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Cet article examine une économie intertemporelle avec contraintes de
liquidité. Celles-ci empêchent la monétisation des revenus futurs et génèrent une
incomplétude endogène des marchés financiers. En contraste avec la littérature
récente sur les contraintes d'investissement, nos contraintes de liquidité émergent
naturellement lorsque les agents peuvent déclarer faillite et ont un horizon fini. Un
individu, dont la contrainte de liquidité sature, decide optimalement (i) de déférer
sa consommation en période de jeunesse, mais (ii) de l'augmenter lorsque la
contrainte est active. Le taux d'intérêt et les prix des actifs financiers d'équilibre
sont caractérisés sous des conditions générales sur les préférences et les dotations.
En présence de contraintes de liquidité le rendement de l'actif non risqué décroît.
De plus le CAPM par rapport à la consommation est valide, même lorsque la
structure de base du marché est incomplète. Lorsque l'aversion relative par rapport
au risque est homogène et constante l'incomplétude du marché renforce l'effet des
contraintes de liquidité et réduit encore davantage le rendement non risqué.
Cependant, ni la contrainte d'incomplétude, ni celles de liquidité ne nous permettent
d'expliquer le niveau empirique du ratio de Sharpe pour des valeurs raisonables du
taux d'aversion au risque. D'autres contributions de cet article comprennent (i) une
caractérisation nouvelle du problème de consommation-portefeuille d'un individu
sous contrainte conduisant a une solution explicite, (ii) une approche constructive
de détermination de l'équilibre, et (iii) une procédure numérique qui nous permet
d'aborder les problèmes de calcul qui se posent dans ce contexte.

We consider an intertemporal economy with liquidity constrained and
unconstrained individuals. A liquidity constraint prevents marketability of future
income and thus endogenously generates market incompleteness. In contrast with
the existing literature on portfolio constraints, our liquidity constraints arise
naturally whenever agents may default and have a finite horizon. Liquidity
constrained individuals optimally (i) postpone consumption in early age and (ii)
experience permanent consumption increases whenever the constraint binds. The



equilibrium interest rate and asset prices are characterized under very general
assumptions on preferences and endowment processes. In the presence of liquidity
constraints, the cumulative interest return is reduced. In addition, the CCAPM
holds, even when the basic market structure is incomplete. With homogeneous
relative risk aversion market incompleteness reinforces the effect of liquidity
constraints and further reduces the riskless return. However, we show that neither
incompleteness nor liquidity constraints can explain the empirical magnitude of the
Sharpe ratio for admissible levels of risk aversion, independently of preferences
and endowment assumptions. Additional contributions of the paper include (i) a
new characterization of the consumption-portfolio problem of constrained
individuals leading to an explicit solution, (ii) a constructive approach to the
determination of equilibrium, and (iii) a numerical procedure to handle the
forward-backward path-dependent computational problem arising with a liquidity
constraint.

Mots Clés : Équilibre, contraintes de liquidité, marchés incomplets,
hétérogénéité, consommation, taux d'intérêt, prime de risque du
marché, inégalité différentielle stochastique récursive, méthode
numérique

Keywords : Equilibrium, liquidity constraints, incomplete markets,
heterogeneity, consumption, interest rate, equity premium,
backward stochastic differential inequality, numerical method



1 Introduction.

Intertemporal economies with frictionless security markets have been extensively studied in �-

nancial economics. Early contributions by Merton (1973) and Breeden (1979) have identi�ed

the structure of equilibrium prices and interest rates in the context of Markovian economies.

Extensions by Du�e and Huang (1985), Du�e (1986) and Du�e and Zame (1989) have consid-

ered complete markets with more general uncertainty structure and drawn the connection with

Arrow-Debreu equilibria. Consumption and portfolio policies of agents are also well understood.

Closed form solutions have been obtained for a class of Markovian models (Merton (1971)) and

models with Brownian �ltrations and complete markets (Cox and Huang (1989, 1991), Karatzas,

Lehoczky and Shreve (1987)), while detailed characterizations are available when markets are

incomplete (Karatzas, Lehoczky, Shreve and Xu (1991), He and Pearson (1991)) or in the pres-

ence of portfolio constraints (Cvitanic and Karatzas (1993), Cuoco (1997)). However, little is

known about the impact on the consumption-portfolio policies and equilibrium of another type of

constraints which impinges on the intertemporal allocation of risks of most investors in �nancial

markets, namely liquidity constraints. These constraints introduce a form of market incomplete-

ness which is markedly di�erent from the situation created by the type of portfolio constraints

considered in the literature so far.

A liquidity constraint arises as a result of the restriction to borrow against one's future income.

Labor income is a typical example of an endowment stream that, in general, cannot be marketed

due to moral hazard reasons or due to observability but non-veri�ability of the idiosyncratic

payment stream. However, unlike previous attempts which capture this situation by introducing

ad-hoc limits on short-sales for speci�c assets (for example, Constantinides et. al (1997), Basak

and Cuoco (1997)), we only constrain the value of the marketable assets of an individual to be

nonnegative at all times. This is equivalent to the requirement that any short position has to

be fully collateralized with marketable assets. While this constraint is automatically satis�ed by

placing a nonnegativity constraint on consumption when the endowment consists exclusively of

an initial lump-sum of money, it is not satis�ed when income is received throughout lifetime.

Thus, unlike the complete markets case, whenever there are liquidity constraints the timing of

labor income payments matters for consumption and portfolio choice.

Early results on the impact of similar wealth constraints on the consumption-portfolio prob-

lem were provided by Scheinkman and Weiss (1986), He and Pages (1991) and Hindy (1995).

In independent work, a control problem similar to ours is posed as a stopping time problem

in El Karoui and Jeanblanc-Picque (1997). Also, the consumption-portfolio problem studied in

the macroeconomics literature on \bu�er-stock" models arising from Deaton (1991), can be ob-

tained as a special case of our formulation when agents are only allowed to trade a riskless asset.

However, the nature and properties of the solution, characterized by the path-dependency of the

consumption and portfolio choices, have not been identi�ed in previous work. In addition, the

analysis of the impact of liquidity constraints on equilibrium prices and allocations has not been

considered in the literature either.

Our liquidity constraint formulation can be rationalized as follows: imagine an economy in

which an agent can default at any time. Suppose that there is a costless technology available

that tracks the credit history of individuals (a credit bureau). In addition, purchases and sales

are anonymous but short sales are not. Short-sales can be collateralized but, for moral hazard

reasons, only traded assets are acceptable as collateral (thus, an agent cannot pledge his future

labor income as collateral). If an agent defaults (i.e. walks away from any short position in

any traded asset), he is not be able to borrow (set up a short position) thereafter any more.1

Lastly, suppose also that all agents have a �nite lifetime horizon T. Now, if an agent is short

1This is di�erent from the analysis in Kehoe and Levine (1993) and Alvarez and Jermann (1997), in which if an

agent defaults, he is thereafter not allowed to take both long and short positions in asset markets. In our framework,

long positions cannot be prevented after default because trade in asset markets is anonymous.
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in some asset at T-1, he will simply not settle his short position at period T (i.e. default is

optimal at T). Thus, nobody would be willing to let him take a short position on any asset at

T-1 unless he pledges enough collateral to cover this short position. At T-2, the agent knows

that he will not be able to set up an uncollateralized short position at T-1 and therefore has no

incentive to protect his credit history: he will optimally default at T-1 on any uncollateralized

short position established at T-2. But anticipating that, other agents will then not allow him to

establish an uncollateralized short position at T-2. By induction this argument holds at all times.

As a result, any short position taken at any time must be fully collateralized with marketable

assets, or equivalently liquid wealth must be nonnegative at all times (where by liquid wealth we

understand the net value of the portfolio of traded assets of an individual).

More generally all cash 
ows that are under some form of control by agents enjoy limited mar-

ketability and are naturally subject to liquidity constraints. Thus, future in
ows of idiosyncratic

income cannot be part of liquid wealth until they are e�ectively cashed. Liquidity constraints will

thus restrict the ability of agents to smoothe their consumption pro�le by placing a lower bound

on the value of their liquid wealth. This form of constraint is then substantially distinct from

incomplete markets or portfolio constraints examined in the earlier literature.

In this paper we solve the consumption-portfolio problem and derive equilibrium prices in the

presence of liquidity constraints. Our approach to the consumption-portfolio problem is construc-

tive. We �rst show that the problem can be approached by introducing a suitable correction to

state prices which solves a forward-backward inequality, and then we provide a characterization

of the solution in terms of a purely backward inequality. This reformulation is of interest since (i)

the existence of a solution to the backward inequality can be demonstrated and (ii) the backward

inequality lends itself easily to numerical computations. The consumption policy is then obtained

in closed form in terms of the corrected state price density.

Our continuous time formulation of the problem has advantages that go beyond mathematical

convenience. In a discrete time economy in which asset prices have unbounded support, agents

could never take short positions in risky assets since the constraint has to be met at all times with

probability one. This is overly restrictive since it prevents even the very wealthy individuals from

engaging in any short-selling activity at all times. Such pathologies are avoided in a continuous

time framework because liquid wealth is a continuous process. The liquidity constraint is thus

truly endogenized in the sense that individuals are free to choose any portfolio they wish as long

as they remain solvent. Thus, no ad-hoc constraints on portfolio choices are required to model

non-traded labor income.

Consumption behavior in the presence of a liquidity constraint has a priori surprising and

economically interesting properties. The analysis of the control problem shows that the liquidity

constraint is in fact a direct constraint on the consumption pro�le of an individual as opposed to

a constraint on his/her portfolio policy. The implications for equilibrium are therefore radically

di�erent from those of models with portfolio constraints. This constraint induces an individual

to shift consumption from the present to the future, uniformly across states of nature. Thus,

consumption is deferred in early age while the agent builds up his liquid wealth. At later stages

of the lifecycle, the individual compensates by consuming more than in the standard frictionless

model with identical �nancial market. The deferral of consumption in early age ensures that the

liquidity constraint can be met at all subsequent times. The pattern of consumption deferral

also exhibits interesting and albeit counterintuitive properties. The liquidity constraint is more

likely to be binding when the individual experiences positive income shocks. At these times, the

individual wishes to transfer resources to less favorable states of nature and thereby run liquidity

de�cits. Since the constraint precludes this it induces an increase in consumption. Furthermore

since the marginal utility of accumulated wealth is lowered along all possible future trajectories

of the economy this increase in consumption is permanent. Successive occurrences of a binding

liquidity constraint will be accompanied by successive permanent increases in consumption. This
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re
ects the fact that the liquidity constraint induces a segmentation of the state space that

prevents the agent from equalizing marginal utilities to state-price ratios uniformly across states

of nature.

We show that one can characterize equilibrium prices in our economy through a representa-

tive agent formulation even though the competitive equilibrium is not Pareto Optimal. With this

characterization, we show that the equity premium satis�es the standard consumption CAPM.

However, the liquidity constraint plays a role in the determination of expected returns since it

a�ects the relative risk aversion parameter of the aggregator in the economy, which is a compos-

ite of the agents' risk aversions and depends on the distribution of consumption across agents.

Since constrained individuals defer consumption in the early stages of life, the distribution of

consumption is shifted toward unconstrained agents. The Sharpe ratio of the stock market unam-

biguously increases whenever aggregate risk aversion is a decreasing function of the consumption

share of constrained individuals. We provide simple conditions under which this holds. Liquidity

constraints, however, are unable to rationalize the empirical magnitude of the Sharpe ratio.

The cumulative equilibrium interest return bears the full direct impact of the constraint,

while the risk premium of the stock re
ects the constraint through the consumption allocation.

In equilibrium, the cumulative interest return has two components. The �rst is a locally riskless

interest rate r which has the familiar structure: it is positively related to the expected consumption

growth rate and negatively related to the aggregate consumption risk if the aggregator exhibits

positive prudence. The second is a nonincreasing, singular component A which is tied to the

occurrence of a binding liquidity constraint. As mentioned above, whenever the constraint binds

on an agent, his consumption demand experiences a permanent increase. Since the agent is

prevented from borrowing, but not lending, at that time, the equilibrium interest rate must be

lower than it would otherwise be. The yield to maturity on any short term bond will then have a

tendency to decrease relative to an unconstrained economy.2 Accounting for liquidity constraints

in asset pricing models may then help to resolve the riskfree rate puzzle (Weil (1990)).

Liquidity constraints have a similar impact on equilibrium when the basic market structure is

incomplete. In such an environment the liquidity constraint reduces the riskless return and fails

to impact the structure of the Sharpe ratio. Market incompleteness also has a direct e�ect on the

riskless return but none on the structure of the Sharpe ratio. In economies populated by individ-

uals with homogeneous constant relative risk aversion market incompleteness reinforces the e�ect

of liquidity constraints and further reduces the riskless return. However, neither incompleteness

nor liquidity constraints can be invoked to explain the magnitude of the Sharpe ratio.

The next section of the paper provides an intuitive example to motivate the relevance of liquid-

ity constraints. Section 2 details the structure of the economy. Section 3 solves the consumption-

portfolio problem in the presence of a liquidity constraint; the economic behavior of optimal

consumption is analyzed and further intuitions are provided in the context of the example devel-

oped in the introduction. In section 4 we develop a constructive approach to the determination

of equilibrium and investigate the properties of the interest rate and the equity premium. Section

5 extends some results to incomplete markets. All proofs are contained in the Appendix.

1.1 An example.

To illustrate the nature of the constraints that we investigate in this paper, we �rst solve an

example for the consumption-portfolio problem of an unconstrained agent in a standard complete-

markets framework. Consider the \binomial" tree economy with one stock and one bond and an

investor with power preferences and a risk aversion coe�cient equal to 3. The investor is endowed

only with a stream of labor income. The following lattice describes the evolution of the stock

2This holds if there is no o�setting e�ect due to a redistribution of consumption a�ecting the risk aversion of

the aggregator. Constant and homogeneous relative risk aversion across agents is a su�cient condition for the

unambiguous decrease in short term interest rates.

