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Résumé / Abstract

Nous étudions l’effet de filtre sur l’estimation de processus de type
GARCH. Le cas du filtre linéaire est analysé dans un contexte général pour des
processus GARCH faibles. Plusieurs cas spéciaux sont discutés, notamment ce-
lui du filtre d’ajustement X-11 pour les effets saisonniers. Nous trouvons que ce
filtre produit un effet de persistance saisonnière au niveau de la volatilité. Nous
abordons ensuite le filtrage non linéaire dans le cas du filtre X-11. Une étude de
Monte Carlo démontre qu’il y a des différences très importantes entre la
représentation linéaire du filtre et le programme non linéaire appliqué aux
données réelles.

In this paper we try to enhance our understanding of the effect of
filtering, particularly seasonal adjustment filtering, on the estimation of
volatility models. We focus exclusively on ARCH models as a specific class of
models and examine the effect of both linear and nonlinear filters on (seasonal)
volatility dynamics. The case of linear filters is treated in a general abstract
setting applicable to seasonal adjustment as well as various other linear filters
often applied to transform raw data. Next we focus on specific cases like the
first and seasonal differencing filters as well as the X-11 filter, both its linear
representation and the (nonlinear) procedure implemented in practice. We
uncover surprising features regarding the linear X-11 filter, e.g. it introduces
a small seasonal pattern in volatility. More interestingly, we show that the
linear X-11 and the actual procedure produce serious downward biases in
ARCH effects and their persistence. Finally, we uncover important differences
between the linear version of X-11 and the actual procedure.



Mots Clés : Processus GARCH, Saisonnalité, X-11
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1 Introduction

Many e�ects produced by seasonal adjustment �lters are still not well
understood. We have a fairly good grasp of what happens to linear time
series models or linear regression models when the data are �ltered with
a linear �lter. However, in the case of (1) nonlinear models, (2) nonlinear
features of data, or when (3) nonlinear �ltering is applied to the data,
the implications are to a large extent still unknown and unexplored.

This paper tries to shed light on the e�ect of �ltering and in particu-
lar seasonal adjustment �lters on the volatility dynamics of time series.
Obviously, standard procedures like X-11 are not designed to deal with
time series exhibiting conditional (seasonal) heteroskedasticity, despite
the fact that there is evidence that quite a few macroeconomic time series
feature seasonality in the conditional variance (see for instance Burridge
and Wallis (1990), Fiorentini and Maravall (1996), Jaditz (1996) and
Racine (1997)). We assume �rst that the �lter is linear and examine the
e�ect of �ltering on a regression model with GARCH errors. We study
the impact of linear �ltering on the volatility dynamics characterized by
the autocovariance function of the squared residuals. The characteriza-
tion of the linear �ltering e�ects are restricted to the weak de�nition of
GARCH (see Drost and Nijman (1993)). We provide explicit analytic
results for general weak GARCH(p,q) processes. In the general case it
is di�cult to appraise the e�ect of �ltering unless we make either some
speci�c assumptions about the �lter weights or about the process. We
focus on cases of speci�c interest like �rst and seasonal di�erencing �lters
as well as linear seasonal adjustment �lters, such as the linear approx-
imation to the Census X-11. We uncover surprising features regarding
the linear X-11 �lter, namely it introduces a small seasonal pattern in
volatility.

We also focus on the speci�c case of weak GARCH(1,1) processes.
First analytic results are obtained for speci�c �lters. Next, we conduct
a Monte Carlo study involving GARCH(1,1) and seasonal GARCH pro-
cesses where the linear X-11 �lter and the actual X-11 procedure are
examined side-by-side. We show that the linear X-11 and the actual
procedure produce serious downward biases in ARCH e�ects and their
persistence. The linear �lter also di�ers from the actual program in terms
of its e�ect on seasonal ARCH. The latter completely erases seasonal au-
tocorrelations in volatility while the former doesn't. We attribute these
di�erences to the outlier correction routine in the X-11 program. We
also investigate the volatility dynamics of several key macroeconomic
time series before and after �ltering.

Section 2 covers the case of a general linear �lter and the several spe-
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cial cases such as the linear X-11 approximation. In section 3 we cover
the case of GARCH(1,1) procesess. The Monte Carlo study which inves-
tigates the nonlinear features of the X-11 procedure and its impact on
volatility dynamics also appears in section 3 while in section 4 we present
some empirical evidence based on a set of widely used macroeconomic
time series. The paper concludes with section 5.

