 + SC22)

IV 44+ IV 66+ HIV 22+ HIV 44+ HIV 66+
SC44 SC66 SC22 SC44 SC66

h = 1 month
MSE 0:6404 0:5093 0:4964 0:5929 0:6063
MAE 0:9165 0:8884 0:8904 0:9142 0:2361
h = 6 months
MSE 0:6404 0:5093 0:4664 0:5929 0:6063
MAE 0:9165 0:8884 0:8904 0:9142 1:2361
h = 12 months
MSE 0:9015 0:8694 0:8717 0:8936 1:6015
MAE 0:9691 0:9511 0:9498 0:9612 1:3914
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Table XV continued
Benchmark: 1-month CAR (CAR22)

CAR44 CAR66 HCAR22 HCAR44 HCAR66

h = 1 month
MSE 0:9329 0:9040 0:9620 0:9282 0:9034
MAE 0:9998 0:9995 0:9999 0:9996 0:9994
h = 6 months
MSE 0:7827 0:6903 0:8891 0:7799 0:7016
MAE 0:9466 0:9181 0:9741 0:9489 0:9303
h = 12 months
MSE 0:9868 0:9835 0:9951 0:9903 0:9881
MAE 0:9937 0:9917 0:9976 0:9946 0:9927

Note: The h-month ahead forecast MSE and MAE are the mean square error and mean absolute error ratios, respectively, de�ned

in (3.14) obtained from the extraction error in (3.12) using the h-month linear projection GARCH(1,1) equation in (3.16). The

forecast horizons are h=1,6,12 months. The monthly GARCH parameters for the S&P 500 were obtained fromTable III (last panel),

mainly for consistency purposes with the simulation evidence. The equivalent monthly sample was approximated by aggregating

every 22 days to obtain a sample of 844 months. The monthly block sample integrated volatilities for 22-, 44- and 66-days are IV 22,

IV 44 and IV 66, respectively. The Historical Integrated Volatilities for 22-, 44- and 66-days are the HIV 22, HIV 44 and HIV 66,

respectively. The second panel presents a serial correlation correction to the integrated volatilities; The IV 22+SC22, IV 44+SC44

and IV 66+SC66 are the 22-, 44- and 66-day block sampled Integrated Volatilities (IV) corrected for serial correlation by adding 2

times the sum of the cross-product terms of returns with the �rst lag of returns (SC). The HIV+SC refer to respective Historical

Integrated Volatility plus the cross-product term. The last panel presents a di�erent de�nition of cumulative quadratic variation.

The CAR22, CAR44, CAR66 are the 22-, 44- and 66-day Cumulative Absolute Returns, respectively. HCAR22, HCAR44, HCAR66

are the 22-, 44- and 66-day Historical Cumulative Absolute Returns based on rolling samples of CAR.
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