3



price (which is denoted by S), the endowment of the agent (denoted by e), and the state-price

density (denoted by �): Recall that the process � makes �tSt a martingale. Each time step in the

lattice corresponds to one year. The implicit continuously-compounded interest rate is constant

and equal to 5% per year. The probability of an up-movement in the lattice is constant and equal

to 0:6545. Time periods are t = 0; 1; 2.

euu = 2:5495

Suu = 1:5
�uu = 0:5488

eu = 1:5967

Su = 1:1937
�u = 0:7408

%

&

e = 1

S = 1
� = 1

%

&

eud = 1:16

Sud = 1
�ud = 1

ed = 0:8496

Sd = 0:9032
�d = 1:3499

%

&

edd = 0:7219

Sdd = 0:8970
�dd = 1:8222

The continuous-time limit of this economy corresponds to a di�usion economy with lognor-

mally distributed stock returns with Sharpe ratio equal to 0:3, and a continuously compounded

interest rate of 5%. The individual has a labor income stream whose expected growth rate is

higher when he is young: the expected growth rate is 10% in period zero, and 2:45% on average

in period one. In addition, the standard deviation of labor income is 30% in period zero, 37% in

period one in the up-state and 23% in period one in the down-state.

In this economy, the investor attempts to maximize his lifetime utility of consumption

E

 
2X

t=0

1

1� 3
c1�3t

!
(1)

by choosing a nonnegative consumption process c and a trading strategy that speci�es the number

of shares of the stock to hold (�) and the number of one-period, $1 face value zero-coupon bonds

to hold (B) at each node in the tree. The trading strategy is constrained to be self-�nancing in

that

�t+1St +Bt+1 = �tSt +Bt exp (r) + et � ct (2)

for t = 0; 1 with �0 = B0 = 0:

Since markets are complete and by standard arguments, rather than choosing c, � and B that

maximize (1) subject to (2), the agent can solve the consumption-portfolio choice problem just by

choosing the consumption process c that maximizes (1) subject to the single budget constraint:

E

 
2X

t=0

�tct

!
= E

 
2X

t=0

�tet

!
(3)

The �nancing portfolio can then be obtained by recursive computation along the tree given the

optimal consumption process.

The following tree shows the evolution of optimal consumption (c), optimal stock and bond

holdings at the end of each period, after retrade (� and B respectively) and the agent's wealth

at the beginning of each period (X). The Lagrange multiplier for the budget constraint (3) is

0:5784:
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cuu = 1:4659

Xuu = �1:0836

cu = 1:3264

Xu = �:7767

�u = �2:2476

Bu = 2:2878

%

&

c = 1:2002

X = 0

� = �3:9735

B = 3:9665

%

&

cud = 1:2002

Xud = 0:0402

cd = 1:0860

Xd = 0:3776

�d = �2:1408

Bd = 2:181

%

&

cud = 0:9826

Xdd = 0:2607

The portfolio of securities serves to �nance future consumption in excess of the endowment

(net consumption). At nodes (u) and (uu), the portfolio at the beginning of the period has a

negative value: the agent is borrowing against his future labor income. For example, at the

beginning of the third period at node uu, the individual owes 1:0836; which is the value at the

beginning of the third period of the portfolio that was chosen at the end of the second period. In

the standard, default-free Arrow-Debreu setting, he would settle this debt at the end of the third

period using the excess of his endowment (2:5495) over his consumption (1:4659) at that node.

Note, however, that the above program presumes that the individual never defaults on his debt.

But, if income at node uu cannot be fully appropriated by any creditor, the individual would prefer

to default and consume 2:5495 rather than settle his short position and only consume 1:4659. As

a result his labor income will not be accepted as collateral by anyone who might consider taking

the opposite side of his short portfolio position. It is then not possible for the individual to

enter node (uu) with negative liquidity in the �rst place, i.e. the anticipation of possible rational

default precludes negative portfolio values. The same reasoning applies at prior nodes of the tree,

in particular at node u in period 2. Thus, we would like to solve the consumption-portfolio choice

problem when liquid wealth X is constrained to be nonnegative at all times. In other words we

want to constrain the individual not to dispose of his labor income until it is cashed. This is

in sharp contrast to the standard complete markets solution in which the individual is able to

sell his lifetime labor income up-front if he wishes to do so. In section 3 we develop the solution

procedure in the presence of such a liquidity constraint; we revert to the numerical example above

in section 3.5.

2 The economy.

We consider an intertemporal economy with �nite horizon [0; T ] and two types of agents described

below. The uncertainty is represented by a complete probability space (
;F), a probability

measure P , a unidimensional Wiener process W de�ned on (
;F) and a �ltration F(�). We

assume that F(�) is the natural �ltration generated by W and take FT = F :

2.1 Financial markets.

A stock and a riskless asset are traded in �nancial markets (none of the results of this paper

depends on the existence of a single stock). There is no outside supply of this asset, and there is

only one share of the stock outstanding. The stock pays dividends D such that

dDt = Dt[�
D
t dt+ �Dt dWt]; D0 given.

where �D and �D are progressively measurable processes representing the drift and volatility of

the dividend process. The stock price satis�es
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dSt +Dtdt = St[dmt + �tdWt] (4)

dmt = �tdt+ dAt (5)

subject to some initial value S0, where m and � are F(�)-progressively measurable processes. The

coe�cient m represents the cumulative drift of the stock price; it is composed of an instantaneous

drift � and a nonincreasing, singular process A which is null at time 0. As we will show later,

the presence of liquidity constraints implies the emergence of such singular terms in equilibrium.

The evolution of the riskless asset price B is governed by the equation dBt=Bt = dRt where

dRt = rtdt+ dAt (6)

and where r is an instantaneous rate of interest and A is the singular component introduced

above. This formulation is adopted from the start because we will prove later that the singular

components in the stock and bond prices are necessarily identical in equilibrium: since our ul-

timate goal is to understand the structure of equilibrium we focus on the class of interest rate

and stock price processes which are most relevant from that point of view. The initial value S0,

the coe�cients (m;�;A; �), and the values of B and r are endogenous processes. To simplify

notation, we de�ne the discount factor

bt = exp

�
�

Z t

0

dRs

�
: (7)

The value of a money market account, or a dollar continuously reinvested at the riskless spot

interest rate, is 1=bt. Taking the di�erence between the expected gross returns on the stock

and the riskless asset and dividing by the stock price volatility gives the market price of risk

� = ��1(� � r). Though our economy presents incompleteness due to liquidity constraints, a

unique equilibrium state price density will still exist.3 We will therefore maintain the following

standard assumption which will enable us to solve the agents' consumption-portfolio problems.

Assumption 1: The market price of risk � satis�es E exp
�
1
2

R T
0 k�tk

2 dt
�
<1.

As we shall demonstrate this condition is satis�ed in equilibrium under mild conditions: the

class of relevant price processes is then the one satisfying (4), (6) along with Assumption 1. The

corresponding state price density process (SPD) is

�t = bt exp

�
�

Z t

0

�sdWs �
1

2

Z t

0

(�s)
2ds

�
: (8)

and the Arrow-Debreu prices implicit in this market structure are �tdP .

2.2 Agents.

The consumption space is the set of nonnegative, progressively measurable processes which satisfy

the integrability condition,
R T
0 c

i
tdt <1, a:s:, and such that utility (9) is �nite. Agents have von

Neuman-Morgenstern preferences de�ned on this space by

U i(c) = E

�Z T

0

ui(ct; t)dt

�
(9)

3The market structure (4)-(6) is consistent with the absence of arbitrage opportunities (see Karatzas, Lehoczky

and Shreve (1991)). An interpretation of the equilibrium state price density as the marginal utility of a representative

agent in a Pareto-ine�cient (constrained) equilibrium will be given below.
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i = 1; :::; I. Let uic � @ui=@x denote the marginal utility of consumption. The following assump-

tions are standard.

Assumption 2: For each i and for all t 2 [0; T ]

(i) ui(�; t) is strictly increasing, strictly concave and twice continuously di�erentiable:

(ii) limx!0 u
i
c(x; t) =1; limx!1 uic(x; t) = 0:

Each agent is endowed with an income process ei which is a nonnegative and integrable

F(�)-progressively measurable process. Initial endowments of shares of the stock are ni whereP
i n

i = 1. Initial endowments of the riskless asset are null.

Each agent chooses a consumption process ci and a portfolio process �i which represents his

stock demand. The portfolio is a progressively measurable process which satis�es the integrability

condition
R T
0
�it(�t � rt)dt +

R T
0
(�it�t)

2dt < 1, a:s:. The admissible choice set for ci and �i will

be speci�ed below. The liquid wealth of an individual is the value of his portfolio of marketed

assets: for a policy (ci; �i) the liquid wealth process Xi satis�es

dXi
t = Xi

tdRt +
�
eit � cit

�
dt+ �it [(�t � rt)dt+ �tdWt] (10)

subject to the initial condition Xi
0 = niS0.

Individuals are divided into two categories depending on whether their income stream can

be marketed or not. Recall that by \marketing" the labor income stream we mean using the

future idiosyncratic income as collateral for today's aggregate short position. The set of all agents

is I = C [ U where C is the set of constrained agents (agents of type 1) and U is the set of

unconstrained agents (type 2). An example of an agent of type U is an individual who inherits a

claim to an exogenous production process (say, a �rm); a typical individual of type C is someone

who only has a claim towards the income produced by his e�ort. The income of constrained agents

C must be either consumed or invested in marketed assets as it is obtained. Unconstrained agents

can trade the stock and the riskless asset without restriction: markets are dynamically complete

from their point of view. We naturally assume C \ U = ;:

A consumption-portfolio policy
�
ci; �i

�
is admissible for agent i if and only if the wealth process

generated by
�
ci; �i

�
satis�es(
�tX

i
t +E

�R T
t �se

i
sds j Ft

�
� 0 8t 2 [0; T ] if i 2 U

Xi
t � 0 8t 2 [0; T ] if i 2 C

(11)

Let Ai be the admissible set for i 2 C [U . Condition (11) states that a liquidity-constrained

individual has to limit his consumption-portfolio choice to policies that ensure the nonnegativity

of his liquid wealth (i.e. the value of his marketed assets) at all times and with probability one.

On the other hand, an unconstrained individual can run temporary de�cits in his liquid wealth

position as long as his total wealth is nonnegative. Here total wealth equals liquid wealth plus

the current value of his endowment stream. We can then say that the constrained individual

faces a liquidity constraint while the unconstrained individual faces a solvency constraint. For

later purposes, we shall record a useful property of the liquid wealth process generated by an

admissible (ci; �i).

Lemma 1 Let
�
ci; �i

�
2 Ai for i 2 C [ U . The liquid wealth process Xi generated by (ci; �i)

satis�es the lower bound

�tX
i
t � E

�
�TX

i
T +

Z T

t

�s(c
i
s � eis)ds j Ft

�
: (12)

This condition says that liquid wealth corresponding to an admissible policy cannot be less

than the present value of future net consumption where valuation is based on the SPD �. A pair�
ci; �i

�
2 Ai is optimal for agent i if and only if there is no other admissible pair (�0; c0) such that

U i(c0) > U i(ci).
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2.3 De�nition of equilibrium.

Let E denote the economy described above. A competitive equilibrium for E is a collection of

stochastic processes ((ci; �i)i2C[U ; (S; �;A; �); r) such that (i)
�
ci; �i

�
is optimal for U i; i 2 C[U ,

(ii) markets clear: (a) commodity market:
P

i c
i =

P
i e

i � e, (b) stock market:
P

i �
i = S, (c)

riskless asset market:
P

i(�
i �Xi) = 0.

3 Optimal consumption-portfolio policies.

In this section we �rst describe an equivalent static consumption choice problem for a constrained

agent (section 3.1). We then derive the optimal consumption policy (section 3.2), discuss con-

sumption behavior (section 3.3), characterize the shadow price of the liquidity constraint (section

3.4) and provide numerical computation of the solution that allows and further economic intu-

ition regarding the agent's lifetime consumption pro�le (section 3.5). To simplify notation we

omit superscripts i throughout the section.

3.1 Static optimization with a liquidity constraint.

It is well known that the dynamic consumption-portfolio problem of an unconstrained agent is

related to a static problem involving consumption choice only (Cox and Huang (1989), Karatzas,

Lehoczky and Shreve (1987)). We examine this relation in the presence of a liquidity constraint

The dynamic problem of a liquidity constrained individual is

sup
(c;�)

U(c) s:t: (c; �) 2 A (13)

In order to formulate the static problem we recall that liquid wealth is bounded below by

the present value of net consumption (12). Nonsatiation of preferences implies the following

strenghtening of lemma 1

Lemma 2 If the utility function is strictly increasing liquid wealth satis�es

�tX
i
t = E

�Z T

t

�s(c
i
s � eis)ds j Ft

�
(14)

Consider then the static problem

sup
c
U(c) s:t (15)8>><

>>:
c � 0, progressively measurable and integrable

Xt = E
�R T

t �s(cs � es)ds j Ft

�
� 0 t 2 [0; T ]

E
�R T

0 �t(ct � et)dt
�
= nS0

(16)

The following proposition establishes the relationship between problems (13) and (15).

Proposition 3 Assume that u satis�es the conditions of assumption 1. If (c; �) solves the dy-

namic problem (13), then c solves the static problem (15)-(16). Conversely, if c solves the static

problem (15)-(16), then there exists a portfolio policy � such that (c; �) solves the dynamic problem

(13). Furthermore

�t = Xt(�
0
t)
�1�t + ��1t (�0t)

�1�t (17)

where � is the unique, progressively measurable process in the representation of the martingale

Mt � E

�Z T

0

�s(cs � es)ds j Ft

�
�E

�Z T

0

�s(cs � es)ds

�
: (18)

8



3.2 The optimal consumption policy.

The Lagrangian for the constrained static optimization problem is:

sup
c

inf
y;


U(c) + yE

�
x�

Z T

0

�t(ct � et)dt

�
+E

�Z T

0

E

�Z T

t

�s(cs � es)ds j Ft

�
d
t

�
(19)

subject to c � 0; y � 0 and d
 � 0. Here y is the multiplier for the static budget constraint

and d
 the multiplier for the liquidity constraint. Since the liquidity constraint must be satis�ed

at any time and in any state the multiplier d
 is a stochastic process. Furthermore, 
 must

be predictable and nondecreasing. This formulation is an application of optimization theory in

in�nite dimensional vector spaces (see details in Appendix B).