2 Linear �lters and volatility

For the purpose of our presentation we consider a linear regression model
with GARCH(p,q) residuals:

yt = xtb+ "t (2.1)

"2t = ! +

max(p;q)X
j=1

(�j + �j) "
2
t�j + �t �

qX
j=1

�j�t�j (2.2)

Before proceeding some comments regarding (2.2) are in order. The
e�ect of �ltering raises issues quite similar to those encountered with
temporal aggregation. Indeed, linear �ltering and temporal aggregation
both involve combinations of observations pertaining to di�erent time
periods. The class of ARCH processes as introduced by Engle (1982),
and generalized by Bollerslev (1986), is not closed under temporal aggre-
gation as noted by Drost and Nijman (1993). For temporal aggregation
to work one has to weaken the original de�nition of the process. There-
fore, the GARCH(p,q) model appearing in (2.2) is assumed to be a weak
GARCH process as de�ned by Drost and Nijman. This implies that
�2t = IELt

�
"2t+1

�
with "2t+1 = �2t + �t+1 where IELt (�) is de�ned as the

linear projection on the space spanned by
�
1;
�
"t�j ; "

2
t�j

�
: j � 0

	
.

Following Sims (1974) and Wallis (1974) we assume that the regres-
sors xt are strictly exogenous. Moreover, both yt and xt have nonseasonal
(NS) and seasonal (S) components and so do the residuals, namely:

zt = zNS
t + zSt z = x; y; " (2.3)

It is assumed that all the data (and hence residuals) are �ltered by
the same linear �lter, i.e.

ẑNS
t = � (L) zt =

+1X
k=�1

�kL
kzt z = x; y (2.4)
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where ẑS = zt � ẑNS
t ; z = x; y and Lkzt = zt�k. Since a uniform �lter

is used across all data we do not expect any bias in the OLS estimator
b̂OLS using ŷNS and x̂NS as Sims and Wallis showed in their seminal
papers. To facilitate our presentation we will assume b̂OLS � b and
ignore all estimation uncertainty in order to focus on the properties of "t,
in particular its volatility dynamics. Hence, we are interested in studying
the properties of "Ft � � (L) "t namely the �ltered residual process. Let
us �rst consider the autocovariance structure of the squared un�ltered
series:


2(j) = IEL"
2
t "

2
t�j (2.5)

where IEL(�) as noted before represents the linear unconditional pro-
jection associated with the L2 representation of the

�
"2t
	
process. Its

�ltered counterpart can be written as:


F2 (j) = IEL("
F
t )

2("Ft�j)
2 = IEL (� (L) "t)

2
(�(L)"t�j)

2: (2.6)

To proceed we formulate an assumption which is implied by the weak
GARCH de�nition put forward by Drost and Nijman (1983). In partic-
ular:

Assumption 2.1 : The GARCH process in (2.2) satis�es the conditions
of a weak GARCH. It implies that IE"2�"� 0"� 00 = IEL"

2
�"� 0"� 00 = 0 for

� 6= � 0 6= � 00:

It will also be convenient to introduce the following notation:

�2 (L) �
+1X

k=�1

�2kL
k:

In a �rst subsection we will deal with the general linear �ltering case
without being speci�c about the particular features of the �lter weights.
In the next subsection we will treat some speci�c special cases.

2.1 The general case of linear �lters

Using Assumption 2.1 we can rewrite (2.6) and obtain a �rst general
result.

Proposition 2.1 : Under Assumption 2.1 the autocovariance function of
the squares of the �ltered process "Ft � � (L) "t satis�es:
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F2 (j) = IEL(�2(L)"
2
t )(�2(L)"

2
t�j) + 4

+1X
k=�1

X
i<k

�i�k�i+j�k+jIEL"
2
t�i"

2
t�k

(2.7)
Proof: See Appendix.

It should be noted that the formula in (2.7) is di�cult to appraise un-
less we make either some speci�c assumptions about the �lter weights
or else about the process. The easiest case is one where there are no
GARCH features, i.e. �j and �j are both zero. In this special case of
homoskedastic errors one obtains:


F2 (j) =

"
+1X

k=�1

�2k�
2
k+j

#

2(0) (2.8)

which means that �ltering a homoskedastic residual process with a gen-
eral linear �lter will yield, not surprisingly, ARCH-type e�ects deter-
mined by the squared �lter weights, indeed from equation (2.8) we can
also formulate the autocorrelation function as follows:

�F2 (j) =

"
+1P

k=�1

�2k�
2
k+j

#
"

+1P
k=�1

�4k

# (2.9)

where �F2 (j) is the autocorrelation of the squared �ltered residuals. One
would like to use some speci�c values for the �lter weights of course.
This will be treated in the next subsection. In general one can say
that the autocovariance structure of the squared residuals before and
after (linear) �ltering resembles somewhat that of linearly �ltered ARMA
models. Ghysels and Perron (1993) examined in detail the e�ect of
linear �ltering on the autocovariance structure of ARMA, ARIMA and
seasonal unobserved component ARIMA models. One could transplant
these results to the case of weak GARCH(p,q) models, provided two
important modi�cations are made. The �rst is that the second term
in (2.7) needs to be neglible, which is in some cases valid as will be
discussed later. Second, unlike in the case of linear ARMA models we
no longer need to investigate the actual �lter weights but rather the
squared weights. These have never before been the focus of attention of
course, even for frequently used �lters like the X-11 �lter.
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2.2 Some speci�c cases of linear �lters

