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A New Class of Stochastic Volatility Modelswith Jumps:
Theory and Estimation’

Mikhail Chernov', A. Ronald Gallant*, Eric Ghysels®, George Tauchen'
Résumé / Abstract

Nous présentons une nouvelle classe de processus a sauts avec volatilité
stochastique. Cette nouvelle classe généralise les modeéles affinés proposés par
Duffie, Pan et Singleton (1998). La généralité se manifeste par une représentation
générique des sauts par un processus de Lévy. La classe des processus que nous
présentons nous fournit également des prix d’options. Une application empirique
démontre la présence de sauts dans des séries financiéres telles le S&P500 et le
Dow Jones. De plus, les processus n'ont pas une intensité constante. Nous
analysons plusieurs spécifications empiriques.

The purpose of this paper is to propose a new class of jump diffusions
which feature both stochastic volatility and random intensity jumps. Previous
studies have focussed primarily on pure jump processes with constant intensity
and log-normal jumps or constant jump intensity combined with a one factor
stochastic volatility model. We introduce several generalizations which can better
accommodate several empirical features of returns data. In their most general
form we introduce a class of processes which nests jump-diffusions previously
considered in empirical work and includes the affine class of random intensity
models studied by Bates (1998) and Duffie, Pan and Sngleton (1998) but also
allows for non-affine random intensity jump components. We attain the generality
of our specification through a generic Lévy process characterization of the jump
component. The processes we introduce share the desirable feature with the affine
class that they yield analytically tractable and explicit option pricing formula. The
non-affine class of processes we study include specifications where the random
intensity jump component depends on the size of the previous jump which
represent an alternative to affine random intensity jump processes which feature
correlation between the stochastic volatility and jump component. We also allow
for and experiment with different empirical specifications of the jump size
distributions. We use two types of data sets. One involves the S&P500 and the
other comprises of 100 years of daily Dow Jones index. The former is a return
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series often used in the literature and allows us to compare our results with
previous studies. The latter has the advantage to provide a long time series and
enhances the possibility of estimating the jump component more precisely. The
non-affine random intensity jump processes are more parsimonious than the
affine class and appear to fit the data much better.

Mots Clés : Processus a sauts, mesures de Lévy, modeéles a volatilité stochastique

Keywords. Efficient method of moments, Poisson processes, jump processes, stochastic
volatility models, filtering

JEL: G13, C14, C52, C53



Introduction

Much research has been devoted to the estimation of continuous time processes to describe
the evolution of fundamental asset prices. The failure of the Black-Scholes model has di-
rected attention to continuous time processes more general than the standard geometric
Brownian motion. Since asset returns feature a greater degree of kurtosis in the uncondi-
tional returns distributions than implied by normality, attempts at reconciling the theory
with the empirical evidence have focused on extensions of the Black-Scholes model which

L Asset returns also display strong volatility clus-

include a Poisson-driven jump process.
tering, a feature which can neither be reconciled with the Black-Scholes model nor with
pure Poisson jump processes. Diffusions with stochastic volatility have therefore been in-
troduced to capture persistence in volatility.? Clearly, jump-diffusion processes combining
stochastic volatility and Poisson jumps processes have two appealing features to model stock
returns. The continuous path stochastic volatility part accommodates the clustered random
changes in the returns volatility whereas the discrete jump component accommodates the

3 These models have received much attention recently.

infrequent large price movements.
Various papers have examined the econometric estimation and/or derivative security pricing
with such processes. Examples include Bates (1996a), Ho, Perraudin and Sgrensen (1996),
Scott (1997), Bakshi, Cao and Chen (1997), Scott (1997), Bates (1998), Andersen, Benzoni
and Lund (1998), among others. Bakshi and Madan (1998a) and Duffie, Pan and Single-
ton (1998) provide very elegant general discussions of the particularly versatile class of affine
jump-diffusions with stochastic volatility which yield analytic solutions to derivative security
pricing.

Attempts to estimate jump-diffusions have focused almost exclusively on processes involv-

ing pure Poisson jump components. Empirical studies which combine stochastic volatility

"For work on jump-diffusions see Merton (1976), Cox and Ross (1976), Ball and Torous (1983, 1985),
Jarrow and Rosenfeld (1984), Jorion (1988) among others. In particular see the survey of Bates (1996b) for

further references.
2See for instance Hull and White (1987), Scott (1987), Wiggins (1987), Heston (1993) and many others

and the survey by Ghysels et al. (1996) for further details.
31t is worth noting that a different model was proposed by Bakshi and Madan (1998b). It can be described

as a purely discontinuous process which can capture the same empirical stylized facts as jump diffusions do.

We will not consider this class of processes in this paper.



and jump processes, such as Bates (1996), Bakshi, Cao and Chen (1997) and Andersen,
Benzoni and Lund (1998) assume the stochastic volatility and the jump components are
mutually orthogonal. Moreover, since jumps are governed by a Poisson process, their in-
tensity is assumed to be independently and identically distributed. The stochastic volatility
component is also limited to a one factor model specification. While such models seem to
fit (marginally) many aspects of the data it is clear that they can be improved upon. The
stochastic structure of these models implies that the day after a stock market crash another
crash is equally likely as the day before market nose-dived. In addition, the occurrence of
jumps is independent of volatility. Bates (1998) estimated a class of jump-diffusions with
random intensity for the jump process, more specifically where the intensity is an affine
function of the stochastic volatility component. Duffie, Pan and Singleton (1998) generalize
this class and Pan (1999) estimates multi-factor jump-diffusion models with affine stochastic
jump intensity. This structure may not be entirely suitable either to accommodate some
stylized facts. For instance the day before the 1987 stock market crash the volatility mea-
sured by the squared return on the S&P 500 index was roughly the same as the day after
the crash. Therefore, in this case making the intensity of a crash a linear affine function of
volatility would again result in the probability of a crash the day after Black Monday being
the same as the trading day before the crash.*

The purpose of this paper is to introduce a class of stochastic volatility models with jumps
which includes the affine class of random intensity models studied by Bates (1998), Duffie,
Pan and Singleton (1998) and Pan (1999) but also allows for non-affine random intensity
jump components. The class of models also feature multiple factor stochastic volatility
processes. The non-affine random intensity jump processes appear to fit the data better
compared to the constant and random affine intensity jump-diffusion models. Moreover,
the processes we introduce share the desirable feature with the affine class that they yield
analytically tractable and explicit option pricing formula. The non-affine class of processes
we study include specifications where the random intensity jump component depends on
the size of the previous jump. For instance large (negative) jumps reduce the intensity of
jumps which is a realistic representation of crash behavior. It also represents an alternative

to affine random intensity jump processes which feature correlation between the stochastic

4To be more precise the log of the return on the S&P 500 index was -0.0529 on Friday October 16, it was
-0.2283 on Black Monday, namely October 19, 1987, and it was 0.0513 the day after.



volatility and jump component. We also allow for and experiment with different empirical
specifications of the jump size distributions. The size of jumps is typically modeled as a
random variable with a log-normal distribution since it yields analytically tractable option
pricing models. However, other distributional specifications may fit the data better and still
yield analytical solutions to option pricing. We have recently become aware of independent
work by Johannes, Kumar and Polson (1999) who propose a class of jump diffusion processes
which has some similarities with the ones introduced here. They analyze a process where
the jump intensity is a function of past jump events and the absolute value of returns.
Their analysis proceeds in discrete time and uses Bayesian MCMC methods to estimate
the parameters and extract the latent volatility, jump intensity and size. While there are
some similarities between the class of processes we study and their specification, there are
also some important differences. One of the most notable differences is that we propose
continuous time models which have option pricing formula which can be derived explicitly.
For instance, some of the processes studied by Johannes et al. (1999), such as the probit
specification with lagged jump time, do not have straightforward continuous time diffusion
limits. In contrast, we study exclusively processes which yield readily derivative security
prices. In particular, when we introduce several alternative distributional specifications for
the jump size distribution, we select specifications which yield tractable solutions to option
pricing and also yield an easy specification of the drift in the continuous time process.