The Lagrangian (19) leads to the following �rst order conditions8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

uc(ct; t) = (y � 
t)�t

E

�Z T

0

�t(ct � et)dt

�
= nS0

E

�Z T

t

�s(cs � es)ds j Ft

�
� 0

E

�Z T

0

Xtd
t

�
= 0

ct � 0; y � 0


 � 0;nondecreasing, null at 0:

(20)

The �rst equation states the usual equality of the marginal utility of consumption and of the

state price density, accounting for the shadow prices of the constraints. The next two conditions

correspond to the budget and liquidity constraints, respectively. The fourth condition is the

complementary slackness condition: when the constraint is slack (Xt > 0) the multiplier is null

(d
t = 0); when the multiplier charges (d
t > 0) the constraint is binding (Xt = 0). The last two

sets of conditions are nonnegativity constraints on the control variables.

Our next result is a veri�cation theorem which shows that the conditions (20) above are

su�cient for the static optimization problem.

Theorem 4 Suppose that there exist progressively measurable processes (c; 
) and a constant y

such that (c; 
; y) solves (20). Then c solves (15) subject to (16).

A consequence of Theorem 4 is that we can focus on the conditions (20) to solve the static

problem and identify the optimal consumption policy. This task is carried out in section 3.4.4

Remark 1 The �rst order conditions (20) also reveal that the optimal consumption of the con-

strained agent coincides with the consumption plan that he would choose in an arti�cial \shadow"

economy without liquidity constraint, but in which the state price density is given by (y � 
)�

rather than �. Since 
t is a nondecreasing process, this \shadow" economy can be interpreted as

the original economy but with a new riskfree return that experiences increases at selected times.

In order to get the same consumption and wealth path in this arti�cial unconstrained economy,

the riskfree return has to increase just enough to discourage the agent to run uncovered short

4Results on the existence of a solution (though not a constructive derivation of the solution) appear in Pag�es

(1989). He shows that an optimum to (15)-(16) exists if (i) the utility function is bounded, or if (ii) it is positive

and there exists constants a; b > 0; 0 < p < 1 such that u(x; t) � a+ bxp, or (iii) it is unbounded and there exist

constants a; a0; b > 0; b0 > 0; p < 1; p0 < 0 such that a0 � b0xp
0

� u(x; T ) � u(x; 0) � a+ bxp.

Note that these su�cient conditions for existence are satis�ed by power utility functions with a relative risk

aversion di�erent from one. The constructive derivation of the optimal policy that we carry out in section 3.4 does

not require such restrictions on utility functions.
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positions at times when he would otherwise like to do so. Note however, that this reinterpretation

of the model might be misleading: as we show later the liquidity constraint will actually lower the

equilibrium riskfree return relative to an economy without liquidity constraint.

3.3 Consumption behavior with a liquidity constraint.

As the previous example shows, a wealth constrained individual exhibits a consumption behavior

which departs signi�cantly from the standard unconstrained case. Let I(y; t) = inffx � 0 :

uc(x; t) � yg denote the left-inverse of the marginal utility of consumption. The �rst order

condition in (20) yields the optimal consumption policy

ct = I((y � 
t)�t):

Risk aversion implies that the inverse marginal utility I(�) is strictly decreasing. Since 
 is a

nondecreasing process, we conclude that the multiplier y which solves the static budget constraint

E

�Z T

0

�t(I((y � 
t)�t)� et)dt

�
= nS0

exceeds the multiplier which would prevail in the absence of a wealth constraint. As explained

earlier, the process 
 captures the wedge between the marginal rate of substitution between two

time periods and the ratio of the state-prices corresponding to these states. The former will be

smaller than the latter since the agent cannot borrow. The fact that 
 only increases at times when

the constraint binds also means that the multiplier 
 re
ects the anticipation of occurrence of

future constrained states. Since the process 
 is null at zero, we also deduce that the agent reduces

consumption in early age while increasing it at later stages in his life: early age corresponds to a

period of bu�er wealth buildup. The anticipation of future constrained states is the source of his

conservative behavior at the outset. This optimal policy is radically di�erent from the \naive"

intuition suggesting that the individual starts o� his consumption policy at levels more or less

equal to the ones in the unconstrained case, and then readjusts his consumption downward when

\bad times" occur in order to accumulate income, build up wealth and loosen the constraint.

Another striking di�erence with the standard consumption behavior is the presence of a sin-

gular component in the evolution of the consumption function. Indeed, applying Ito's lemma to

the optimal consumption process gives

dct

ct
=

1

RR
t

��
Pt

RR
t

�
�2t +

�
ut

uc

��
dt+

1

RR
t

�
dRt + (y � 
t)

�1d
t
�
�

1

RR
t

�tdzt

where RR = �
cucc
uc

denotes the relative risk aversion coe�cient and P = �
cuccc
ucc

is the relative

prudence coe�cient. The volatility of consumption has the same structure as in the standard

model. The drift coe�cient, however, has the additional term (RR)�1(y�
t)
�1d
t relative to the

unconstrained case. This term re
ects the impact of the wealth constraint. In states of nature in

which the constraint is lax, we have d
 = 0 and the consumption growth rate has the standard

local behavior (in particular, the expected growth rate is absolutely continuous with respect to

Lebesgue measure). But consumption does not grow at the same rate as in the unconstrained case

since the consumption level anticipates future constrained states. Prior to reaching a constrained

state the agent builds up his wealth by reducing consumption. Furthermore in those good states

of nature in which the individual would like to deplete his wealth in order to improve his resources

at other less favorable times, he can only do so to a limited extent since he cannot take aggregate

short positions. Thus, each time the constraint binds, the agent has to readjust his consumption

behavior upwards given his inability to cross-subsidize less favorable states. These intuitions will

become clear below when we solve the consumption-portfolio problem in the tree example set up

in the introduction. However, before proceeding to this example we �rst study the solution of the

control problem in detail: this will enable us to develop an algorithm to compute the multiplier


 and the optimal consumption-portfolio policy.
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3.4 The shadow price of liquidity.

In order to compute the consumption policy and shed further light on consumption behavior

we need to compute the multiplier 
. In this section, we provide a characterization of 
 which

facilitates its computation. The key to this characterization is the transformation of the forward-

backward structure of the original problem (20) into a purely backward structure. This is achieved

by a change of variables.

To solve the control problem of a constrained investor we must identify a process 
 and a

constant y such that8><
>:

�tXt = E
�R T

t
�s[I((y � 
s)�s)� es]ds j Ft

�
� 0; t 2 [0; T ]

Xtd
t = 0 for all t 2 [0; T ]; and 
 nondecreasing null at 0

E
R T
0
�s[I((y � 
s)�s)� es]ds = nS0:

For any adapted process � de�ne the map

Ft(y;�t) � E

�Z T

t

�s[I((y ���
t;s)�s)� es]ds j Ft

�
� 0 (21)

��
t;s � sup

v2[t;s]
�v: (22)

for t 2 [0; T ]. Consider the auxiliary problem: �nd an adapted process � and a constant y such

that

Ft(y;�t) � 0; 8t 2 [0; T ] (23)

Ftd�t � 0 for all t 2 [0; T ]; and � nonnegative null at T+ (24)

E

Z T

0

�s[I((y ���
0;s)�s)� es]ds = nS0 (25)

Note that the �rst two conditions (23)-(24) in the auxiliary problem have a backward structure

as opposed to the forward-backward structure of the original constrained problem. A closer look

at the two problems also reveals that the process 
 in the constrained problem is given by


t = ��
0;t

where � solves the backward problem. The auxiliary problem (23)-(25) then computes the \push"

at date t assuming that the constraint did not bind prior to t. This formulation is of interest

because it provides a useful and simple characterization of the Lagrange multiplier process.

Lemma 5 Consider the backward problem (23)-(25). A solution is given by

�t(y
�) = F�1t (y�; 0)1fFt(y�;0)<0g (26)

where F�1t (y; 0) is the inverse of the map Ft(y; �); de�ned in (21), and the constant y� uniquely

solves

E

Z T

0

�s[I((y ���
0;s(y))�s)� es]ds = nS0: (27)

subject to �0 = 0:

The solution of the consumption problem of a liquidity-constrained agent now follows.
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Theorem 6 De�ne �v(y) and y� as in (26)-(27) and consider the process 
�t = ��
0;t(y

�) �

supv2[0;t]�v(y
�): The optimal consumption policy of the constrained agent is given by

ct = I((y� � 
�t )�t): (28)

and his optimal liquid wealth is Xt = (�t)
�1E

�R T
t
�s[I((y

� � 
�s )�s)� es]ds j Ft

�
:

The characterization of the multiplier in Theorem 6 is relatively easy to implement numerically.

The main idea underlying the result is to start the problem anew at each point in time (i.e. ignoring

past occurrences of a binding constraint): this reduces the forward-backward equations satis�ed

by the multiplier 
 in the �rst-order conditions to a purely backward equation.

Given the optimal consumption policy in Theorem 6 and the results in Proposition 3 we obtain

the following characterization of the optimal portfolio.

Lemma 7 The optimal portfolio policy is �t = Xt(�
0
t)
�1�t + ��1t (�0t)

�1�t where � is the unique,

progressively measurable process in the representation of the martingale

Mt � E

�Z T

0

�s(I((y
�
� 
�s )�s)� es)ds j Ft

�
�E

�Z T

0

�s(I((y
�
� 
�s )�s)� es)ds

�
:

On the event fXt = 0g there is no investment in the stock: �t = 0.

At times when the constraint binds liquid wealth must be locally nondecreasing in order to

keep meeting the constraint. This can only be achieved if investment in the stock market is null:

on the event fXt = 0g the optimal portfolio is �t = 0.

To shed further light on the nature of the solution to the constrained problem we next use the

optimality conditions derived above to solve the example put forth in the introduction.

3.5 An example with liquidity constraints.

We now reconsider the example of Section 1.1, in the presence of a liquidity constraint. In order to

solve the consumption-portfolio problem, we use the algorithm based on the backward procedure

developed in section 3.4. Whenever the liquidity constraint binds the algorithm recomputes the

multiplier at all successor nodes to ensure nonnegative liquid wealth. The next tree shows the

evolution of the multiplier (
), optimal consumption (c), end-of-period portfolio holdings (�; B),

and beginning of period liquid wealth (X). The Lagrange multiplier for the budget constraint in

the presence of liquidity constraints is 1:0932.


 = 0

c = 0:9707

X = 0

� = �:21583

B = :25764

%

&


u = 0:6959

cu = 1:5033

Xu = 0

�u = �:4004

Bu = :6006

%

&


d = 0

cd = 0:8783

Xu = 0:0627

�d = �:7068

Bd = :7068

%

&


uu = 0:9833

cuu = 2:5495

Xuu = 0


ud = 0:6959

cud = 1:3602

Xud = 0:2002


du = 0:4526

cdu = 1:16

Xdu = 0


dd = 0

cdd = 0:7947

Xdd = 0:0728
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Consider nodes (u), (uu) and compare them with their equivalents in the unconstrained tree

in Section 1.1. At these nodes, the agent experiences good news regarding the realization of his

labor income relative to the

previous period. The unconstrained portfolio value is then negative because the agent tailors

his portfolio so as to transfer funds out of these nodes towards southern nodes of the tree with

relatively less favorable income realizations.

However, the constrained portfolio value is zero at these nodes: the agent cannot transfer as

much wealth from his high income realizations in nodes (u; uu) to the rest of the tree as he would

like, i.e. he cannot borrow against his future labor income. A consequence is that consumption

in the states (u, uu) has to increase relative to the unconstrained case, in which the individual

can hedge without restrictions. We thus have (cu; cuu) = (1:5033; 2:5495) in the constrained case

versus (cu; cuu) = (1:3264; 1:4659) in the unconstrained case of Section 1.1.

Note that this extra consumption \gulp" (relative to the unconstrained case) is due to the

inability to hold an aggregate short position at u. This is a source of path dependency in optimal

behavior (note that the tree above is not recombining while the tree in the unconstrained case

is recombining). The occurrence of a binding constraint at any of these nodes will permanently

decrease the marginal valuation of wealth at follower nodes, in the sense that the individual will

attempt to consume this extra consumption \gulp" by smoothing it across follower nodes.

For example, consider node (ud) in which unconstrained and constrained wealth are positive

(i.e. Xud = 0:0402 and Xud = 0:2002, respectively). In the constrained case, the agent reaches

that node after experiencing a binding constraint at the prior node (u), and even though he

faces exactly the same endowment and security returns that result in positive wealth in the

unconstrained case, he ends up consuming more: compare cud = 1:3602 versus cud = 1:2002 in

the unconstrained case. The increase in the Lagrange multiplier process 
 along the tree captures

this random but permanent decreases in the marginal utility of income.

Of course, the inability to transfer wealth out of states (u) and (uu) by constructing a portfolio

with a negative payo� in those states implies that the investor is unable to compensate for his

low endowment in states (d; du; dd). Consumption at these nodes is therefore lower than in the

unconstrained case. Furthermore, as noted above, path dependency arises in the consumption

decision. For example, note that the portfolio value at (du) is zero. Since the investor is unable to

transfer wealth out of (u; ud), he tries to transfer wealth out of the next best node, which is (du),

towards (d; dd). To achieve this, the best he can do is to drive his wealth down to zero at the

beginning of period three at node (du), and consume his full endowment cdu = edu = eud = 1:16

there. Thus, due to the path dependency, the constraint binds at (du) even though wealth was

strictly positive there in the unconstrained case. Finally, at time zero he consumes an amount

which leaves him with zero �nancial needs for future net consumption. This will be re
ected in

a larger multiplier value for the static budget constraint (3), namely 1:0932 versus 0:6545. This

implies that even though the constraint never binds, the consumption and portfolio behavior in the

constrained and unconstrained case will be di�erent (for example, compare the paths ! d! dd

in the constrained and unconstrained cases).