The case of a general linear �lter applies to many di�erent situations
such as �rst and seasonal di�erencing �lters, linear versions of the X-11
�lter, to optimal linear signal extraction �lters (see e.g. Pierce (1979),
Bell (1984), Maravall (1988), among others) or to �ltering procedures
often encountered in empirical macro such as the Hodrick and Prescott
(1997) and Baxter and King (1995) high-pass �lters. In the remainder
of this section we will focus our attention on some speci�c �lters in order
to derive theoretical results which are easier to interpret than equation
(2.7). Two types of frequently encountered linear �lters will be consid-
ered. The �rst class of �lters are of the type �(L) � (1�LS) where S can
take any positive integer value, i.e. this class includes �rst di�erencing
(S = 1) as well as seasonal di�erencing �lters (S > 1). These cases cover
situations where the regressors are (seasonally) di�erenced which would
occur when the regression model in (2.1) involves nonstationary regres-
sors with GARCH residuals and the data are �ltered before estimating
the volatility dynamics. The second class of �lters is surely the most
common and most interesting. It involves the linear version of the X-11
�lter.1 The �rst proposition covers the �lters �(L) � (1� LS):

Proposition 2.2 : Let �(L) � (1 � LS) then under Assumption 2.1 the
autocovariance function of the squares of the �ltered process satis�es:


F2 (0) = 2
2(0) + 6
2(S) (2.10)

while for j > 0:


F2 (j) = 2
2(j) + 
2(j + 1) + 
2(j � S) (2.11)

Proof: See Appendix.

A fairly simple case of interest is again homoskedastic residuals, i:e:
the un�ltered process features 
2(j) = 0; for j > 0: In such a case

F2 (S) = 
2(0) 6= 0 and we can write the autocorrelation function as:
�F2 (j) = 1 for j = 0, S and zero otherwise. Hence, �rst di�erencing
introduces ARCH(1) e�ects in homoskedastic residuals while seasonal
di�erencing produces seasonal ARCH. Next we turn to the linear X-11
�lter. The �lter is two-sided and involves over 80 leads and lags, which
makes the derivation of explicit analytical results, such as in Proposition
2.2, much more di�cult. Fortunately we can investigate the features of

1The linear X-11 procedure is discussed in Young (1968), Wallis
(1974), Bell (1992) and Ghysels and Perron (1993).
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the linear X-11 �lter via other means. First we should note that the
second term in (2.7) becomes neglible as the product of adjacent X-11
�lter weights is small, a useful feature of the �lter. A consequence of
this feature indeed is that we can simply focus on the features of the
�2(L) �lter, i:e: a �lter with the squared weights of the linear X-11 �lter.
Since we focus on the e�ect of �ltering it is worthwhile to consider �rst a
spectral domain approach.2 In Figure 2.1 we plotted the squared gain (or
transfer function) implied by the squared weights of the monthly linear
X-11 �lter. For the purpose of comparison we also plotted the linear X-11
�lter transfer functions. Hence, Figure 2.1 shows the transfer functions
of � (L) and �2 (L) in the case of the linear X-11 monthly �lter.

[Insert Figure 2.1 somewhere here]

The transfer functions appearing in Figure 2.1 are quite revealing.
The X-11 �lter has the familiar pattern which retains the spectral power
at all but the seasonal frequency and its harmonics. The �lter with
squared weights has very di�erent properties. First, as we expect from
a smoothing �lter, we observe the variance reduction e�ect. Indeed,
the transfer function takes values between roughly .4 and .62. Another
feature to note is that the �lter weights of the linear X-11 �lter sum to one
(a feature important for leaving constants and linear trends una�ected as
stressed by Ghysels and Perron (1993) in the context of unit root testing).
The sum of the squared weights is less than one, more speci�cally :7852
, which yields a zero frequency squared gain of (:7852)2or .6165, which
is the value appearing at the zero frequency in Figure 2.1. The most
remarkable feature, however, is that �2 (L) does not have troughs at
the seasonal frequency and its harmonics. Instead, it actually has small
peaks. Consequently, the X-11 �lter, while reducing the overall variance
of "t will in fact slightly amplify instead of remove seasonal correlation
in the conditional variance dynamics.

3 The case of weak GARCH(1,1)

In the last subsection we devoted our attention to some speci�c �lters
without explicit assumptions regarding the un�ltered volatility structure.