In their most general form we introduce a class of processes which nests jump-diffusions
previously considered in empirical work. In particular, special cases include the one-factor
SV - Poisson jump processes studied by Andersen, Benzoni and Lund (1998), among others,
and the affine class of multi-factor SV - affine random intensity jump processes studied by
Bates (1998) and Pan (1999). They also include the non-affine models studied by Johannes
et al. (1999). We attain the generality of our specification through a generic Lévy process
characterization of the jump component.®

The empirical analysis in our paper tries to strike a balance between two objectives which
are not easy to reconcile. Because the task of estimating jump-diffusions is challenging it is
better to use time series covering a long history of market activity containing potentially sev-

eral crashes. We consider two data sets. The first covers over 100 years of daily observations

5See also Bakshi and Madan (1998b) for a similar approach involving general Lévy measures to charac-

terize jump processes.



on the Dow Jones Industrial Average (DJIA) index. Unfortunately, the Dow was until very
recently an index without derivative contracts. The second data set is much shorter, namely
contains daily observations from April 1986 until August 1997, and covers the widely used
S&P5H00 index which features as the fundamental asset for a very liquid derivatives market,
including the most actively traded set of SPX contracts. Since the class of models we con-
sider readily yields option pricing formula, it could be used to estimate jump-diffusions using
simultaneously S&P 500 data and SPX options contracts. Such endeavor would require the
specification of both the risk neutral and objective measures of the process. In this paper we
limit ourselves to the objective measure representation of the class of processes we introduce.
In a companion paper, Chernov et al. (1999), we discuss the option pricing implications of
the class of processes introduced here and estimate jump-diffusions with a panel of options
and returns data using an approach similar to that in Chernov and Ghysels (1998). The
purpose of examining a long Dow Jones series and a much shorter S&P 500 series is to make
comparisons about the validity of the inference made across the two indices. This will then
in turn help us with the sequel to this project, which consists of estimating jump-diffusions
with S&P 500 and SPX options data jointly. Moreover, many of the existing empirical stud-
ies have used the S&P 500 index data as well which allows us to make direct comparisons
with findings previously reported in the literature.

The paper is structured as follows. In the first section we discuss the generic class of
processes. Then we briefly discuss the data and estimation procedure in a second section. A

third section is devoted to the empirical results while a fourth section concludes.

1 The Generic Class of Models

The purpose of this section is to present a general structure of jump/diffusion processes. Our
discussion is based on the developments in Chernov (1999). The diffusion part of the generic
class of models can have multiple factors like in Duffie, Pan and Singleton (1998). Since
their analysis is very general and thorough we will not provide many details regarding the
diffusion part of the processes. In particular we will assume that the stock (index) process
satisfies dlog S; = dUy; + dX; where Uy, is the first element of the vector process U; defined
as:

AUy = p(Uy, t)dt + o(Ug, t)dW, (1.1)



where the process U, is Markovian and takes values in an open subset D of RN, u(y) = ©6+Ky
with g : D — RN and o(y)o(y) = h+ XL, y;HY where 0 : D — R¥*N. Moreover, the
vector © is NV x 1, the matrix I is N x N whereas h and H are all symmetric NV x N matrices.
The process W; is a standard Brownian motion in RY. All further details regarding the
regularity conditions pertaining to the U, are discussed by Duffie, Pan and Singleton (1998)
and therefore omitted. Instead, our main focus will be on the specification of the jump
component X; which is modeled as a Lévy process.

The remaining of this section is divided in three subsections. The first subsection deals
with some desirable stylized features which we would like to have for jump processes. A
first class of non-affine models involving specific Lévy processes is presented in a second
subsection. The final subsection presents the general class which covers both affine and
non-affine random intensity jump-diffusion processes. The Appendix describes some general

properties of Lévy processes which will be used in the development of the models.

1.1 The Features of the Ideal Jump Process Specification

Particular assumptions about the Lévy measure will define a class of processes. The
Lévy measure v(A) can be interpreted as the probability of jumps into A, ie. v(A) =
Pr{jump|jump size € A} - Pr{jump size € A}. The standard constant Poisson intensity

representation can be written as:

v(de) = Mx)-n(py, 0y, x)dx, where (1.2)
Az) = A (1.3)
v~ N(uso?) (1)

We noted that the stochastic structure of these models is not ideal. Somehow we would like
to have time-varying intensity of the jump process so that for instance the day after a stock
market crash another crash is very unlikely. Since there are not many extreme crash events
we must prefer jump processes with a parsimonious parametric structure to make statistical
inference meaningful. For the purpose of exposition we will at least for the moment assume
we are not preoccupied with parsimony. Instead, we will try to define some ideal features a
jump process should have to accommodate financial market data.

There are at least three ideal features. First and foremost we want jumps to be rare

events. This is easy to assess when we examine constant intensity models which yield on



average one jump every six months (see for instance Andersen, Benzoni and Lund (1998)
who use S&P 500 data similar to ours). As already noted, we also want that the intensity
decreases dramatically after a crash. Finally, we would also like the intensity to gradually
increase as the memory of a crash fades away.

Bates (1998) and Duffie, Pan and Singleton (1998) accommodate some of these features
by making the jump intensity an affine function of the stochastic volatility component.
However, as we noted in the Introduction, making jump intensities a function of volatility
may not always be successful at mimicking the ideal features particularly since stock markets
tend to remain volatile shortly after a crash. The non-affine class of jump processes we
present in the next section accommodate some, but not all of the ideal features, at least
in their simplest specification. The class of jump processes we examine first has random
jump intensity which depends on the size of the previous jump. Therefore, a large crash will
dramatically reduce the probability of another jump. This can be viewed as an alternative
to affine random intensity jump processes which feature correlation between the stochastic
volatility and jump component. Unfortunately, the non-affine model assumes that the jump
probability remains constant until the next jump. Hence, after a large crash one expects
that it will take longer for a next jump to occur. A specification involving a more elaborate
hazard model could be considered where for instance the intensity increases as the memory
of the last crash evaporates.

Obviously, if we were not concerned with parsimony, we could simply combine the at-
tributes of all the models, i.e. assume the intensity to be an affine function of volatility and
of the size of the last jump with fading memory. The general class of models does indeed

accommodate such a structure with a suitable specification of the Lévy measure.

1.2 A Class of Non-affine Random Intensity Jump-Diffusions

The affine class of processes studied by Duffie, Pan and Singleton (1998), and further dis-
cussed in the next section, assume that the Lévy measure depends on the latent factor
process U;. In this section we specify instead the jump component of bounded variation,
namely we remove B; in the Lévy decomposition (appearing in Appendix A), which distin-
guishes it from the affine class of processes which make the intensity a function of Brownian
motions. The non-affine class of processes we study include specifications where the random

intensity jump component depends on the size of the previous jump. As noted before, the



jump component is defined as a Lévy process of bounded variation, i.e. we remove B; in
the Lévy decomposition (A.4) (or, equivalently, set 0 = 0 in the Lévy-Khintchine formula
(A.5)) and assume [min(l, |z|)v(dz) < oo. In this case, [{,1<1y tuzv(dr) is a well defined

linear function, and the characteristic function defined in (A.5) can be expressed as:

Y(u) = —idu +/ e\ (dx) (1.5)

where § is known as the drift coefficient.5
We will present three different specifications, each having the appealing feature of yielding
analytical option pricing formula for European type contracts written on the stock price index

process S; appearing in (1.1).7 The first specification for the Lévy measure v is as follows:

v(de) = Mx)-n(py,05,z)dr, where (1.6)
2
v
)\(m) = lexp <—E> ,7=0 (17)
v ~ N(usoj) (1.8)

This representation collapses to the standard one appearing in (1.2) - (1.4) when we set
v = 0. The functional form of v in (1.6) - (1.8) suggests that large, in amplitude, jumps have
a low probability of occurrence. Note that 207 is not necessary in the specification of \(z).
It is introduced for notational convenience in the subsequent analysis. We can compute the

predictable component of the process exp(z) — 1 using (A.3), namely:

_ ya? 1 _ (== MJ)2
E{/ (" — 1)N,(dz)} = )\t/ (€ —1)e T ———e ¥} da
R R 2mo2
wJ " o

_ 2(147)0% / (6" — 1)n J 7 J x| dx
1 V1i+y 14+ V1+7y
A py+0.502 _ v .