In summary, liquidity constraints segment the uncertainty tree into subtrees. The nodes at

which the constraint binds and their successors are treated in isolation of the rest of the tree for

consumption smoothing purposes. Transfers of wealth then take place among the remaining nodes

of the tree, which form an independent system. In the example above, the nodes (u; uu; ud) form

a closed subtree: wealth cannot be shifted from these good states toward bad states of nature. As

a result, the wealth levels in the remaining nodes of the tree are lower in the constrained case than

in the unconstrained case. This explains why the relative prices of consumption in di�erent states

will not be ex-ante equal to the marginal rate of substitution of consumption in these states. This

provides a rationale to a potentially counterintuitive result: at times at which the liquid wealth

of the consumer hits zero, he actually boosts his consumption level in a permanent fashion. Of
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course, this is compensated by smaller consumption levels in early age, almost everywhere relative

to the unconstrained case. Note also that the constraint has a substantial impact on the individual:

the ex-ante utility is �1:1722 in the constrained case versus �0:9981 in the unconstrained case.

Thus, as can be veri�ed, the individual would be willing to give up around 26% of his endowment

at date 0 in order to avoid the constraint.

3.6 The consumption function for CRRA.

Under the assumption of power utility function the consumption function is

ct =
Xt +Et[

R T
t
�t;sesds]

Et[
R T
t
�
1�1=R
t;s

�
y�
s
y�
t

��1=R
ds]

The following properties hold.

Proposition 8 Suppose that the individual has constant relative risk aversion.

(i) Consider an economy in which unconstrained consumption is an increasing function of rela-

tive risk aversion. In this context constrained consumption may be humped (increasing-decreasing).

(ii) The constrained consumption function is homogeneous of degree one in initial endowment

and wealth: c(kXt; ket; t) = kc(Xt; et; t):

Unconstrained consumption is increasing in relative risk aversion if the interest rate is suf-

�ciently large relative to the market price of risk. For the model with constant coe�cients a

necessary and su�cient condition is r > (12 � 1=R)�2. In the presence of a liquidity constraint

consumption increases for low levels of risk aversion. Liquid wealth at future nodes is reduced

and this eventually leads to a binding constraint. When the constraint binds at nodes that were

previously unconstrained the subtrees issued from these nodes become segmented. Consumption

smoothing then takes place over the remainder of the tree. The net result is that consumption

eventually falls in order to allow reallocations over less favorable nodes of the remainder of the

tree. Figure 1 illustrates this phenomenon.

The homogeneity property relative to total wealth follows from the homogeneity of the La-

grange multipliers with respect to multiplicative changes in endowments and liquid wealth. This

result extends the standard property for the unconstrained policy.

4 Equilibrium.

In this section we show the existence of a competitive equilibrium (section 4.1), provide a charac-

terization in terms of an "aggregator" (section 4.2), examine the equilibrium interest rate and the

equity premium (section 4.3) and provide numerical estimates for power utility function (section

4.4).

4.1 Existence of equilibrium.

Consider the economy of section 2 with one unconstrained and one constrained agents (agents 1

and 2, respectively). Let C = D + e denote aggregate consumption. We suppose that aggregate

endowment e = e1 + e2 follows the Ito process

det = et[�
e
tds+ �et dWt]

where (�e; �e) are progressively measurable process. The aggregate consumption process C =

D + e has drift �c and volatility coe�cient �c given by
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Figure 1: Parameter values: r = :1; � = :3; � = :2; �e = :1; �e = :2; e0 = 10; S0 = 100. Risk

aversion between .02 and 3.

C�c = D�D + e�e and C�c = D�D + e�e:

To prove existence of equilibrium we need to solve the equations that describe market clearing

and individual rationality, namely:

Ct = I1(y
1�t) + I2((y

2
� 
t)�t) (29)

�tX
2
t = E

�Z T

t

�s[I2((y
2
� 
s)�s)� e2s]ds j Ft

�
� 0; t 2 [0; T ] (30)

X2
t d
t = 0; 
 nondecreasing null at 0 (31)

E

Z T

0

�s[I1(y
1�s)� e1s]ds = n1S0; y1 � 0 (32)

E

Z T

0

�s[I2((y
2
� 
s)�s)� e2s]ds = n2S0; y2 � 0: (33)

By Walras law one of the budget constraints (32)-(33) is redundant. We can then set y1 = 1,

de�ne y � y2 and solve the remaining system for (y; 
; �): Solving the market clearing condition

(29) yields the state price density (SPD)

�t = g(Ct; y � 
t) � gt(y � 
t) (34)
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where g(�) is the inverse aggregate demand function with respect to the SPD, i.e. g(�) is the

unique solution of Ct = I1(g(Ct; y � 
t)) + I2((y � 
t)g(Ct; y � 
t)). Note that g(�) depends on

the net shadow price of the constraints x = y � 
. De�ne the process ht(x) which represents the

value of net consumption at date t conditional on the net shadow price as

ht(x) = gt(x)[I2(xgt(x))� e2t ]: (35)

Substituting (35) in (30),(31) and (33) leaves us with the system

�tX
2
t = E

�Z T

t

hs(y � 
s)ds j Ft

�
� 0; t 2 [0; T ] (36)

X2
t d
t = 0; 
 nondecreasing null at 0 (37)

E

Z T

0

hs(y � 
s)ds = n2S0; y � 0: (38)

The system (36)-(38) is similar in structure to the system of equations characterizing the opti-

mal consumption policy in the static problem. As we show in the appendix, the same methodology

can then be applied to prove the existence of a solution. This yields the existence of the compet-

itive equilibrium and the following characterization.

Theorem 9 Consider the economy E of section 2. A competitive equilibrium ((ci; �i)i2C[U ;

(S; �;A; �); r) exists.

Theorem 9 is proved as a particular case of the N -agent equilibrium in Appendix C. Note that

our construction provides the equilibrium state price density in terms of the inverse aggregate

demand function and the shadow prices of the budget and liquidity constraints. In the next

section, we show that equilibrium prices in our economy are fully characterized by the SPD

�t = g(Ct; y � 
t) where g(�) is the inverse aggregate demand function de�ned above and the

multipliers (y; 
) uniquely solve (36)-(38). This might come as a surprise, since aggregation

results are only known to hold in complete markets economies or economies with incomplete

markets but restricted diversity among agents. We therefore elaborate on this point in the next

section. In further sections, we will detail the structure of other equilibrium quantities and prices

that can be inferred from this SPD.

4.2 A representative agent characterization of equilibrium.

In economies with complete markets and diverse agents the second welfare theorem establishes the

existence of a no-trade equilibrium with identical pricing kernel. One can use this construction

to prove existence of equilibrium (Neigishi (1960)) or to characterize asset prices without demand

aggregation (Constantinides (1982)). Here we use the construction to characterize asset prices. In

independent work, Cuoco and He (1994) also applied a similar representative agent methodology

in an incomplete market model situation (though their source of incompleteness is di�erent from

ours).

A feasible allocation is a non-negative array of processes (xi) such that
P
i

xit =
P
i

cit. For

simplicity here, take initial wealth to be zero.
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Proposition 10 Suppose that ((ci; �i)i2C[U ; (S; �;A; �); r) is an equilibrium for the economy E.

Then the competitive allocation (ci) solves the problem

U (C) � sup
fxig

E

 Z T

0

X
i2C[U

�itu
i(xit; t)dt

!
s:t: (39)

X
i2C[U

xit =
X

i2C[U

cit � Ct a:s:

with �it � 1=(yi�
it) where y
i; 
i are the multipliers associated with the individual control problems,

for i 2 C [ U (we maintain the convention 
it = 0 for i 2 U). Moreover, (c; �) = (C; 1) is a

no-trade equilibrium for a single agent economy where the agent has the preferences U in (39).

One can prove that the maximum of (39) is achieved at

cit = Ii
�
H(Ct; t; y; 
t)

�it

�
(40)

where H(x; t; y; 
t) is the inverse of the continuous and decreasing function
P
i

Ii(x=�it) for x > 0.

Substituting back in (39) yields

U 0 (Ct) = H(Ct; t; y; 
t) (41)

i.e., the pricing kernel H, identi�ed from (40), is the marginal utility of the representative agent

U 0: In the next sections we will make extensive use of the fact that the market price of risk is

driven by the risk aversion of the representative agent. Dybvig (1983) proved the same result for

a complete markets economy:

Proposition 11 The relative risk aversion coe�cient of the representative agent with utility

function (39) is the weighted harmonic average of the relative risk aversion coe�cients of the

individuals in the economy where the weights are the respective consumption shares.

Note that the previous result implies that, in equilibrium, the price of risk (expected return

per unit of volatility) is bounded above and below by the largest and smallest coe�cient of

relative risk aversion of the individuals in the economy, respectively. If we understand that the

much discussed \equity premium puzzle" makes reference to an abnormally high expected stock

return per unit of risk (the Sharpe ratio) rather than the level of the expected return5, the above

aggregation result in Proposition 11 states that it is futile to attempt to explain the puzzle through

liquidity constraints or incomplete markets in general: it is impossible to generate an aggregate

risk aversion which is larger than the relative risk aversion of all individuals in the economy.

4.3 Interest rate and equity premium with liquidity constraints.

In order to describe the equilibrium interest rate and prices it is convenient to use the risk

aversion coe�cient (Ra) and prudence coe�cient (P a) of the representative agent constructed in

the previous section. These are respectively given by

Ra
t = Ct

"X
i

Ii((y
i � 
it)�t�t)

Ri((yi � 
it)�t�t)

#�1
= Ct

"X
i

cit
Ri
t

#�1

P a
t =

(Ra
t )

2

Ct

X
i

P i((yi � 
it)�t�t)Ii((y
i � 
it)�t�t)

Ri((yi � 
it)�t�t)
2

=
(Ra

t )
2

Ct

X
i

P i
t c

i
t

(Ri
t)
2
:

5The rationale for de�ning the equity premium puzzle through the Sharpe ratio lies in the fact that, keeping

other quantities constant, the level of expected return of its stock is a�ected by the leverage assumed by the �rm.
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where Ri and P i represent the relative risk aversion and relative prudence coe�cients of agent i.

Our next result details the structure of the competitive equilibrium.

Theorem 12 Consider the economy E of section 2 with ui(c; t) = exp(��t)ui(c) and suppose

that Assumption 1 holds with �t = Ra
t �

c
t : The equilibrium interest rate and equity premium are

dRt = rtdt+ dAt (42)

rt = � +Ra
t �

c
�

1

2
Ra
tP

a
t (�

c)2 (43)

dAt = �
Ra
t

R2
t

c2t
Ct

d
t

y � 
t
(44)

�t � rt = Ra
t �t�

c
t : (45)

The stock price satis�es the present value formula

St = E[

Z T

t

gv

gt
Dvdv j Ft] (46)

where gv = g(Dv ; y � 
v) and its volatility is the unique process � such that for all t 2 [0; T ]

E[

Z T

0

gvDvdv j Ft]�E[

Z T

0

gvDvdv] =

Z t

0

gvSv(�v �Ra
v�

c
v)dWv : (47)

In equilibrium the riskless cumulative rate has two components. The �rst is a locally riskless

interest rate r which has the familiar structure (43). As usual r is positively related to the expected

consumption growth rate and negatively related to aggregate consumption risk if the aggregator

exhibits positive prudence. Unlike models with portfolio constraints or incomplete markets, the

cumulative interest rate also has a singular component A; described in (44). This component

is tied to the occurrence of a binding liquidity constraint. Whenever the constraint binds the

consumption demand (savings demand) of the agent experiences a permanent predictable increase

(decrease). The cumulative interest rate naturally re
ects the increased demand: its fall is just

enough to provide an adequate incentive to reduce consumption immediately. The extent of the

decrease in cumulative interest rate is related to the size of the net multiplier y � 
. If the net

multiplier is small, past consumption deferral has been substantial enough to ensure that the

liquidity constraint is satis�ed. If the liquidity constraint binds, the marginal value of wealth

decreases and the additional consumption increase required to match this decrease becomes large

(since marginal utility is very low). The required decrease in the cumulative riskfree return

becomes comparatively large.6The analysis above, thus, shows that liquidity constraints tend to

reduce the cumulative riskless return relative to an unconstrained economy. The incorporation of

these constraints may then help to resolve the riskfree rate puzzle (Weil (1990)).

Since the interest rate re
ects all the deterministic components in the growth rate of the

marginal utility of the aggregator it is not surprising to realize that the risk premium of the

stock (45) does not depend directly on the liquidity constraint. Indeed this risk premium has the

usual structure: it satis�es the consumption CAPM. Indirect e�ects of the liquidity constraint,

however, a�ect the intertemporal properties of the equity premium because the risk aversion

parameter of the aggregator is a composite of the risk aversions of all agents in the economy

and therefore re
ects the distribution of consumption across agents. Whenever the constraint

binds the aggregator's weight reallocates consumption across agents and this generates singular

components in the evolution of the equity premium. Does this mean that liquidity constraints

6Singular components in cumulative interest rates also arise when marginal utility of agents is bounded at zero

(see Karatzas et al (1991)).
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can be invoked to justify the empirical magnitude of the Sharpe ratio? The answer is negative.

Indeed, the Sharpe ratio has an empirical magnitude of about :37 (using Mehra and Prescott's

(1985) numbers) Since consumption growth's volatility is :0357 this implies an aggregator's risk

aversion of 10:4 (see (45)). However, this number is unrealistic since the aggregator's risk aversion

is bounded above by the highest risk aversion of the agents populating the economy.

4.4 Examples

In this section we provide examples that can be solved in closed form and which illustrate the

e�ects of liquidity constraints described above. In the �rst example, agents have homogeneous

constant relative risk aversion parameter: the cumulative interest decreases while the Sharpe ratio

is una�ected. In the second example, relative risk aversions depend on the consumption levels

and distributional e�ects a�ect equilibrium prices.