= —— e T —1)e MUt =4t (1.9)

vty ( )

This is the compensator of the process exp(X;) — 1 which affects the drift of the stock index
process appearing in (1.1).
There are at least two alternatives to (1.6)-(1.7). The first is:

v(dr) = MNzx)-Cyn(py,oy,x)de, where (1.10)

6See Bertoin (1996) for further details
"Option pricing formula are derived and discussed in Chernov (1999).

7



c, = @(—ﬂ>_l (1.11)

0J
AMz) = Xexp (%x) vy >0, (1.12)
207
o~ N 0?) (1.13)

In this case, we still have analytical tractability, but the jump component behaves quite
differently. In particular, the jump size distribution appearing in (1.13) is the half-normal
distribution which implies that jumps sizes have an upperbound p;. When p; = 0 then we
only allow for negative jumps, which may be a realistic presentation of the behavior observed
in financial markets. To illustrate analytical tractability we compute again the predictable

component of the exponentiated process:

0 0 2 1 (z—pjy)?
E{/ e*Ny(dx)} = )\t/ e“e*r C, e dx
—o0 —© 2mo3

0 1
- )\tcye(wza%)(i(7+2UJ)+uJ)/ n(uj+§(7+203),aj,x)dx

202 + 2
— MO, 02 NGEO+20) ) g <_7+ g;j MJ) (1.14)

Another specification is based on the exponential distribution. This specification is close
to the half-normal with p; = 0, since jumps only take negative values, except that the shape

of the distribution is different. The process is specified as:

v(de) = Ma)e(a,—z)dx, where (1.15)
Az) = dexp (gm‘) .y >0, (1.16)
-z ~ FEla), a>0 (1.17)

where F(a) denotes the exponential distribution with parameter a. The compensator for

such a process will be:

0 1
E{/ (e —1)Ny(dz)} = )\t/ e’ —1)ea® aead:z;
= )\t/ le_a(,iy
y=—= Q
/ 7+1 _y(rt)
= [ @
7+ v+1
A 1] = oAl . (1.18)
1+’Y 1+m (1+’7)(1+’7+0¢)

8
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— -1 1.19
1+~ ( )

The exponential specification is guided by one parameter (a) and the half-normal one by
two (ug,07). Hence we can assess parsimony versus a better fit in these two models. Also,
the half-normal specification imposes an upper boundary on the jumps size, i.e. they should

be lower than p;. This also adds flexibility regarding specification testing.

1.3 The General Class of Models

Recall that particular assumptions about the Lévy measure will define a class of processes.

So far we examined random intensities for the jump process which are of the form:
A(z) = Aexp(G(x)) (1.20)

where we considered functions G(x) of the jump size = which were either quadratic, such as
in (1.7), or linear as in (1.12) and (1.16). Common to these specifications is the constant

scaling A. In contrast, the models considered by Duffie, Pan and Singleton (1998) are:

where the process U, is of the affine class as specified in (1.1).® It is possible to combine the
features of (1.20) and (1.21) and consider stochastic intensities for the jump process which
are of the type:

Mz, U) = No(z,t) + A\i(z, t)U; (1.22)

where for instance \;(x,t) = \;(t) exp(G(z)). This specification yields a class of jump Lévy
measures which combines the features of jump intensities depending on, say volatility, as well
as the size of the previous jump. It relates to a case briefly mentioned in Duffie et al. (1999),
namely one where m types of jumps, each having an intensity \;(U;) = \j(t) + \i(t)U; for
i =1,...,m (see their Appendix F). At the end of Appendix F it is briefly mentioned that
this case of finite mixture can be extended to an infinite number of jump types. In a sense
the specification in (1.22) is such a generalization. Combining their results for option pricing
with those discussed in our companion paper (Chernov et al. (1999)) yields options pricing

formulas for jump diffusions with general affine features in a state vector process U; and

8We are considering here the most general case considered in Duffie et al. (1999, equation A.5).



non-affine in jump size x. As mentioned in the Introduction, the analysis in our paper also
relates to recent independent work by Johannes, Kumar and Polson (1999) who propose a
class of jump diffusion processes which has a specification somewhat similar to (1.22). They
analyze a jump intensity which is a function of past jump time (not size like we do), and
the absolute value of returns. Using the absolute value of returns could be viewed as a non-
affine specification. Since the absolute value of returns is a measure of return volatility it
could easily be replaced by an affine specification involving latent volatility as in (1.21). The
presence of the past jump time is more problematic. While it is suitable and well tailored
to the discrete time specification of Johannes et al. (1999), with jump times extracted via
MCMC methods, it does not yield continuous time diffusion limits. An alternative and
potentially very useful specification would be to augment the stochastic intensity appearing
in (1.22) with past durations, i.e. the time since the last jump, say 7(¢) which is the time
elapsed between the last jump and ¢ where 7(¢) belongs to R in a continuous time setting.

Such a specification, which would involve:
Mz, U, ) = (Ao(t) + M () U A(7(t)) exp(G(x)) (1.23)

and could accommodate increasing, decreasing or hump-shaped hazard functions and dura-

tion dependence of jump intensities.

2 Data and Estimation Procedures

As the task of estimating complex jump-diffusions is challenging it is certainly desirable to
use time series covering potentially several crashes. The new class of models we proposed was
kept analytically tractable for the purpose of option pricing. Unfortunately, exchange traded
standardized derivatives contracts which are liquid and have reliably recorded prices are only
of recent date, more precisely starting in the early seventies. This does not amount to a long
data series with only a few extreme events. We consider therefore two data sets which are
described in the first subsection. We use the Efficient Method of Moments (henceforth EMM)
procedure of Gallant and Tauchen (1996) which has many applications in the estimation of
stochastic volatility models and was also used by Andersen, Benzoni and Lund (1998) for
the estimation of Poisson jump-diffusions. Since the EMM method has been discussed in

detail elsewhere, see for instance Gallant and Tauchen (1998), we will only provide a brief

10



description of it in the second subsection. The third subsection describes the details of the

discretization scheme which will be used to simulate the processes.

2.1 The Data

We use two different data sets. The first covers roughly 100 years of daily observations on
the Dow Jones, an index which was without exchange traded derivative contracts, at least
until very recently. The estimation of SNP density requires the use of stationary and ergodic
data. Therefore, the data entries to the SNP estimation routine are the log-returns on the
index.

Like many previous studies we also examine the S&P 500 index, which is a much shorter
data set, namely contains daily observations from April 1986 until August 1997. In order to
make the observed S&P 500 index and the model specification for the underlying fundamental
comparable, we adjusted the S&P 500 index for dividends. We took a constant continuously
compounded dividend rate of 2% (this is consistent with for instance Broadie et al. (1997)).
Therefore, we ignore the lumpiness of the dividend payments and also conveniently avoid
using the historical observed dividends which would considerably complicate our simulation
design.

It is worth noting that we did not prefilter the data, neither the S&P 500 series nor the
DJIA daily returns. Our analysis is therefore different from Gallant, Rossi and Tauchen
(1992) and in particular also different from Andersen, Benzoni and Lund (1998) who es-
timated jump-diffusions with filtered S&P 500 data. We refrained from filtering the data
because the adjustments affect the features of the data that are relevant for option pricing.
Since our ultimate goal is to price derivatives (see Chernov et al. (1999)) we use unfiltered
data. In that regard our analysis is closer to the recent empirical studies of Johannes et al.
(1999) and Pan (1999) who also used unfiltered data.

The stock market was closed at the outbreak of World War I from the end of trading
on July 30, 1914, until December 12, 1914. There were 116 potential trading days during
this period and the Dow Jones average declined 24.39 percent over the period. This gap is
exceedingly small relative to the size (28,390) of the entire data set. We filled this period
using a nonparametric bootstrap imputation strategy. To the log returns data we tried all
possible insertions of 116 day segments from the available data. We judged the quality of an

insertion by how well the 30 days of data at the beginning and end of a candidate insertion

11



period matched the 30 days of data at the beginning and end of the missing data period. In
addition the percentage change over the 116 days of candidate insertion data was compared
to -24.39 percent. The criterion of quality was weighted squared error. The weight was 5
on the discrepancy from -24.39 percent and weights 1,1/2,...,1/30 on the 30 pre and post
period log return squared deviations with points farthest from the join point receiving the
lesser weight. We experimented with several departures from this weighting scheme, some
of them rather extreme, and found that it made little difference. The strategy appears to be
robust.

The three panels of Figure 1 report the (1) level of the DJIA Index, (2) the log of the
index and (3) the return computed as 100 times the log first difference of the index. The
data are daily and spanning the period from January 1896 to July 1999. The two vertical

lines delineate the market closure period which was replaced by imputed data.

2.2 The EMM Estimation Procedure

Suppose the process of interest, namely the asset return process for Sy, is denoted ¢;. In its
generic context we assume that ¢, is a vector with L elements (hence we can include besides
returns also the daily high/low as in Gallant, Hsu and Tauchen (1999) or options data as in
Chernov and Ghysels (1999)). It has a conditional distribution p(¢; | I;, ©), where I; is the
information set and © are the parameters of the jump-diffusion stochastic volatility model.
If we knew how to compute the maximum likelihood (MLE) estimator for © we would take

the sample equivalent of:
0
E <% lng(Lt | It7®)> = O, (2].)

where Olog(p(- | -))/00 is the score function. Unfortunately, it is very difficult to obtain
the likelihood function for jump-diffusions with stochastic volatility models and hence it is
impossible to compute the score generator dlog(p(- | -))/00.

Gallant and Tauchen (1996) suggest a computationally tractable strategy for handling
this situation. Their idea is to use the score function of an auxiliary model f(¢|l;, Z), where
f is a computationally tractable conditional density with parameter vector =. The EMM

estimator 6 is the solution to

\[_[l>

min (6, =) Wm(0,
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where W is weighting matrix, = is the QML estimator of = based on f, and
— 0 —
m(ea ‘:‘) = EO(_:. IOg f({/tut; ‘:‘)

where Fjy(-) is computed by simulating long realizations from the underlying model. EMM
is effectively the Duffie and Singleton (1993) simulated method of moments approach with
the score function of the auxiliary model used to define the moment conditions. From
Gallant and Tauchen (1996), Tauchen (1997), and Gallant and Long (1997), it is known that
the EMM estimator is consistent and asymptotically normal even if the auxiliary density
f(|1, Z) is mispecificed and does not subsume the true density f(u|l;,=). However, the
closer the auxiliary density approximates the true density, then the closer EMM will be to

achieving the full efficiency of MLE.

2.2.1 The SNP-GARCH Auxiliary Model

One strategy that is known to ensure full asymptotic efficiency (Gallant and Long, 1997) is
to use the SNP expansion of Gallant and Tauchen (1989) to define the auxiliary model. The
essence of the argument is that, under regularity conditions, SNP asymptotically estimates
the true conditional density and hence the SNP scores span the true scores and full efficiency
obtains. The use of SNP to define the auxiliary model results in useful diagnostics as well;
see Tauchen (1997) and the references therein. We follow this strategy, and, in particular,
we use a new version of SNP that includes a GARCH-type model (Bollerslev (1986)) as the
base of the asymptotic expansion.
SNP-GARCH works as follows. We start with VAR model

M,
L — b() + Z Bj[/tfj + Uy
j=1
or simply

Ly = M1 + Uy

where by and the B; are parameters. Suppose u; is conditionally Gaussian and so
Ri—1(us — pe) ~ N(0, I)

where R;_; is an upper triangular matrix such that R, 1R, | = vary_;(u;). The GARCH-

type parameterization of the conditional second moment structure is

M, M,
vech(Ri—1) =Y pgivech(Ri_1_j) + > pajabs(u;_;)
j=1 =1
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where p,; and p,; are conformable parameter matrices, and abs(-) is the element-wise absolute

value function. Putting

O[Ri—1 (ur — puy)]
| Ri-1]

where [; contains lags of ¢4, = contains the parameters of the VAR and the GARCH taken

f([/t|[t7 E) -

together, and ¢ is the multivariate standard Gaussian density, gives a basic multivariate
GARCH model with Gaussian errors. The tuning parameters are the lag lengths M, M,,
and M,.

Most financial data, however, are not conditionally Gaussian. Such data exhibit depar-
tures from Gaussianity such as skewness, thick tails (excess kurtosis), and other nonlinear-
ities, and such departures can be time varying. The SNP corrects the basic model for the

these departures from normality. It works as follows. Put

2= Ry 1 (uy — jug)

which would be distributed as ¢(-) were the data Gaussian, and we could write

The SNP expansion uses in place

[pOly(Zt, [t)]2¢<zt)

1wy, =) =
Felte =) = R

where poly(z, I;) is a polynomial of degree K in z; whose coefficients are themselves poly-
nomial functions of degree K, in M, lags of ¢, and F;_; is the adjustment factor that
ensures [ f(u|l;,Z)dey, = 1. The function poly(z;, I;) corrects for departures from Gaus-
sianity. It is squared in order to ensure positivity of the density, and the division by
F,_1 = [poly(z, It)]?¢(2¢)dzi /| Ri—1| ensures integration to unity. The dependence of the
coefficients of the polynomial on M, lags of ¢, accommodates state-dependent time varying
departures from Gaussianity and other forms of nonlinearity to the extent these complications
are features of the data. Under reasonable regularity conditions (smoothness conditions) the
SNP density can approximate well any conditional density as K;, Ky, and M, grow.

To summarize, the tuning parameters of the SNP-GARCH are
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M,: Lag length of the VAR

M. Lag length of the GARCH portion

M,: Lag length of the ARCH portion

Ki: Degree of the polynomial in z

K5:  Degree of the polynomial dependence on lags of ¢,

M,: Lag length of the polynomial dependence on lags of ¢

To determine the appropriate tuning parameters we follow a standard protocal that uses the
Schwarz BIC criterion to move upwards along an expansion path. The path first determines
M, then M, and M,. Then K is increased from 0 until BIC reveals an acceptable value or
until the upper limit K; = 8 is reached; the upper limit is imposed on K; as the computations
become unstable for higher values, which sometimes occur due to over fitting small wiggles
in the tails of the data. Lastly, M, is set to M, = 1 and K> is increased from 0 if BIC

indicates thusly, and then M, is increased as well if need be.

2.2.2 Details of EMM

The implementation thus has two parts. The first part is the estimation of the auxiliary
score generator model, where here we use the SNP model determined by the model selection
procedure just described. The estimated SNP density provides the input to the second
stage of the EMM estimation procedure. More precisely, the SNP score function provides
the underpinnings for constructing a set of moment conditions. In particular, © can be
estimated through the moment conditions (score function) similar to (2.1), which in this

case will be:
m(0,2) = E( =log fi(u | Xi,Z) | = / —=log fi(u | Xt, E)dP (L, X, O). (2.2)

Since these moment conditions should have mean zero they can be used as the basis for the

following GMM-type estimation procedure:
O = argmine m(O,Z) Wym(O, 2). (2.3)

where . .
_ 1 i dlog fi(ee | Xi, E) Olog fu(ee | X¢, E) (2.4)
T 0= = ' '

t=1 =

Wy
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The use of the outer-product of the gradient formulation for Wy is justified because the
SNP provides a close approximation to the true conditional density, so its scores are thereby
nearly serially uncorrelated. The moment conditions are easier to compute by simulation
instead of computing numerically the integral in (2.2).° With simulated time series of length

N for ¢; and with candidate parameters ©, the left hand side of (2.2) translates into

log fi(:(©) | X4(8),5). (2.5)

ﬁﬂ@

. 1 X
mN ,::N;

Combining (2.3) with (2.5) yields the EMM estimator of © the vector containing parame-
ters of the jump-diffusion equations (1.1) through (3.3) including those describing the Lévy

measure jump component, process.