4.4.1 Example 1.

Consider a simple economy with 2 agents with homogeneous and constant relative risk aversion

R. The aggregator's risk aversion and prudence coe�cients are Ra
t = R and P a

t = 1 + R: The

equilibrium Sharpe ratio which equals

�t � rt

�t
= R�ct

is una�ected by the liquidity constraint. The cumulative interest is given by

dRt = rtdt+ dAt

rt = � +R�ct �
1

2
R(1 +R)(�ct )

2

dAt = �
c2t
Ct

d
t

y � 
t
:

Hence, the interest rate r is the same while the cumulative interest R decreases relative to an

economy without the liquidity constraint but identical in all other respects.

4.4.2 Example 2.

Consider now an economy with 2 agents with relative risk aversion coe�cients R1
t = R1(c1t ) and

R2
t = R2(c2t ). The aggregator's risk aversion coe�cient is

Ra
t = Ct

�
c1t
R1
t

+
c2t
R2
t

��1
:

Using c1t+ c2t = Ct we get

@Ra
t

@c2t
< 0 i�

R1
t �R2

t

R1
tR

2
t

�

�
c2t

(R2
t )

2

@R2
t

@c2t
�

c1t
(R1

t )
2

@R1
t

@c1t

�
> 0: (48)

Under this condition the aggregator's risk aversion increases in the early stages of the liquidity

constrained economy relative to an unconstrained economy. The equilibrium Sharpe ratio will

be larger as well. Su�cient conditions for (48) to hold are decreasing relative risk aversion of

constrained agents, combined with increasing relative risk aversion of unconstrained agents and

R1 � R2 at the unconstrained allocation.
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5 Liquidity constraints and incomplete markets.

In this section we outline an extension of our results to incomplete markets. In this environment

liquidity constraints combine with the failure of full insurance to determine equilibrium prices

and the consumption allocation.

We suppose that the uncertainty is represented by the 2-dimensional Wiener process W =

(W 1;W 2) de�ned on (
;F). The �ltration F(�) is the natural �ltration generated by W . The

dividend process of the stock and the aggregate endowment processes are

dDt = Dt[�
D
t dt+ �Dt dW 1t]; D0 given. (49)

det = et[�
e
tdt+ �e1tdW 1t + �e2tdW 2t]; e0 given. (50)

where (�D; �et ; �
D; �e1; �

e
2) are progressively measurable processes, i.e. they may depend on both

Brownian motions W 1 and W 2. Aggregate consumption C = D + e evolves according to

dCt = Ct[�
c
tdt+ �c1tdW 1t + �c2tdW 2t]; C0 given. (51)

Let �ct =
�
(�c1t)

2 + (�c2t)
2
� 1
2 and de�ne the new processes7(

dW1t =
1
�ct

�
�c1tdW 1t + �c2tdW 2t

�
dW2t =

1
�ct

�
�c2tdW 1t � �c1tdW 2t

� :

In this new system of coordinates aggregate consumption and aggregate endowment become

dCt = Ct[�
c
tdt+ �ctdW1t] (52)

det = et[�
e
tdt+

1

�ct
[(�e1t�

c
1t + �e2t�

c
2t)dW1t + (�e1t�

c
2t � �e2t�

c
1t)dW2t] : (53)

The stock price satis�es

dSt +Dtdt = St[dmt + �1tdW1t + �2tdW2t] (54)

subject to some initial value S0, wherem and � are progressively measurable and dmt = �tdt+dAt.

The riskless return is dRt = rtdt + dAt. The remaining structure of the economy as well as the

de�nitions of individual rationality and equilibrium are the same as in section 2.

In this economy there are 2 sources of uncertainty but only one risky stock. Note that (53)

allows for the possibility that the individual idiosyncratic income is not spanned by traded assets.

Thus the market is incomplete even in the absence of any liquidity constraints. The initial value

of the stock S0, the coe�cients (m;�;A; �1; �2), and the values of R and r are endogenous.

Note, in particular, that individual rationality combined with market clearing will determine the

7This de�nition implies FW
(�)
� F

W
(�)

(the �ltration generated by W is contained in the one generated by W ). It is

also straightforward to verify that W1 and W2 are independent Brownian motion processes. Furthermore provided

�ct > 0 for all t 2 [0; T ] we can invert this relation and write the following stochastic di�erential equations for W;(
dW 1t =

1

�c
t

[�c1tdW1t + �c2tdW2t]

dW 2t =
1

�c
t

[�c2tdW1t � �c1tdW2t]
:

If the coe�cients (
�c
1t

�c
t

;
�c
2t

�c
t

) satisfy standard Lipschitz and Growth conditions this SDE has a unique strong solution.

This implies FW
(�)
� F

W
(�)
. Combining these two inclusions gives FW

(�)
= F

W
(�)
. Hence there is no loss of generality if

we take W as our primitive.
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volatility structure (�1; �2) of the stock price: the class of price processes (54) is su�ciently large

to accommodate an instantaneous impact of both Brownian motion processes on the stock price.

Since markets are incomplete agents have individual valuations of the risks a�ecting the econ-

omy. Assuming that �1 6= 0 we can de�ne the individual prices of risk from i's point of view

�i =

�
�i1
�i2

�
=

�
�1 �2
0 1

��1 �
�� r

�i � r

�

where �i represents the shadow price of the incomplete market constraint, i.e. it represents the

drift of a �ctitious individualized security with return dft = ft[�
i
tdt + dW2t]. The incomplete

market restriction can be viewed as a portfolio constraint which precludes any investment in

this �ctitious security. Hence if (�i; �if ) denotes the demand for investment in the stock and

the �ctitious asset respectively, the incomplete markets constraint can be summarized by the

condition �if = 0. In this setting the counterpart of Assumption 1 is

Assumption 1': The individual prices of risk �i satisfy E exp
�
1
2

R T
0



�it

2 dt� <1; i = 1; 2.

The dynamic problem of a liquidity constrained individual is

sup
(c;�)

U(c) s:t: (c; �) 2 A (55)

The corresponding static problem becomes

sup
c
U(c) s:t (56)

8>>>><
>>>>:

c � 0, progressively measurable and integrable

�itXt = E
�R T

t �is(cs � es)ds j Ft

�
� 0 t 2 [0; T ]

E
�R T

0 �it(ct � et)dt
�
= nS0;

� such that X 2 Sp[S]

(57)

where �i is the state price density based on the market price of risk �i and where Sp[S] denotes

the span generated by the process S, i.e. the span of
R t
0 (�1tdW1t + �2tdW2t). The following

proposition establishes the relationship between problems (55) and (56)-(57).

Proposition 13 Assume that assumption 1' holds and that u satis�es the conditions of assump-

tion 2. If (c; �) solves the dynamic problem (55), then there exists � such that c solves the static

problem (56)-(57). Conversely, if (c; �) solves the static problem (56)-(57), then there exists a

portfolio policy � such that (c; �) solves the dynamic problem (55).

The static problem gives rise to the following Kuhn-Tucker �rst order conditions8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

uc(ct; t) = (y � 
t)�
i
t

E

�Z T

0

�it(ct � et)dt

�
= nS0

E

�Z T

t

�is(cs � es)ds j Ft

�
� 0

E

�Z T

0

Xtd
t

�
= 0

ct � 0; y � 0


 � 0;nondecreasing, null at 0

� such that X 2 Sp[S]:

(58)
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The only di�erence with the earlier formulation is the addition of the incompleteness constraint

(last equation) to the set of relevant conditions.

Our next veri�cation theorem shows that the conditions (58) are su�cient for the static

optimization problem.

Theorem 14 Assume that assumptions 1' and 2 hold. Suppose that there exist progressively

measurable processes (c; 
; �) and a constant y such that (c; 
; �; y) solves (58). Then c solves

(56) subject to (57).

In order to characterize the competitive equilibrium we need to solve the equations that

describe market clearing and individual rationality, namely:

Ct = I1(y
1�1t ) + I2((y

2
� 
t)�

2
t ) (59)

�tX
2
t = E

�Z T

t

�2s [I2((y
2
� 
s)�

2
s )� e2s]ds j Ft

�
� 0; t 2 [0; T ] (60)

X2
t d
t = 0; 
 nondecreasing null at 0 (61)

E

Z T

0

�1s [I1(y
1�1s)� e1s]ds = n1S0; y1 > 0 (62)

E

Z T

0

�2s [I2((y
2
� 
s)�

2
s )� e2s]ds = n2S0; y2 > 0: (63)

�i s.t. Xi
2 Sp[S] (64)

By Walras law one of the budget constraints (62)-(63) is redundant. We can then set y1 = 1,

de�ne y � y2 and � = �2=�1 and solve the remaining system for (y; 
; �1; �): Solving the market

clearing condition (59) yields the SPD

�1t = g(Ct; y � 
t; �t) � gt(y � 
t; �t) (65)

where g(�) is the unique solution of Ct = I1(g(Ct; y�
t; �t))+I2((y�
t)g(Ct; y�
t; �t)�t): De�ne

the process ht(x; �t) which represents the value of net consumption at date t conditional on the

net shadow price of the constraint x = y � 
t as

ht(x; �t) = gt(x; �t)[I2(xgt(x; �t)�t)� e2t ]: (66)

Substituting (65) in (60),(61) and (63) leaves us with the system

�tX
2
t = E

�Z T

t

hs(y � 
s; �s)ds j Ft

�
� 0; t 2 [0; T ] (67)

X2
t d
t = 0; 
 nondecreasing null at 0 (68)

E

Z T

0

hs(y � 
s; �s)ds = n2S0; y � 0: (69)

�i s.t.Xi
2 Sp[S] for i = 1; 2: (70)

This system of equations is in part similar to the system of equations characterizing the com-

plete markets' equilibrium. The impact of incompleteness is embedded in the last two constraints

which require that the liquid wealth processes of agents lie in the asset span. For the multiagent

economy with incomplete market and liquidity constraint equilibrium has the following structure.
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Theorem 15 Consider the multiagent economy of section 2 with general utility function ui(c); i =

1:2 satisfying assumption 2. Assume that an equilibrium exists such that assumption 1' holds for

i = 1; 2. The equilibrium interest rate and asset risk premia satisfy

rt = Ra
t �

c
�

1

2
Ra
tP

a
t (�

c
t )

2
�

1

2
Ra
t

�21t + �22t
�21t

X
i

�
citP

i
t

Ct(R
i
t)
2
(�i2t)

2

�
+Ra

t

�2t�
c
t

�1t

X
i

�
citP

i
t

Ct(R
i
t)
2
�i2t

�

dAt = �
Ra
t

R2
t

c2t
Ct

1

y � 
t
d
t

�t � rt = Ra
t �

c
t�1t (71)

where

Ra
t =

"X
i

cit
Ct

1

Ri
t

#�1
and P a

t = (Ra
t )

2
X
i

citP
i
t

Ct(R
i
t)
2
:

The structure of equilibrium re
ects the di�erent frictions in the economy. The interest rate

is directly a�ected by the liquidity constraint as in the earlier model with complete market. In

addition incompleteness plays a role: the level of the interest rate and the response to shifts in

aggregate consumption growth rate and volatility depend on the individual prices of W2-risk.

The risk premium of the stock displays structural properties which are similar to the case

of complete markets since it satis�es the consumption CAPM: in view of (71), only covariance

with aggregate consumption commands a premium. The liquidity constraint again has an indirect

e�ect on the size of the premium through the risk aversion of the aggregator and the distribution

of consumption in the economy. Note that incompleteness has no e�ect on the structure of the

consumption CAPM since the distribution of marginal utilities across agents, which represents

the second factor in this economy, is orthogonal to the stock's returns.

Note also that incompleteness cannot rationalize the empirical size of the Sharpe ratio either:

the aggregator's risk aversion is the same harmonic average of the agents risk aversions as in the

case of liquidity constraints alone. Since W1 and W2 risks are uncorrelated, it is easy to see from

(71) that the Sharpe ratio of the market is bounded above by Ra
t �

c
t , which is the Sharpe ratio

corresponding to the same economy but with complete markets. This indicates that an aggregate

risk aversion of 10:4 can not be plausibly supported in this model.

Our last result specializes the model to homogeneous constant relative risk aversion.

Corollary 16 Consider the multiagent economy of this section with homogeneous constant rela-

tive risk aversion ui(c) =
1

1�Rc
1�R; i = 1; 2 for i = 1; 2. Assume that an equilibrium exists such

that Assumption 1' holds. The equilibrium interest rate and the equity premium satisfy

rt = R�c �
1

2
R(1 +R)(�ct )

2
�

1

2

1 +R

R

�21t + �22t
�21t

X
i

�
cit
Ct

(�i2t)
2

�

dAt = �
c2t
Ct

d
t

y � 
t

�t � rt = R�ct�1t:

Both the incomplete market restriction and the liquidity constraint reduce the interest rate relative

to the complete market case.

Two additional features of the competitive equilibrium are noteworthy in the case under

consideration. First note that both the incomplete market and the liquidity constraint tend to

reduce the interest rate relative to the frictionless case. Incompleteness has a negative impact

since marginal utilities and the distribution of consumption across agents become unambiguously
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more volatile when relative risk aversion is constant and homogeneous. This reinforces the case

for an explanation of the riskfree puzzle based on incomplete markets and liquidity constraints.

The second feature of equilibrium is the fact that the Sharpe ratio does not increase because

of market incompleteness or liquidity constraints. Since the CCAPM holds and due to the orthog-

onality between dW1 and dW2 risks in (54), it is easy to see from the third equation in Corollary

16 that when markets are incomplete, the Sharpe ratio is bounded above by the Sharpe ratio that

would otherwise hold if markets were complete and the agent faced no liquidity constraint.

In summary, our results indicate there is no hope for explanations of the equity premium

puzzle based on incomplete markets or liquidity constraints as de�ned in this paper. This poses

a problem for the literature that seeks to resolve this puzzle on the basis of ad-hoc portfolio

constraints. Our point is that once these portfolio constraints are endogenized and made e�ectively

wealth-dependent, the asset-pricing implications regarding risk premia change radically.