2.3 Discretization Schemes

The EMM estimation procedure requires simulating equations (1.1) through (3.3). Such a
task is now standard for the case of stochastic volatility models. We use the Euler-Maruyama
SDE discretization, which is an explicit order 0.5 strong and order 1.0 weak scheme, to
simulate the processes appearing in (1.1), (3.2) and (3.3) (see Kloeden and Platen (1995)
pp. 486-487). We simulate 55,000 daily observations which are obtained by taking every
fourth observation out of 220,000 simulated ones. The first 5,000 observations are dismissed
to avoid the starting value problems. Since the case of continuous path diffusions has been
covered extensively elsewhere we will focus exclusively here on the simulation of the jump
components.

The simulation of jumps is based on the simulation of the time period till the next jump.
For instance, for the constant intensity case, we initiate our sample at time 0 and the time
of the first jump is determined by the mean duration between jump, which is 1/A.1% The
subsequent durations between jumps are determined by the draws from the exponential
distribution with parameter A. The jump size is determined simultaneously by drawing

from the assumed jump size distribution, i.e N(uy,05). In a more complicated case, when

9Since jump-diffusion models are formulated in continuous time we need to discretize the process to
generate simulated paths. This will be discussed in the next subsection. The empirical results were obtained

using simulated samples of size N = 50, 000.
10Tt should be noted that the way we initiate the drawings is not essential because we dismiss first 5,000

observations.
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the intensity depends on the jump size, we first determine the future jump size by drawing
from the respective distribution. The randomly drawn value allows us to determine the new
intensity value and, hence, the time to the next jump. Finally, when we have an intensity
dependent on the realization of the stochastic factors, we can not assume the intensity
to be constant for some period of time as was done previously. Therefore, we reevaluate
the intensity value and hence the time to the next jump at each simulation step (4 times
per day). Every step we obtain the simulated realization of the unobservable factors and
substitute them into the expression for the intensity, i.e. \; = A\ + yUs;, then we draw from
the exponential distribution with this value of intensity as a parameter to determine the
duration till the next jump. This scheme does not imply that the jump will occur in the

obtained time, because at the next step the intensity may (and most likely does) change.

3 Empirical Results

The empirical results appear in Tables 1 through 3. The first two pertain to the estimation
of jump diffusions for the S&P500 series and the last reports the finding based on DJIA
data. To describe the empirical models it will be useful to introduce some notation. Since
it is rather cumbersome to define a comprehensive notation covering all possibilities we do
not attempt to be general. Instead, our notation will only aim at describing conveniently
the models we will study. The models will be defined as SVabcJde where a is the number
of stochastic diffusion factors affecting the drift of the mean return equation (i.e. equation
(1.1)) while b is the number of stochastic diffusion factors affecting the volatility of the mean
return equation. Both a and b are no greater than ¢ which counts the number of Brownian
motions, i.e. the number of processes W;; for i = 1,2,.... We focus exclusively on processes
with at most three factors, i.e. ¢ < 3. The features of the jump component are described via
d and e which follow J to indicate the presence of a jump process. When Jde is absent we
focus exclusively on SV models not involving a jump process. The first letter pertains to the
intensity, i.e. d = C' for a constant intensity, d = E(Q for an exponential intensity involving
a quadratic function of the jump size, i.e. the specification appearing in (1.14), d = E'L for
an exponential intensity involving a linear function of the jump size such as in equations
(1.19) and (1.23) and d = A will refer to affine specifications as in Duffie, Pan and Singleton
(1998). Finally, e stands for the distributional assumptions regarding the size of the jump,
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namely e = N is for a normal distribution, e = E for the exponential and finally e = HN
for the half-normal. While this notation does not define all possible models unambiguously
it will greatly simplify our discussion of the empirical results. We will not discuss the full
array of all model specifications because many are not of practical interest. Instead, we start
with processes previously considered in the literature and expand them via augmentations
involving the new class of processes described in Section 2.

The remaining of this section is organized as follows. The first subsection pertains to the
SNP density estimation. The parameter estimates of the jump-diffusion model are discussed

in the next two subsections, one is devoted to the S&P 500 data and the other to the DJIA.

3.1 SNP density estimation results

The first step is to determine the appropriate score generator for each of the two time
series. For both the S&P 500 and DJIA data sets we estimated SNP-GARCH auxiliary
models using as ¢; the one-day geometric return, i.e., 100 times the log first difference of the
index. For the S&P 500 data set, the model selection protocol described in Subsection 2.2
gives M, = 1, M, = 1,M, = 1,K; = 8 K, = 0. (With Ky = 0, M, is irrelevant). This
auxiliary model is very similar to an AR(1) with a GARCH(1,1) conditional variance (except
SNP-GARCH parameterizes the conditional standard deviation) with a time homogeneous
thick-tailed error density; it is akin to a GARCH-t model. The autoregressive model in
the leading term captures the modest serial correlation present in the index. In several
cases, we need additional moments in the mean to identify all of the parameters of the
model, so use an SNP-GARCH model with M,, = 3. BIC is known to be very conservative,
so there is justification for adding these additional parameters; nonetheless, we expect some
imprecision in estimation. For the long DJIA data set, the model selection protocol described
in Subsection 2.2 gives M, = 1,M, = 1,M, = 1, K; = 8, M, = 1, K, = 1. This auxiliary
model is an AR(1)-GARCH(1,1) model with a thick-tailed error density with time-varying
shape characteristics, as reflected by the dependence of the Hermite coefficients on lagged
returns (K; > 0).
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3.2 Jump-diffusion model parameter estimates for S&P500 data

The processes we will consider for the S&P 500 index will be special cases of (1.1), and have

the following specification for the stock (index) price S;:

dSi/ Sy = [+ paUs + psUs — g — 6] dt + \/ BaUst + B3UsdWiy

+ 24/ UgtdWQt + T34/ UgtdW3t + €AXt —1 (31)
dUQt = (02 - HgUQt)dt + \/ UQtdWQt (32)

where W;; are independent Brownian motions for ¢ = 1,2 and 3. Because the model is
driven by three Brownian motions we shall call it a three-factor SV model with jumps.
The processes Uy for ¢ = 2,3 are latent volatility factors which are mutually orthogonal by
construction. Since the Brownian motions W;; are uncorrelated we observe from (3.1) that
the leverage effects are represented by 7o and r3. The drift in (3.1) includes, a constant p,
the continuously compounded dividend rate g and besides the processes U;; also 6t which
is the predictable component of exp(X;) — 1 where X, is a Lévy process.!? Without the
Lévy process X; we would have a stochastic volatility model with three factors, two of which
are volatility factors. This class of models has been discussed in detail by Gallant, Hsu
and Tauchen (1999). Using daily IBM stock data from January 1985 to January 1997 on
close-to-close log price movements and the high/low range, they found that a three factor
model does not fit all aspects of the data and in general more factors should be added. A
priori we do not need to constraint the class of processes to three-factor SV models, as other
factors could be included as well. Anticipating some of the empirical findings we simplified
the exposition here by limiting the structure to a three-factor SV process. We start from
a three-factor model and instead of augmenting it with a fourth continuous path volatility
process we extend the class of processes with a Lévy jump process.