6 Conclusions.

In this paper we presented a general equilibrium analysis of an exchange economy in which some

agents cannot market their income. We have shown that a liquidity constraint restricts the con-

sumption allocation of an individual over the lifecycle. Constrained individuals will optimally

defer consumption to the future in order to insure against liquidity shortages. At times when the

constraint binds their consumption experiences permanent increases. The individual consump-

tion behavior a�ects the structure of prices and the interest rate at equilibrium. Our analysis

demonstrates that short term rates have a tendency to decrease in the presence of a liquidity

constraint. Liquidity constraints may then help to resolve the riskfree rate puzzle. However, the

valuation of risk does not seem to change much since the equilibrium price of risk is a positive

and convex combination of the relative risk aversion coe�cients of the agents in the economy. In

any case neither market incompleteness nor liquidity constraints can be invoked to explain the

empirical magnitude of the Sharpe ratio. In further work we will seek to investigate analytically

and numerically the impact of liquidity constraints on the volatility of asset prices and on the

average level of the equity premium.

The paper also includes several methodological contributions. The �rst of these is a new

approach to the consumption problem in the presence of a liquidity constraint which leads to

an explicit solution for the consumption policy and which lends itself to numerical implementa-

tion. The second contribution is a constructive approach to the determination of equilibrium in

economies with liquidity constraints. The third methodological contribution is the design of a

computational algorithm which enables us to handle the type of path-dependent problems that

arise in the presence of liquidity constraints. The fourth methodological contribution consists

of a local aggregation method, essentially di�erent from Rubinstein (1974), that enables us to

characterize the pricing kernel as the marginal utility of a representative agent in an incomplete

markets economy. We foresee several other areas of applications of these methods, including

macroeconomic and international asset pricing models involving barriers and constraints, and

models incorporating default risk.
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7 Appendices.

7.1 Appendix A: proofs.

Proof of Lemma 1: Using Itô's lemma, we can express (10) as

�tX
i
t = Xi

0 +

Z t

0

�s(e
i
s � cis)ds+

Z t

0

�s(�
i
s�s �Xi

s�s)dWs
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which implies that the processes

Y i
t � �tX

i
t +

Z t

0

�s(c
i
s � eis)ds and Zi

t � Y i
t +E

�Z T

0

�se
i
sds j Ft

�

are continuous local martingales. Now, since ci � 0, if Xi
t is generated by some

�
ci; �i

�
2 Ai; we

have Zi
t �

R t
0
�sc

i
sds 8 i 2 C [ U; which implies that Zi

t is bounded below and it is therefore a

supermartingale, by Fatou's lemma. Substituting the de�nition of Zi into the inequality E(Zi
T j

Ft) � Zi
t and rearranging, we then see that

�tX
i
t � E

�
�TX

i
T +

Z T

t

�s(c
i
s � eis)ds j Ft

�
(72)

8 i 2 C [ U , which proves the claim.

Proof of Lemma 2: It is clear that nonsatiability implies Xi
T = 0 a.s. Now, assume that the

inequality (72) is met strictly in some set with positive probability. Then there exists a positive

and adapted process "t such that E
�R T

t �s
�
cis + "s � eis

�
ds
�
= �tX

i
t . Denote by X

i;"
t the solution

of (11) just substituting the process c+ " for c. By lemma 1 we have Xi
t � X

i;"
t ; and consequently

since Xi
t satis�es (11) so does X

i;"
t . This implies that (�; c+ ") is admissible and furthermore

E
�R T

0 u(ct + "t; t)dt
�
> E

�R T
0 u(ct; t)dt

�
, which contradicts the assumed optimality of c.

Proof of Proposition 3: The proof consists of showing that if a pair (�0; c0) is admissible (i.e.

satis�es (11)), then c0 satis�es (16) and conversely, for any consumption policy c0 that satis�es

(16), there exists an adapted process � such that (�; c) is admissible. This will prove the �rst

claim. The direct implication is immediate in view of (11), (12), wealth and (16). For the reverse

implication, de�ne � as in (17). Certainly � thus de�ned is progressively measurable. Substituting

� into (10) and applying Itô's lemma to �tX
i
t , integrating and taking expectations leads to

�tX
i
t = Xi

0 +

Z t

0

�s(e
i
s � cis)ds+Mt = E

�Z T

t

�s
�
cis � eis

�
ds j Ft

�

where in the �rst equalityMt is the process de�ned in (18) and the second equality is obtained by

using the static budget constraintXi
0+E

�R T
0 �s(e

i
s � cis)ds

�
= 0. SinceE

�R T
t �s(c

i
s � eis)ds j Ft

�
�

0 we conclude that Xi
t � 0 8i 2 C [ U . This establishes that (�; c) is admissible.

Proof of Theorem 4: Let c0 be an alternative feasible policy satisfying (16). Concavity of the

utility function implies u (ct; t) � u(c0t; t) + uc (ct; t) (ct � c0t) so that by (20), u (ct; t) � u(c0t; t) +

(y � 
t)�t(ct � c0t). Integrating and taking expectations gives

E

�Z T

0

u (ct; t)

�
� E

�Z T

0

u(c0t; t)

�
+E

�Z T

0

(y � 
t)�t(ct � c0t)dt

�
(73)

De�ning gt �
R t
0 �s(cs � c0s)ds and integrating by parts we get

Z T

0


tdgt = �

Z T

0

gtd
t + 
T gT = �

Z T

0

Z t

0

�s(cs � c0s)dsd
t + 
T

Z T

0

�t(ct � c0t)dt: (74)

Taking expectations on each side of (74) and using the de�nition of gt, we can write

E

�Z T

0


t�t
�
ct � c0t

�
dt

�
= E

�Z T

0

�Z T

0

�t(ct � c0t)dt�

Z t

0

�s(cs � c0s)ds

�
d
t

�
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= E

�Z T

0

�Z T

t

�s(cs � c0s)ds

�
d
t

�

= E

�Z T

0

E

�Z T

t

�s(cs � c0s)ds j Ft

�
d
t

�

= E

�Z T

0

�t(Xt �X 0
t)d
t

�

and substituting this into (73), we arrive at

E

�Z T

0

u (ct; t)

�
� E

�Z T

0

u(c0t; t)

�
+ yE

�Z T

0

�t(ct � c0t)dt

�
�E

�Z T

0

�t(Xt �X 0
t)d
t

�

Now, by the second condition in (20) and the feasibility of c and c0 we have E
�R T

0
�t(ct � c0t)dt

�
� 0. Also, the complementary slackness condition in (20) implies that E

�R T
0
�tXtd
t

�
= 0: But

since X 0
t � 0 (c0 satis�es (16) by hypothesis), and also since 
t is nondecreasing, we conclude that

U(c) � U(c0) for some c satisfying (20) and any c0 satisfying (16).

Proof of Lemma 5: Consider the map Ft(y; �) for y > 0 �xed. Note that Ft(y; �) : [0; y] !

[Ft(y; 0);1) is continuous and strictly increasing. Thus a unique inverse exists and if 0 is in the

range of Ft(y; �) the inverse F
�1
t (y; 0) is well de�ned. It follows that

�t(y) = F�1t (y; 0)1fFt(y;0)<0g

is uniquely de�ned and satis�es (23)-(24) for all t 2 [0; T ]: Furthermore �t(y) is a continuous and

nondecreasing function of y. The map E
R T
0 �s[I((y ���

0;s(y))�s)� es]ds is then continuous with

respect to y and tends to1 as y ! 0: Taking y� = inffy > 0 : E
R T
0 �s[I((y���

0;s(y))�s)�es]ds =

nS0g ensures that the initial condition (27) is satis�ed and �0 = 0.

Proof of Proposition 8: (i) Consider the example of Figure 1. For the numerical values

selected the maximal value of the function (1
2 �

1
R)�

2 when R 2 [:02; 3] is :015. Since r = :1 we

have r > (12 �
1
R)�

2. This ensures that unconstrained consumption is an increasing function of

relative risk aversion. The numerical simulation shows that constrained consumption is humped.

(ii) The optimal liquid wealth process associated with the initial conditions (kX0; ke0) is

Xk
t = E

�Z T

t

[�
1�1=R
t;s (yk � 
ks )

�1=R
� �skes]ds j Ft

�
:

It is easy to verify that Xk
t = kXt; y

k = k�Ry and 
ks = k�R
s satis�es the required constraints.

Homogeneity of the consumption function follows.

Proof of Lemma 7: De�ne the process Nt = E
�R T

t �s (cs � es) ds j Ft

�
evaluated at optimal

consumption. Since optimal consumption satis�es Nt � 0 for all t 2 [0; T ] it must be the case that

dNt � 0 on the event fNt = 0g. Thus d[N ]t = 0 on fNt = 0g where [N ] represents the quadratic

variation of N . Consider now the process M de�ned in Proposition 3. We have

Mt � E

�Z T

0

�s(cs � es)ds j Ft

�
�E

�Z T

0

�s(cs � es)ds

�
= Nt �

Z t

0

�s(cs � es)ds�N0:

Integrating the quadratic variation over fNt = 0g and using d[N ]t = 0 over that event leads to

E

Z T

0

1fNt=0gd[M ]t = E

Z T

0

1fNt=0gd[N ]t = 0:
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But Proposition 3 implies d[M ]t = (�Xt�t�t + �t�t)
2dt. Using Xt = 0 on fNt = 0g and substi-

tuting yields

E

Z T

0

1fNt=0g(�t�t)
2dt = 0:

We conclude that �t = 0 on fNt = 0g:

Proof of Theorem 6: Recall the functions gt and ht such that

Ct = I1(gt(x)) + I2(xgt(x)) (75)

ht(x) = gt(x)[I2(xgt(x)) � e2t ]: (76)

These functions have the following properties

Lemma 17 For all t 2 [0; T ] the function gt(�) : [0; y]! [gt(y);1) satis�es

(i) gt(�) is strictly decreasing

(ii) limx!0 gt(x) =1

(iii) limx!y gt(x) = gt(y) > 0

(iv) g0t(x) = �
I0
2
(xgt(x))gt(x)

I0
1
(gt(x))+I02(xgt(x))x

:

Proof of Lemma 17: The function gt(�) is continuously di�erentiable on [0; y]: An application

of the Implicit Function Theorem yields (iv). Property (i) follows from (iv). When x ! 0 we

have I2(xgt(x)) ! 1 for all gt(x) �nite. Since the left hand side of (75) is �nite and I1(�) is

nonnegative the limit (ii) holds. Property (iii) is straightforward.

Lemma 18 For all t 2 [0; T ] the function ht(�) : [0; y]! [ht(y); 0] satis�es

(i) 9x� 2 (0; y) such that ht(x) is strictly decreasing for x < x�

(ii) limx!0 ht(x) =1

(iii) limx!y ht(x) = ht(y) > (<)0, I2(ygt(y))� e2t > (<)0:

(iv) h0t(x) = g0t(x)[I2(xgt(x))� e2t ] + gt(x)I
0
2(xgt(x))[gt(x) + xg0t(x)]:

Proof of Lemma 18: Properties (ii), (iii) and (iv) are straightforward. To prove (i) note that

(75) implies I2(xgt(x)) � e2t � 0 for x su�ciently low. Let x� be such that I2(x
�gt(x

�)) � e2t = 0

or if no such x� exists in (0; y] set x� = y. Property (iv) of Lemma 17 implies

gt(x) + xg0t(x) =
I 01(gt(x))gt(x)

I 01(gt(x)) + I 02(xgt(x))x
> 0:

Hence I2(xgt(x)) � e2t is strictly decreasing and for x < x� we have I2(xgt(x)) � e2t > 0: Since

g0t(x) < 0 it then follows from (iv) that h0t(x) < 0 for x < x�.

Consider now the process

Ft(y;�t) = E

�Z T

t

hs(y ���
t;s)ds j Ft

�
; t 2 [0; T ]: (77)

Solving

Ft(y;�t) � 0; t 2 [0; T ] (78)

Ft(y;�t)d�t � 0; t 2 [0; T ] (79)
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is identical to the problem that we solved before. As long as the integrand ht(x) has the right

properties we can apply the construction in Lemma 5 and Theorem 6. Since the function ht(y �

��
t;s) is strictly increasing with respect to �t for �t su�ciently large, we can always �nd �t(y)

such that Ft(y;�t(y)) � 0: Hence the same construction as in the case of exogenous state price

density works. The same arguments also lead to the multiplier y which satis�es the static budget

constraint (25) of the constrained agent in equilibrium.

Proof of Proposition 11: From (41) and the de�nition of H we get the expression

1

Ra
t

= �
U 0

CU 00
= �

H (C)

CH 0 (C)
= �

H (C)

C

X
i

I 0i
�it

= �
X
i

(yi � 
it)H (C)

u00iC
= �

X
i

u0i
u00iC

=
X
i

1

Ri
t

ci

C

for the inverse of the aggregator's relative risk aversion. Note that we used the �rst order condi-

tions of the individual agents' problem to obtain the last equality.

Proof of Theorem 12: To simplify notation we assume that the unconstrained agent has a

liquidity constraint multiplier 
1 = 0. Both agents have utility function u(c; t) = ��1t u(c) where

�t = exp(�t); let I(y) = u�1c (y) denote the inverse of uc. The goods market clearing condition is

Ct =
P

i Ii((y
i � 
it)�t�t). Applying Ito's lemma on both sides of this equation yields

dCt =
X
i

I
0

i � (yi � 
it)�t�t

�
d�t

�t
+
d�t

�t
�

d
it
yi � 
it

�
+

1

2

X
i

I
00

i � ((yi � 
it)�t�t)
2 d[�]t

(�t)2

where [�]t denotes the quadratic variation process. Dividing by C

dCt

Ct
= �

1

Ra
t

�
d�t

�t
+
d�t

�t

�
+

1

R2
t

c2t
Ct

d
t

y � 
t
+
1

2

P a
t

(Ra
t )

2

d[�]t

(�t)2

where

Ra
t = �

"P
i I

0

i((y
i � 
it)�t�t)(y

i � 
it)�t�tP
i Ii((y

i � 
it)�t�t)

#�1

P a
t = (Ra

t )
2

P
i I

00

i ((y
i � 
it)�t�t)((y

i � 
it)�t�t)
2P

i Ii((y
i � 
it)�t�t)

:

and R2
t is the coe�cient of risk aversion of the constrained agent. By de�nition Ii(y) satis�es

uc(Ii(y)) = y. Substituting d�t = �t�dt and d�t = ��t[dRt + �tdWt] yields the equilibrium

formulas �t = Ra
t �

c and

dRt = (� +Ra
t �

c
�

1

2
Ra
tP

a
t (�

c)2)dt�
Ra
t

R2
t

c2t
Ct

d
t

y � 
t
:

The formulas in the Theorem follow from the de�nitions �t = ��1t (�t�rt) and dRt = rtdt+dAt.