The empirical results appear in two tables, namely Tables 1 and 2. The former con-
tains parameter estimates of three-factor SV models with various specifications for the jump
process. Table 2 covers SV model specifications involving a single SV factor augmented with

a jump process. The model appearing in the first column of Table 1 is a three-factor SV

HNote that application of the Itoé formula to the function logS; yields the representation in the generic

form discussed in the section 1.
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process SV223, hence without jump component, previously considered in the literature no-
tably by Gallant, Hsu and Tauchen (1999). We note that the parameter estimates are fairly
imprecise, i.e. the standard errors are large, and overall the model is rejected (based on the
x?-statistics appearing at the end of Table 1). The next column in Table 1 is SV223JCN.
Hence, the three-factor SV model is augmented with a pure jump diffusion Poisson process
with a Gaussian distribution for the jump size. We observe that adding the basic constant
intensity jump process improves the overall model fit and the parameter estimates fi7, 7
and ) are all very significant. Clearly, as noted by Andersen, Benzoni and Lund (1998),
Bates (1998) and others, adding jump processes improves considerably the statistical fit of
SV models. The parameter estimates are also close to those obtained by for instance Ander-
sen et al. (1998) and Eraker et al. (1999), namely our parameter estimate of A imply roughly
three jumps a year.'? At this point it is worth looking ahead briefly at Table 2, in particular
to the model SV112JCN. Comparing SV223, SV223JCN and SV112JCN allows us to
assess the necessity of a second volatility factor when a jump process is present. It is clear
from the results pertaining to model SV112JCN appearing in Table 2 that a single factor
SV specification is more than adequate. The overall statistical fit of SV112JCN with a
x>-statistic of 18.56 (with 4 d.f.) is far superior to that of SV223 with an overall 48.76 (also
with 4 d.f.) or SV223JCN with 32.72 (with only 3 d.f.). In addition to the superior overall
fit we also note that the parameter estimates are more precise though their numerical values
are roughly the same across the different models.

Before continuing the discussion of two-factor SV models let us briefly explore further
some alternative three-factor SV models. As noted before, we can not consider all possibilities
since there are too many and only a few appear of interest. Besides SV223 and SV223JCN
we also report in Table 1 SV113JCN and SV113JA where the latter is an affine jump-
diffusion which has three factors, yet only one factor appears in the SV diffusion whereas the

second factor drives the random intensity, i.e. Ay = A+ yUs;. This model might be viewed as

12WWe do not discuss in this paper the issue of modeling the jump intensity under the risk neutral measure.
It is worth noting that our findings and those of Andersen et al. and Eraker et al. are significantly higher
than the intensity of one jump every four years found by Bakshi et al. (1997) and one jump every two
years found by Bates (1998) using exclusively options data. In the companion paper Chernov et al. (1999)
we examine this issue by allowing the intensity to differ under the objective and risk neutral density. With
distinct parameters we are able to better capture the price of jump risk and understand why such discrepancy

in jump intensity is found.
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a single factor SV model with random jump component and therefore is at the intersection of
the models appearing in Table 1 and those appearing in Table 2. The SV112JCN model is a
constrained version of SV222JC'N where the SV factors affect only respectively the drift and
volatility, i.e. pg = B2 = ro = 0. Imposing these constraints improves the fit considerably. In
particular, if we were to conduct a formal LR-type test we would not reject the null implied
by the parameter constraints. The SV113JCN model perform best in terms of overall fit
across all the models appearing in Table 1. This includes the SV113JA model which does
not fare very well despite the fact it is a single factor model augmented with a jump process.
It is worth noting that for the SV113JA model the estimate 4 is statistically insignificant,
hence the data rejects the presence of a random affine factor in the jump intensity and the
overall statistical fit of SV113J A with 38.25 (with 4 d.f.) is far inferior to that of SV112JCN
with 18.56 (also with 4 d.f.). This evidence implies that among the class of affine random
intensity two-factor SV models we would settle for the standard Poisson jump specification
considered by Andersen, Benzoni and Lund (1998) and Bates (1998).

The results so far seem to lead to two conclusions: (1) a single factor SV model augmented
with a Poisson jump process (i.e. SV112JCN) performs best and (2) adding a simple affine
random intensity A\; = A 4+ yUs; does not seem to improve the statistical fit in comparison
to the SV112JCN specification. Hence, so far the constant intensity model appears the
most attractive. We compare this model now with two-factor SV models with more general
non-affine Lévy measures considered in Section 2. Models of this type will be labeled d =
EQ as indicated earlier. In Table 2 we consider various models, namely SV112JEQN,
SV112JELFE and SV112JLHN. Hence we consider quadratic and linear dependence of the
jump intensity on the jump size. For the linear case we also report two different distributional
specifications for the jump size distribution, namely the normal e = F and e = HN. Among
the three models we find that SV112JEQN with a x? statistic of 11.40 (3 d.f.) is clearly the
best and outperforms in terms of statistical fit considerably the standard Poisson process
(though it has a x? statistic with 4 d.f it has a lower p-value). It appears that the linear
dependence of size is less successful. The model specification involving the half-normal
jump size distribution yields an estimate of p; not significantly different from zero. Despite
this finding it is clear that the alternative specification involving the exponential jump size
distribution does not fare very well, indicating that the shape of the exponential distribution

is not suitable.!® The final model we consider in Table 2 is again an affine model, SV112JA

13Chacko and Viceira (1999) also consider a model involving an exponential jump size distribution, though
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which only involves a single SV factor which both drives volatility and the jump intensity.
This model does not fare very well, again, indeed it is again inferior to the standard Poisson
jump-diffusion process. These findings seem to contradict those of Pan (1999) who rejects the
constant intensity model against the random affine intensity model similar to SV112JA.*
She considers a Lagrangian Multiplier test under the null A = 0 for the specification \; =
A+ YU. The reported p-value of .12 is borderline and the relatively small sample in Pan’s
study, namely roughly eight years of weekly data or 400 observations, put in doubt the
adequacy of the asymptotic distribution theory.!®

The conclusions we can make at this point is that the new class of non-affine jump-
diffusions does improve the statistical fit in comparison to the Poisson constant intensity
model. Hence, there is a scope for looking at jump-diffusion processes with intensity struc-
tures which have features appearing to be more attractive for financial market behavior

description.

3.3 Jump-diffusion model parameter estimates for DJIA data

Estimating jump diffusions with SV still remains a challenge. To the best of our knowledge,
we do not know of any prior attempt to fit a diffusion to a data set of over 100 years of
daily returns. It is not only the long span of data which is challenging but in particular the
turbulent pre-WWII period which has prompted Schwert (1990) and many others to view the
30’s as an exceptional period (see in particular Figure 1 which shows the familiar extremely
volatile pattern of the 30’s). We experimented with many different model specifications and
do not report them all. Instead we focus on the most successful fits and alternatives which
support hypotheses of interest. The relevant empirical results are summarized in Table 3.
The first two columns of Table 3 report the empirical results for SV112JCN and
SV113JCN specifications which fitted the S&P500 data well. Unfortunately both mod-
els strongly fail at fitting the DJIA series, judging for instance by the x? statistics. We

they distinguish negative from positive jumps. Their empirical findings are comparable to ours. Namely,

they find a negative jump intensity similar to our findings and find a zero positive intensity.
146 be precise Pan’s model is a SV314.J A model.
15Note also that the null hypothesis of interest is not really the one considered by Pan, namely A = 0

(with v # 0) (which is the null of the LM test) but rather v = 0 (with A > 0 for constant intensity) for the
specification Ay = A + yUj;. It is the latter hypothesis which we test here (via a Wald test).
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found remarkable improvements by considering a different drift specification for the DJIA
data. In particular, we used a drift specification which corresponds to the class of models
studied by Lo and Wang (1995), namely:

dSt/St = [/,Ll -+ ,ugUgt —q — 5] dt + ﬂQUQtdWh‘ + T4/ UQtdWQt + 7"3dW3t

+ e (3.4)
dUzt == (92 - IiQUQt)dt -+ UgtdWQt (35)
dUgt = —fﬁ)gUgtdt + dWSt (36)

where W, are again independent Brownian motions for ¢ = 1,2 and 3. Please note that
the Us; is an Ornstein-Uhlenbeck (henceforth OU) process which captures the predictable
component of the drift instead of the square root process in (3.1). We will therefore denote
this class of processes as SV — OUabcJcd.

The model appearing in the third column of Table 3 is SV — OU113JCN which is
comparable to SV113JCN and allows us to appraise the improvement in fit due to the
change in the specification of the drift. The overall fit, measured by the y? statistic indicates
that there is more than a fourfold decrease in the objective function. Since we are dealing
with a recalcitrant series we should note that the standard errors of the parameters still
remain large. For instance, the parameter estimates of the drift process Us; are insignificant
both under the square root and OU specification. However, under the OU drift specification,
we observe a very different volatility process (as one would expect from the analysis of Lo and
Wang (1995)). On the one hand, under the square root specification the volatility process
is highly persistent whereas it is not under the OU drift. The long run mean as measured
by B20s/ ks is higher for the OU specification. On the other hand, it appears that the jump
intensity in the SV113JCN model is smaller than when a OU drift is used. Moreover,
for the SV — OU113JC'N model the average jump size is larger with a smaller standard
deviation. Though not reported we also tried to improve the fit by adding an additional
volatility factor, i.e. SV — OQU124JCN and SV124JCN processes, and found this type
of specification not fruitful. These results prompt us to consider refinements of the jump
intensity only for the SV — OU113Jde specification.

The last two columns of Table 3 contain the results of the SV — QU113JQN and SV —
OU113JA. These two columns allow us to appraise the random intensity specification, in

particular the affine class of processes and the non-affine class introduced in Section 2. The
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SV —OU113JQN specification improves upon the corresponding constant intensity model,
whereas the SV — OU113JA does not. Hence, we find results similar to those obtained
from the S&P 500 series which indicate that the random non-affine intensity does seem to
be a successful specification. One plausible explanation is that the random affine intensity
model would require more data to be accurately estimated, despite the fact that we used
over 100 years of daily data. In particular, it seems that there are two strategies to fit
random affine intensity. We consider both, namely one consists of choosing the intensity as
At = A+ Uy where Uy, also drives latent volatility, the other consists of using Ay = A 4+~yUz;
where Us; is correlated with Uy, where the latter drives volatility. The former specification
is parsimonious, but creates a tension between the desire to fit volatility well and the need
to come up with a reasonable jump intensity. The latter specification resolves this tensions
since it disentangles the latent diffusion U, and the latent intensity Us;. Unfortunately,
this affine specification involves many additional parameters, in particular compared to the

non-affine class we proposed.

4 Conclusions

In this paper we proposed a new class of jump diffusions which feature both stochastic
volatility and random intensity jumps. The non-affine class of processes we study include
specifications where the random intensity jump component depends on the size of the pre-
vious jump. This class represents an alternative to affine random intensity jump processes
which feature correlation between the stochastic volatility and jump component. We also al-
low for and experiment with different empirical specifications of the jump size distributions.
In their most general form we introduced a class of processes which nests jump-diffusions
previously considered in empirical work and includes the affine class of random intensity
models studied by Bates (1998) and Duffie, Pan and Singleton (1998) but also allows for
non-affine random intensity jump components. We used two types of data sets. One involves
the S&P500 and the other comprises of 100 years of daily Dow Jones index. The former is a
return series often used in the literature and allowed us to compare our results with previous
studies. The latter has the advantage to provide a long time series which enhances the pos-
sibility of estimating the jump component more precisely. For the DJIA we also imputed a
short patch of data which corresponds to the WWI four month market closure. We fitted the
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processes for the newly extended data set. The non-affine random intensity jump processes
are typically more parsimonious than the affine class and appear to fit the data much better
compared to the constant and random affine intensity jump diffusion processes. Both for the
S&P500 and DJIA series we found that non-affine models fit better than constant intensity
Poisson jump diffusions. We also found that random affine intensity models deteriorate the
fit when compared to the Poisson specification. It should also be noted that we described
several desirable features for jump processes, which are better addressed by the new class of
processes we introduced. It is therefore comforting to find that our empirical results confirm
the intuition gained from the theoretical specifications.

The processes we introduced share the desirable feature with the affine class that they
yield analytically tractable and explicit option pricing formula. In Chernov et al. (1999) we
take advantage of this and fit the models introduced in this paper to a panel of options and
returns data. This not only requires to specify the objective measure process (of the S&P

500 series) but also the risk neutral process and compute option prices.
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A A Digression on Lévy Processes

An adapted process X = (Xi)o<t<oo With Xy = 0 a.s. is a Lévy process if (a) X has
increments independent of the past; (b) X has stationary increments; and (¢) X is continuous
in probability.!® Poisson processes and Brownian motion are special cases of Lévy processes.
The jump component of X will be of special interest in our analysis and will be denoted by
AX; = X; — X;_, where X;_ :1;%1 X,. For any Borel set A in R which is bounded away
from 0 we can characterize stopping times T§ = inf{t > Tyx™' : AX, € A} (where T} = 0)

and define a new process as follows:

N:(A) = > 1a(AX) Z Lirp<y (A.1)

0<s<t

N¢(A) — Ng(A) is the number of jumps which the process Xy, — Xy hasin A, 0 <u <t—s.
It can be shown that N(A) is a Poisson process and is the building block for what is known
as the Lévy measure. In particular, the Lévy measure v(A) of the Lévy process X for
any Borel set A is defined as the parameter associated with this Poisson process, namely
v(A) = E{N;1(A)}. A number of results pertaining to the Lévy measure will be useful to
enumerate.

If f is Borel function which is finite on A, then the following integral is also a Lévy
process:

/f IN(dz) = 3 F(AX,)1,(AX,) (A.2)

0<s<t

Moreover, for Borel functions satisfying f1, € L?*(dv) we have:

B[ f@)Nda)} =t [ fla)v(da). (A.3)

There are two fundamental results which we will use in the next subsections. The first
is known as the Lévy decomposition and the second as the Lévy-Khintchine formula.

(Lévy decomposition). Let X be a Lévy process. Then X has a decomposition:

X; =B+ z(Ny(dz) — tv(dz)) + at + Y AX1x(AX,) (A.4)

{Jrl<1} 0<s<t

where B is a Brownian motion and v(dz) is a Lévy measure on R\ {0} such that
JSmin(1, 2?)v(dz) < oo

6The discussion in this section is based on Protter (1990).
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(Lévy-Khintchine formula). The characteristic function of the Lévy process X is

equal to exp(—ti(u)), where:

Y(u) = —iau + lJzuz + (1 — ™) v(dx) + (1 —e™ +jur)v(dr).  (A.D)
2 {lo21} {lzl<1}

Moreover, given v, g, a, the corresponding Lévy process is unique in distribution.
Both fundamental results will be used in the remaining of this section to construct and

analyze the jump component of the different classes of jump-diffusion processes.
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Figure 1. The Dow Jones Industrial Average Index - Daily data 1896 - 1999

The three panels report the (1) level of the DJIA Index, (2) the log of the index and (3) the return
computed as 100 times the log first difference of the index. The data are daily and spanning the period
from January 1896 to July 1999. The two vertical lines delineate the market closure period which was
replaced by imputed data.
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Table 1 : EMM estimation of Two-Factor SV Models with Jumps for S&P 500
data

We have estimated the jump/stochastic volatility diffusion models:

dsS.
?t = |p1 + poUszs + p3Use —q — 8] dt + +/ BoUas + BaUz:dW1y
t

+  ray/U2edWat + 134/ U3tdW3e + eAXe _q
AUy = (03 — kiUsg)dt + /U dWy, i=2,3
v(de) = A n(pg,o5,2)de

x ~ N(uj,o03)

Models are defined as SV abcJde where a is the number of stochastic diffusion factors affecting the drift, b the number of factors
affecting the volatility of the mean return equation, ¢ counts the number of Brownian motions. Models with J to indicate the
presence of a jump process, with the first letter pertaining to the intensity, i.e. d = C for constant and d = A refers to affine
specifications whereas e stands for the jump size distributional assumptions with ¢ = N for normal. The affine model SV113JA
has the intensity: At = A + yUs; while for all other models At = A. All models were estimated using the 3111a000 score except
for SV113JA which was estimated with the 11118000 score.