Proof of Proposition 10: Construct the positive process �it = 1=(yi � 
it). For any feasible

allocation
�
xit
	
we have

E

Z T

0

X
i

�itu
i(cit; t)dt�E

Z T

0

X
i

�itu
i(xit; t)dt � E

Z T

0

X
i

�it(y
i
� 
it)�t(c

i
t � xit)dt � 0

where the �rst inequality follows from concavity and the �rst order conditions, the second in-

equality follows from the de�nition of the process �it and the feasibility of the allocations
�
cit
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and
�
xit
	
. This inequality shows that

�
cit
	
solves (39). To prove that (fDt + et; 1g) is a no trade

equilibrium for the single agent economy, we just need to show that fCtg solves

sup
x
U (x) s:t: E

�Z T

0

�t (xt � Ct) dt

�
� 0:

Suppose that there exists a process x such that U (x) > U (C) and E
�R T

0
�t (xt � Ct) dt

�
� 0.

This implies that there exists a process
�
xit
	
such that

P
i

xit = xt and, using
P
i

cit = Ct, we have

E
X
i

Z T

0

�
�itu

i(xit; t)� �t(x
i
t � eit)

�
dt > E

X
i

Z T

0

�
�itu

i(cit; t)� �t(c
i
t � eit)

�
dt

but this contradicts the fact that
@ui(cit;t)

@cit
= 1

�it
�t:

Proof of Theorem 15: Suppose that a competitive equilibrium exists with �1 6= 0. Recall that

individual SPDs are,

�it = bt exp

�
�

Z t

0

�i1vdW1v �

Z t

0

�i2vdW2v �
1

2

Z t

0

[(�i1v)
2 + (�i2v)

2]dv

�
; (80)

for processes �i � (�i1; �
i
2); i = 1; 2, de�ned as

�it =

�
�i1t
�i2t

�
�

�
�1t �2t
0 1

��1 �
�t � rt
�it � rt

�
=

1

�1t

�
�t � rt � �2t�

i
2t

�1t(�
i
t � rt)

�
:

Our �rst lemma expresses the competitive equilibrium in terms of individual market prices of risk.

Lemma 19 In equilibrium the interest rate and the individual prices of risk satisfy

dRt =

 
�

1

At
�c +

1

2

X
i

�
Bi
t

At

�
[(�i1t)

2 + (�i2t)
2]

!
dt�

A2
t

At

1

y � 
t
d
t (81)

X
i

Ai
t�
i
1t = ��ct (82)

X
i

Ai
t�
i
2t = 0 (83)

where

Ai
t =

I0i(yi�
i
t)yi�

i
tP

i Ii(yi�
i
t)

and Bi
t =

I00i (yi�
i
t)(yi�it)

2

P
i Ii(yi�

i
t)

and At = A1
t +A2

t where y1 = 1 and y2 = y � 
t:

Proof of Lemma 19: Ito's lemma along with the goods market equilibrium condition Ct =

I1(�
1
t ) + I2(�

1
t (y� 
t)�t) gives (to simplify notation we omit the arguments of the functions Ii(�))

Ct[�
cdt+ �ctdW1t] = �I 01�

1
t

�
dRt + �11tdW1t + �12tdW2t

�
�I 02�

1
t �t
�
(y � 
t)

�
dRt + �21tdW1t + �22tdW2t

�
+ d
t

�
+
1

2

h
I 001 � (�1t )

2


�1t 

2 + I 002 � ((y � 
t)�

2
t )

2


�2t 

2i dt

where


�it

2 = (�i1t)

2 + (�i2t)
2; i = 1; 2: Collecting terms and setting the coe�cients of dW1t; dW2t

and of the bounded variation terms equal to zero yields the formulas in the lemma.
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Lemma 20 In equilibrium the interest rate and the Sharpe ratio satisfy

dRt =

 
�

1

At
�c +

1

2

�
Bt

A3
t

�
(�ct )

2 +
1

2

�2t
�21t
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�
Bi
t

At
(�i2t)

2
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1

At

�2t�
c
t

�1t

X
i

�
Bi
t

At
�i2t

�!
dt�

A2
t

At

d
t

y � 
t

�t � rt

�1t
= �

1

At
�ct

where �2t = �21t + �22t and Bt =
P

iB
i
t.

Proof of Lemma 20: Multiplying both sides of (82)-(83) by�
�1t �2t
0 1

�

leads to the formula for the Sharpe ratio. Using the de�nitions of the market prices of risk yields



�it

2 =
�
1

�1t
(�t � rt � �2t�

i
2t)

�2
+ (�i2t)

2 =

�
�t � rt

�1t

�2

+
�21t + �22t
�21t

(�i2t)
2
� 2

�
�t � rt

�1t

�
�2t

�1t
�i2t

for i = 1; 2, where


�it

2 = (�i1t)

2 + (�i2t)
2: Substituting in the interest formula (81) produces

dRt =

 
�

1

At
�c +

1

2

�
Bt

At

��
�t � rt

�1t

�2

+
1

2

�21t + �22t
�21t

X
i

�
Bi
t

At
(�i2t)

2

�!
dt

�

�
�t � rt

�1t

�
�2t

�1t

X
i

�
Bi
t

At
�i2t

�
dt�

A2
t

At

d
t

y � 
t

Substituting the Sharpe ratio formula in this expression produces the result in the lemma.

Di�erentiating the �rst order condition u0(Ii(x
i)) = xi, where xi = (yi � 
i)�it gives 1 =

u00(Ii(x
i))I 0i(x

i) and 0 = u000(Ii(x
i))I 0i(x

i)2 + u00(Ii(x
i))I 00i (x

i) so that

I 0i(x
i)xi =

u0(Ii(x
i))

u00(Ii(xi))
= �

cit
Ri
t

and I 00i (x
i)(xi)2 = �

u000(Ii(x
i))

u00(Ii(xi))

u0(Ii(x
i))2

u00(Ii(xi))2
=

citP
i
t

(Ri
t)
2

leading to Ai
t = �cit=(CtR

i
t) and Bi

t = citP
i
t =(Ct(R

i
t)
2). Substitution in the expressions of the

lemma produces

dRt =

0
@ 1P

i
cit
Ri
t

Ct�
c
�

1

2

2
4
P

i
citP

i
t

(Ri
t)
2

(
P

i
cit
Ri
t

)3

3
5 (Ct�

c
t )

2
�

1

2

1P
i
cit
Ri
t

�21t + �22t
�21t

X
i

�
citP

i
t

(Ri
t)
2
(�i2t)

2

�1A dt

+
1

(
P

i
cit
Ri
t

)2
Ct
�2t�

c
t

�1t

X
i

�
citP

i
t

(Ri
t)
2
�i2t

�
dt�

c2t
R2

tP
i
cit
Ri
t

d
t

y � 
t

and (�t � rt)=�1t =
�P

i(c
i
t=R

i
t)
��1

Ct�
c
t : This completes the proof of Theorem 15.

Proof of Corollary16: Suppose that R1
t = R2

t = R. Then P i
t = 1 +R and

dRt =

 
R�c �

1

2
R(1 +R)(�ct )

2
�

1

2

(1 +R)

R

(�21t + �22t)

�21t

X
i

�
cit
Ct

(�i2t)
2

�!
dt

+(1 +R)�ct
�2t

�1t

X
i

�
cit
Ct
�i2t

�
dt�

c2t
Ct

d
t

y � 
t

while (�t � rt)=�1t = R�ct . But we also have 0 =
P

iA
i
t�
i
2t = �

1
R

P
i(c

i
t=Ct)�

i
2t: Substituting gives

the expression in the Corollary.
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7.2 Appendix B: a formulation of the lagrangian problem.

Let H be the set of nonnegative, continuous, adapted and bounded processes, and let L1 be

the space of essentially bounded, continuous and adapted processes. Assume e,� 2 H. The

optimization problem can be formulated as

J = sup
c2H

U (c) s:t:

A (c) � E

�Z T

0

�t (ct � et) dt

�
�X0 � 0

V (c) � E

�Z T

t

�s (cs � es) ds j Ft

�
� 0

where V : H ! L1. Denote by ba the set of bounded additive set functions, i.e. the dual space

of L1 (Dunford and Schwartz (1958), IV.6), and let ba� be the positive cone of ba. Since H is a

linear vector space, L1 is a normed vector space whose positive cone has a nonempty interior, U

is concave, A and V are convex and J is �nite, the saddle point theorem (i.e. Luenberger (1969),

Theorem 8.1 and Corollary 1) gives

J =sup
c2H

inf
z2ba�;�2R+

U (c) + hV (c) ; zi+A (c) � (84)

where ha; bi is the value of the functional b evaluated at a. Now from Yosida and Hewitt ((1952),

1.23 and 2.3) it follows that 8z 2 ba� 8x 2 L1, there exist a nonnegative countably additive

measure �m and pure charge (or a nonnegative purely �nitely additive set function) �ch such that

hV (c) ; zi =

Z

�[0;T ]

V (c) d�m +

Z

�[0;T ]

V (c) d�ch:

>From Yosida and Hewitt (1952, 1.22), there exists a sequence of predictable sets fSig such

that lim
i"1

P�Leb(Si) = 0, lim
i"1

�m (Si) = 0 and �ch (Sci ) = 0 8i. Now construct the decreasing

sequence of predictable sets Ai =
i
\
n=1

Sn. Clearly, lim
i"1

P�Leb(Ai) = 0 and lim
i"1

�m (Ai) = 0.

In addition, since Ac
i =

i
[
n=1

Scn, we have �ch (Ac
i ) �

iP
n=1

�ch (Scn) = 0 and thus �ch (Ac
i ) = 0 8i.

Consider the auxilliary problems

Ji =sup
c2H

inf
z2ba�;�2R+

U
�
1
fAc

ig
c
�
+
D
V

�
1
fAc

ig
c
�
; z
E
+A

�
1
fAc

ig
c
�
� (85)

and let O be the set of predictable sets in 
�[0; T ]. Denote by ci,zi and �i the solutions of (85) for

any i. Since �ch(Ac
i ) = 0 8i, and c is bounded,

D
V

�
1
fAc

ig
c
�
; zi
E
=
R

�[0;T ] V

�
1
fAc

ig
c
�
d�mi for

some countably additive measure �mi and 8c 2 H. De�ne the nonnegative measure �i on [0; T ] as

follows: (P � �i) (E) = (P � Leb) (E) 8E 2 O such that (P � Leb) (E) 6= 0 and (P � �i) (E) =

�mi (E) 8E 2 O such that (P � Leb) (E) = 0. Since by construction �mi is absolutely continuous

with respect to P � �i; by the Radon-Nikodym theorem (i.e. Dunford and Schwartz (1958),

III.10.2), one can write

D
V

�
1
fAc

ig
c
�
; zi
E
=

Z
V

�
1
fAc

ig
c
�
d�mi =

Z
V

�
1
fAc

ig
c
�
f id (P � �i) = E

�Z T

0

Vt

�
1
fAc

ig
c
�
f id�i

�

for some nonnegative integrable function f i. De�ning the nonegative and nondecreasing process


it =
R t
0 f

i
sd�i, we can then write

D
V

�
1
fAc

ig
c
�
; zi
E
= E

�R T
0 Vt

�
1
fAc

ig
c
�
d
it

�
8c 2 H.
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By the constraint quali�cation condition (Luenberger (1969) Theorem 8.1)
D
V

�
1
fAc

ig
ci
�
; zi
E

= 0 and A
�
1
fAc

ig
c
�
�i = 0 8i. Now, since all c are bounded and the sequence fAc

ig is increasing,

by monotone convergence we have Ji " J and thus

J =sup
c2H

inf

2N , �2R+

U (c) +E

�Z T

0

Vt (c) d
t

�
+A (c)� (86)

where N denotes the set of adapted, nonnegative and nondecreasing processes. Since

E

�Z T

0

Vt (c) d
t

�
= E

Z T

0

Z T

t

�s (cs � es) dsd
t

integrating by parts and taking into account that 
 is nondecreasing and therefore of �nite vari-

ation, we have (dropping the argument c of V for convenience)

0 = VT
T =

Z T

0

Vtd
t +

Z T

0


tdVt + [V; 
]T =

Z T

0

Vtd
t +

Z T

0


tdVt (87)

write Vt = E
�R T

0 �s (cs � es) ds j Ft

�
�
R t
0 �s (cs � es) ds: Since the integrands are bounded, by

the martingale representation theorem we can write dVt = � (ct � et) �tdt+�tdWt where �t is an

integrable adapted process. Substituting in (87) gives

Z T

0

Vtd
t = �

Z T

0


t�tdWt +

Z T

0


t (ct � et) �tdt

and taking expectations, we obtain E
�R T

0 Vtd
t

�
= E

�R T
0 
t (ct � et) �tdt

�
so that (86) becomes

J =sup
c

inf

;�

U(c) + �

�
X0 �E

Z T

0

�t (ct � et) dt

�
+E

�Z T

0


t (ct � et) �tdt

�
: (88)

Taking the relevant (Gateaux) derivatives of (88), leads to the �rst order conditions (20).

7.3 Appendix C: equilibrium with N agents.

Consider the economy with Nu unconstrained and N c constrained agents, Nu + N c = N . To

prove existence of equilibrium we need to solve

et =
X
j2U

Ij(y
j�t) +

X
j2C

Ij((y
j
� 


j
t )�t) (89)

�tX
j
t = E

�Z T

t

�s[Ij((y
j
� 
js)�s)� ejs]ds j Ft

�
� 0; j 2 C; (90)

X
j
t d


j
t = 0; 
j nondecreasing null at 0, j 2 C (91)

E

Z T

0

�s[Ij(y
j�s)� ejs]ds = njS0; j 2 U (92)

E

Z T

0

�s[Ij((y
j
� 
js)�s)� ejs]ds = njS0; j 2 C (93)

Appealing to Walras law we can set the multiplier of one unconstrained agent, say agent 1,

equal to 1: y1 = 1: De�ning y � (y2; :::; yN ) and 
 � (
2; :::; 
N ) where 
j � 0 for j 2 U
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we obtain from the goods market clearing condition (89) �t = uc(et; y � 
t) � gt(y � 
t) where

gt(�) :
NN

j=2[0; y
j ] ! R

+ is the unique solution of et =
P

j2U Ij(y
jgt(y � 
t)) +

P
j2C Ij((y

j �



j
t )gt(y � 
t)): Substituting in (90)-(93) and de�ning the process h

j
t (�)

h
j
t (x) = gt(x)[Ij(x

jgt(x))� e
j
t ] (94)

with the convention xj = yj for j 2 U; leaves us with the system

�tX
j
t = E

�Z T

t

hjs(y � 
s)ds j Ft

�
� 0; j 2 C (95)

X
j
t d


j
t = 0; 
j nondecreasing null at 0, j 2 C (96)

E

Z T

0

hjs(y � 
s)ds = njS0; j 2 C [ Un1: (97)

The functions g and h have the following properties

Lemma 21 For all t 2 [0; T ] the function gt(�) :
NN

j=2[0; y
j ]! [gt(y);1) satis�es

(i) gt(�) is strictly decreasing with respect to each argument xj

(ii) limxj!0 gt(x) =1

(iii) limx!y gt(x) = gt(y) > 0

(iv)
@gt(x)
@xj

= �
I0j(x

jgt(x))gt(x)

I0
1
(gt(x))+

P
i6=1 I

0

i(x
igt(x))xi

:

Proof of Lemma 21: The function gt(�) is continuously di�erentiable over its domain: An

application of the Implicit Function Theorem yields (iv). Property (i) follows from (iv). When

xj ! 0 we have Ij(x
jgt(x))!1 for all gt(x) �nite. Since the left hand side of (89) is �nite and

Ij(�) is nonnegative for all j the limit (ii) holds. Property (iii) is straightforward.

Lemma 22 For all t 2 [0; T ] the function h
j
t (�) :

NN
j=2[0; y

j ]! [h
j
t (y); 0] satis�es

(i) 9xj� 2 (0; yj) such that h
j
t (x) is strictly decreasing for xj < xj�

(ii) limxj!0 h
j
t (x) =1

(iii) limx!y h
j
t (x) = h

j
t (y) > (<)0, Ij(y

jgt(y))� e
j
s > (<)0:

(iv)
@hjt(x)

@xj
=

@gt(x)
@xj

[Ij(x
jgt(x)) � e

j
t ] + gt(x)I

0
j(x

jgt(x))[gt(x) + xj
@gt(x)
@xj

]:

Proof of Lemma 22: Properties (ii), (iii) and (iv) are straightforward. To prove (i) note that

(89) and property (ii) of lemma 21 imply Ij(x
jgt(x)) � e

j
t � 0 for xj su�ciently low. Let xj� be

such that Ij(x
j�gt(x

�))� e
j
t = 0: Property (iv) of Lemma 21 implies

gt(x) + xj
@gt(x)

@xj
=

[I 01(gt(x)) +
P

i6=1;j I
0
i(x

igt(x))x
i]gt(x)

I 01(gt(x)) +
P

i6=1 I
0
i(x

igt(x))xi
> 0:

Hence Ij(x
jgt(x)) � e

j
t is decreasing and for xj < xj� we have Ij(x

jgt(x)) � e
j
t � 0: Since

@gt(x)=@x
j < 0 it then follows from (iv) that @h

j
t (x)=@x

j < 0 for xj < xj�:

Consider now the N c-dimensional vector process

Ft(y;�t) = E

�Z T

t

hs(y ���
t;s)ds j Ft

�
; t 2 [0; T ]; (98)

where ��
t;s = supv2[t;s]�v. We need to solve the auxiliary problem, for all t 2 [0; T ]
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Ft(y;�t) � 0 (99)

Ft(y;�t) � d�t � 0 (100)

where * denotes multiplication component by component of two vectors. Label the N c components

of (99)-(100) by j = 1; :::; N c: Consider the �rst component of (99)-(100). The problem of solving

for �1 taking y and �i; i 6= 1 as given is identical to the problem that we solved before for the

case of 2 agents. By Lemma 22 the integrand h1t (x) has the required properties. Hence

�1(y;��(1)) = F�1t (y; 0;��(1))1
fFt(y;0;�

�(1)

t )<0g
(101)

where ��(1) � (�2; :::;�Nc
). Consider next the second component of (99)-(100) where �1(y;��(1))

has been substituted in place of �1 and where y and �i; i 6= 1; 2 are taken as given. If

the same construction can be carried out we can de�ne a new process �2(y;��(1;2)) where

��(1;2) � (�3; :::;�Nc

). Substituting in the �rst process yields

�1(y;��(1;2)) � �1(y;�2(y;��(1;2));��(1;2)):

Proceeding inductively over j = 1; :::; N c, we can, in principle, construct the array of processes

�(j)(y;��(1;::;j)) � (�1(y;��(1;::;j)); :::;�j(y;��(1;::;j)))

where ��(1;::;j) � (�j+1; :::;�Nc

) for j = 1; :::; N c: Our next lemma establishes the validity of

this construction.

Lemma 23 Suppose that �(j�1)(y;��(1;::;j�1)) exists, for some j = 1; :::; N c. Then �(j)(y;��(1;::;j))

exists.

Proof of Lemma 23: To simplify notation de�ne�
xi(x�(1;::;j�1)) � yi ��i(y;��(1;::;j�1)); for i = 1; :::; j � 1

x(j�1)(x�(1;::;j�1)) � (x1(x�(1;::;j�1)); :::; xj�1(x�(1;::;j�1))) = y(j�1) ��(j�1)(y;��(1;::;j�1))

where x�(1;::;j�1) = (xj ; :::; xN
c)) is taken as given and consider the map

hj(x) � hj(x1(x�(1;::;j�1)); :::; xj�1(x�(1;::;j�1)); xj ; :::; xN
c

)

Suppose that x
j
t ! 0. Since xj is a nonincreasing process we must have x

j
v ! 0 for all v 2 [t; T ].

Property (ii) of Lemma 21 then implies that gv(x) ! 1 for all v 2 [t; T ]: Furthermore since the

�rst j � 1 conditions of (99)-(100) hold by de�nition of the maps xi(x�(1;::;j�1)), i = 1; :::; j � 1 it

must also be that

x1v(y; x
�(1;::;j�1))! 0; ::; xj�1v (y; x�(1;::;j�1))! 0; for all v 2 [t; T ]

since otherwise h
j
v(x

j)! �1; for all v 2 [t; T ]. In fact F i
v ! 0 for all v 2 [t; T ] and i = 1; :::; j�1;

i.e. the constraints must be binding, on the �rst j � 1 agents and

I(xit(y; x
�(1;::;j�1))gt(x))� eit ! 0; for all i = 1; :::; j � 1:

The market clearing condition (89) then implies I(x
j
vgv(x))�e

j
v � 0. Thus hj !1: Continuity of

hj implies that there exists an xj such that F
j
t � 0: The existence of �(j)(y;��(1;::;j)) follows:

An immediate consequence of the previous lemma is the following result.
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Theorem 24 For each y > 0 the system (95)-(96) has a solution 
(y) = (
1(y); :::; 
N
c

(y)):

Proof of Theorem 24: Lemma 23 and the existence of �1(y;��(1)) implies that we can con-

struct a vector process �(y) which satis�es (99)-(100). The process 
(y) is 
t(y) = ��
0;t(y):

Lemma 25 There exists y� = (y�2; :::; y�N ) 2 (0;1)N�1 such that

E

Z T

0

hjs(y
�
� 
s(y

�))ds = njS0; j 2 C [ Un1 (102)

where 
(y) = 
(N)(y):

Proof of Lemma 25: This follows from the Knaster-Kuratowski-Mazurkiewicz Theorem. See

Karatzas, Lakner, Lehoczky and Shreve (1991).

Summarizing we have proved the following result

Theorem 26 The system (95)-(97) has a solution 
� = (
1(y�); :::; 
N (y�)) where 
t(y) = ��
0;t(y)

solves (95)-(96) and y� is the solution of (102).

7.4 Appendix D: computation based on a binomial approximation.

We consider now a simple binomial model with underlying underlying uncertainty process z and

parameters u and d, and probability p.

p zu

z
%

&

1� p zd

The initial value is z0 and the tree has N steps. Agents endowments are functionals of the

trajectories of the random walk z. Since prices and the interest rate are endogenous the risk

neutral probability is given by some measure q � fqn : n = 1; :::; Ng and the interest rate by some

process r. The state price density satis�es

rn�n+1 = �n

�
qn=p

(1� qn)=(1 � p)
: (103)

Equilibrium in the 2-agents economy is the solution of

�nX
2
n = E

 
NX
i=n

hi(y � 
i) j Fn

!
� 0; n 2 f1; :::; Ng (104)

X2
n�
n = 0; 
 nondecreasing null at 0, n 2 f1; :::; Ng (105)

E

NX
i=0

hi(y � 
i) = 0 (106)

where g is constructed from the aggregate demand and hn(x) = gn(x)[I2(xgn(x)) � e2n]: In order

to solve for equilibrium we introduce an auxiliary process  and the map

An(y;  n) � E

 
NX

i=n+1

hi(y �max( i; :::;  n)) j Fn

!
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Consider now the backward equation

 n =

�
0 if hn(y) +An(y; 0) � 0

max
�
y � h�1n (�An(y;  n)) ; 0

	
if hn(y) +An(y; 0) < 0

(107)

for n = 1; :::; N subject to the boundary condition

 N =

�
0 if hN (y) � 0

y � h�1N (0) if hN (y) < 0
(108)

In these equations h�1n (x) is the largest value of the argument of hn that reaches the level x:

It is easy to verify that the process 
 can be recovered from the solution of the backward equation

as 
n = max( n; :::;  1): Our next lemma establishes the existence of the process  :

Lemma 27 The backward equation (107)-(108) has a unique solution  n(y).

Proof of Lemma 27: Suppose that hn(y) + An(y; 0) < 0: Then the recursive equation  n =

y�h�1n (�An(y;  n))is equivalent to hn(y� n)+An( n) = 0:As in appendix A it can be veri�ed

that the left hand side of this equation is strictly increasing with respect to  n for y� n su�ciently

small and that it converges to in�nity as y �  n goes to zero. The result follows by continuity.

The process 
 is then given by 
n(y) = max( n(y); :::;  1(y));where 
(y) denotes the solution

for a given constant y: We have

Lemma 28 The map 
(y) has the following properties (i) 
(y) is a nondecreasing function of y,

(ii) limy!0
(0) = 0, (iii) limy!1
(y) =1, (iv) limy!1y � 
(y) � 0:

Lemma 29 There exists a multiplier y� such that h0(y
�) + A0(y

�; 0) = 0: The nondecreasing

multiplier 
(y�) is 
n(y
�) = max( n(y

�); :::;  1(y
�)):

Proof of Lemma 29: The multiplier for the date zero budget constraint satis�es

h0(y) +E

 
NX
i=1

hi(y � 
i(y))

!
= 0: (109)

Using Lemma 28 above and the properties of the map h it can be veri�ed that a solution exists .

The equilibrium state price density is then �n = gn(y � 
n(y)): It generates the equations8>><
>>:

rn
gun+1(y�
n+1(y))

gn(y�
n(y))
p = qn

rn
gdn+1(y�
n+1(y))

gn(y�
n(y))
(1� p) = 1� qn:

Solving this system for r and q yields

qn = gun+1(y � 
n+1(y))p
h
gdn+1(y � 
n+1(y)) + [gun+1(y � 
n+1(y))� gdn+1(y � 
n+1(y))]p

i�1

rn = gn(y � 
n(y))
h
gdn+1(y � 
n+1(y)) + [gun+1(y � 
n+1(y))� gdn+1(y � 
n+1(y))]p

i�1
:

Using the liquid wealth process and de�ning V
j
n = gn(y � 
n(y))

�1En[
PN

i=n gi(y � 
i(y))e
j
i ] we

can now write
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rnX
j
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n+1)� ejn

= (�un+1)
�1

(
G
j
n+1 �

nX
i=0

gi(y � 
i(y))Ij((y � 
i(y))gi(y � 
i(y)))

)

and a similar equation for the down step. Using c
j
n = Ij(y � 
n) and

rn�
u
n+1 = �n � (qn=p) = (Xj

n + V j
n )
�1[Gj

n �

n�1X
i=0

gi(y � 
i(y))Ij((y � 
i(y))gi(y � 
i(y)))](qn=p)

we then get the optimal portfolio

�jn = (Xj
n + V j

n )
rn

un � rn

�
J
j
n;n+1

p

qn
� 1

�
+
Ij(y � 
n(y))

un � rn
�
(1� qn)(V

ju
n+1 � V

jd
n+1)

un � rn

where V
j
n is de�ned above and

J
j
n;n+1 =

[G
j
n+1 �

Pn
i=0 gi(y � 
i(y))Ij((y � 
i(y))gi(y � 
i(y)))]

[G
j
n �

Pn�1
i=0 gi(y � 
i(y))Ij((y � 
i(y))gi(y � 
i(y)))]

:
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