Model SVv223 SV223JCN SV113JCN SV113JA
[y 0.132870 0.072948 0.001580%1e-12 0.046320
(0.213147) (0.080304) unstable (0.075570)
fi2 0.079053 0.079139 0.411781 0.102597
(0.251951) (0.094494) (0.116036) (0.188348)
i3 0.010516*1e-4 0.269996*1e-5 - -
unstable unstable
0 0.843691 0.844504 1.508225 1.029086
(1.991426) (0.302993) (0.299325) (0.971498)
Ro 0.917504 0.916678 3.549144 0.825234
(2.762832) (0.147274) (0.861993) (1.052742)
ég 2.067381 2.067410 1.529808 0.979910
(30.989558) (1.958765) (0.201505) (35.345242)
R3 1.729627 1.729604 2.157226 1.409948
(28.789018) (1.595787) (0.530902) (50.244581)
Ba 0.003114 0.003849 - 0.005578
(0.044275) (0.017498) (0.023430)
B3 0.000162 0.0000000 0.016623 -
(0.051173) (0.018935) (0.020961)
To -0.096263 -0.097060 - -0.097655
(0.000513) (0.000545) (0.001850)
T3 -0.055639 -0.055137 -0.049610 0.005432%1e-4
unstable unstable (0.000442) (12.699546)
% - -0.020521 -0.023427 -0.021676
(0.000118) (0.002031) (0.003932)
Gy - 0.009520 0.007059 0.014013
(0.002201) (0.002175) (0.006577)
A - 3.000001 2.998357 2.797726
(0.550854) (0.600289) (1.456101)
¥ - - - 0.081575
(0.594263)
x> 48.76 32.72 15.51 38.25
d.f. 4 3 2 4
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Table 2 : EMM estimation of One-Factor SV Models with Jumps for S&P 500

We have estimated the stochastic volatility model

@
St
AUz
v(dz)
Az)

T

data

= [m + paUzt — q = 8] dt + \/ B2U2tdW1y + 121/ UnedWay + 2%t — 1

= (02 — k2Uzt)dt +

UatdWat

= A(w) . n(MJ,O'J,CL')dw

= Alexp (77m2/203)

~ N(pj,0%)

(EQ) or

(N) or @~ N (ns,0%)

Az) = A

(HN)

or —x~ E(uy)

(C) or Xz)=Aexp (71/203)

(E)

(EL)

Models are defined as SVabcJde where a is the number of stochastic diffusion factors affecting the drift, b the number of factors

affecting the volatility of the mean return equation, ¢ counts the number of Brownian motions. Models with J to indicate the

presence of a jump process, with the first letter pertaining to the intensity, i.e. d = C for constant, d = EQ for an exponential

intensity involving a quadratic function of the jump size, d = EL for an exponential intensity involving a linear function and

d = A refers to affine specifications whereas e stands for the jump size distributional assumptions, e = N for normal, ¢ = E

for the exponential and e = HN for the half-normal. The affine model SV113JA has the intensity: A+ = A + yUa¢. All models

were estimated using the 11118000 score.

Model | SV112JEQN  SV112JELHN  SV112JELE  SV112JCN SV112JA
i1 0.071972 0.064941 0.161791 0.073498 0.166911
(0.033751) (0.070531) (0.076028) (0.023511) (0.035861)
fi2 0.075369 0.098765 0.021839 0.083416  0.172390*1e-4
(0.056346) (0.054543) (0.070181) (0.049293) (57.825991)
6 0.967770 1.032835 0.947224 1.033178 1.148968
(0.105565) (0.060379) (0.369838) (0.052287) (0.133005)
Ra 0.670705 0.742851 0.686430 0.732717 0.836631
(0.157884) (0.050690) (0.369936) (0.101032) (0.018785)
B2 0.004082 0.004500 0.006209 0.003862 0.005417
(0.013646) (0.012423) (0.005735) (0.009888) (0.008309)
o -0.096373 -0.097367 -0.089315 -0.097716 -0.089973
(0.000692) (0.000795) (0.000605) (0.000475) (0.000452)
Qg -0.021436 0.010035 0.012657 -0.021770 -0.018917
(0.000686) (0.041816) (0.000619) (0.000762) (0.001681)
G 0.010403 0.018826 - 0.010169 0.009608
(0.002154) (0.037472) (0.002381) (0.002761)
by 3.000031 2.936123 3.278344 2.999988 2.814294
(0.273190) (0.029980) (0.321760) (0.161400) (0.176918)
4 0.115995*1e-4 0.099782 0.008445*1e-4 - 0.088978
(0.083194) (0.059141) (7.943110) - (0.064554)
x2 11.40 16.48 25.55 18.56 19.61
d.f. 3 3 4 4 3
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Table 3 : EMM estimation of Two-Factor SV Models with Jumps for DJIA
data

In addition to the SVabeJed specification (see Tables 1 and 2) we have estimated the jump/stochastic volatility diffusion
models, denoted SV — OUabcJde:

dsS,
S—t = [p1 +p3Use —q— 8] dt + £/ B2U2edWie + ra/ Uz dWas + r3dW3t + eAXt _q
t
dUst = (02 — kaUa¢)dt + /U2t dWoy
dUsy = —rk3Usedt + dWaq
v(dz) = X -n(pg,o5,x)dx

z ~ N(uj,o0%)

We used the 11118010 score and simulated 100,000 observations, with ¢ set equal to 0.02 as with S&P 500. For the affine
specification, we used A\t = A + yUat

Model | SV112JCN  SV113JCN SV —OU113JCN SV — OU113JQN SV —OU113JA
I 0.046559 0.157500 0.087286 0.092479 0.087532
(0.017538) (0.607279) (0.022674) (0.019105) (0.020465)
a3 0.120493 -0.048095 1.045668 1.413880 1.006125
(0.023567) (0.7222656) (0.982440) (1.225785) (0.732928)
0o 0.857881 0.884507 1.056946 1.056889 1.056959
(0.011708) (0.219369) (0.151645) (0.145666) (0.116551)
Ao 1.547089 1.177652 5.101415 5.100381 5.101508
(0.106633) (0.686901) (1.444110) (1.583616) (1.259693)
03 - 1.703226 - - -
(9.328473)
A3 - 1.986907 2.231755 3.849306 2.073362
(11.768044) (4.220407) (6.876322) (3.057748)
B2 0.002223 0.011461 0.048722 0.050548 0.048503
(0.006258) (0.006447) (0.014084) (0.013840) (0.013933)
) -0.193783 -0.111399 -0.125386 -0.121842 -0.124842
(0.009200) (0.026412) (0.031573) (0.037093) (0.023539)
73 - 0.021566 -0.004370 -0.004093 -0.003031
(0.011901) (0.045553) (0.039771) (0.035396)
g -0.021106 -0.014417 -0.019792 -0.019364 -0.019445
(0.001765) (0.002048) (0.001352) (0.002222) (0.001375)
&7 0.009554 0.013148 0.004024 0.006076 0.002783
(0.002666) (0.002194) (0.001387) (0.001590) (0.001706)
Y 2.933500 2.920929 3.505758 3.506019 2.979023
(0.020266) (0.023720) (0.014583) (0.021218) (0.128849)
% - - - 0.094175%1e-4 2.146769
(0.020821) (0.458639)
x2 330.87 329.19 76.62 72.24 87.17
d.f. 13 10 11 10 10
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