2Since we restict ourselves to linear projections we can rely on the
equivalent time domain and spectral domain representations provided
that the innovation process has �nite variance. In many empirical appli-
cations one assumes that �t has a Student distribution. The estimated
degrees of freedom are always larger than two, which justi�es our as-
sumption about the innovation variance.
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We will now assume a speci�c autocorrelation structure and investigate
the e�ect of linear �ltering. The simplest case one can consider is the
weak GARCH(1,1) model. Simplicity is not the only reason to elabo-
rate on this particular case. Indeed, it is also appealing to digress on
GARCH(1,1) processes because they appear as quite relevant in many
empirical applications. Obviously, while the GARCH(1,1) model will
�gure prominently in our analysis we need also to examine, given the
context of seasonality, GARCH models which exhibit seasonal features.
This will be treated in the next section. From Bollerslev (1986) we know
that we can rely on standard results of ARMA models (see e.g. Box
and Jenkins (1970, p. 76) or Fuller (1996, p. 72)). Hence, for the weak
GARCH(1,1) process we have that:


2 (0) =

�
1 + �2 + 2 (�+ �) �

��
1� (�+ �)

2
� (3.1)

for lag zero and for j 6= 0:


2 (j) =
(1 + � (�+ �)) (�+ 2�)�

1� (�+ �)
2
� (�+ �)j�1 (3.2)

whereas the autocorrelation function is:


2 (j) =
(1 + � (�+ �)) (�+ 2�)

(1 + �2 + 2 (�+ �)�)
(�+ �)

j�1
(3.3)

We can take advantage of these speci�c autocovariances to obtain
more explicit formulas which describe explicitly the e�ect of certain lin-
ear �lters on the volatility dynamics. Proposition 3.1 states a �rst such
result, namely:

Proposition 3.1 : Let �(L) � (1 � LS). Moreover, let us denote � �
(�+�) and � � (�+2�): Then under Assumption 2.1 the autocorrelation
function of the squares of a �ltered GARCH(1,1) process satis�es:

�F2 (j) �
�
2�S + �S+1 + 1

� �
1 + �2 + ��

�
2�S(1 + �2 + 2��) + 6�2S�1(1 + ���)

�2(j) (3.4)

and the autocorrelation function is unbiased if the parameters � and �

solve the following equation:

���2S + �2S�1 + (1 + 2�2 + 2��)�S+1 + [1 + �(2�+ 3�)] = 0: (3.5)
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Proof: See Appendix

It is interesting to note there will be a downward bias in the autocor-
relation function after �ltering if equation (3.5) holds with < instead of
equality. Finally, replacing equality in equation (3.5) by > will describe
parameter settings for the GARCH(1,1) which feature an upward bias
in the autocorrelation function induced by �ltering. Three special cases
of (3.5) are most relevant in practical applications. They are the cases
S = 1, S = 4 and S = 12: For these cases, equation (3.5) specialize
respectively to:

f1(�; �) � (1 + 4�2 + 3��)(� + �)2 + (1 + 2�+ 3�)� + �+ 1 (3.6)

f4(�; �) � �(�+ 2�)(� + �)8 + (�+ �)7 (3.7)

+(1 + 2�2 + 2��)(� + �)5 + [1 + �(2�+ 3�)]

f12(�; �) � �(�+ 2�)(� + �)24 + (�+ �)23 (3.8)

+(1 + 2�2 + 2��)(� + �)13 + [1 + �(2�+ 3�)]

We relied on numerical computations to characterize those three
equations. The three plots appearing in Figure 3.1 show the functions
f1(�; �); f4(�; �) and f12(�; �) for the parameter range �; � � (�1; 1). In
all three cases the functions take positive values, meaning that �lter-
ing by (1 � L); (1 � L4) and (1 � L12) will yield an upward bias in the
autocorrelations of squared residuals generated by weak GARCH(1,1)
processes.3

4 A simulation study

Having explored so far the e�ect of �ltering analytically we turn now
to simulations to address several issues which were di�cult to handle
via explicit solutions. To obtain the analytic results discussed in the
previous two sections we had to make several simplifying assumptions.

3The function f12(�; �) takes values equal to one for a large range of the parameter

space as appears from Figure 3.1(c).
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Indeed, we ignored all the potential nonlinearities of seasonal adjustment
procedures and their impact on volatility dynamics. In this section we
carry our analysis a step further in di�erent directions. We investigate
the actual X-11 programwith all its potential sources of nonlinearities, as
discussed in detail by Ghysels, Granger and Siklos (1996), and compare
it with the linear �lter results. Moreover, we consider in addition to
GARCH(1,1) also seasonal GARCH processes. Finally, we also compare
�nite sample properties with the asymptotic ones. Unlike the approach
taken in the previous sections we no longer rely on analytic methods but
(have to) rely on Monte Carlo simulations. We will describe the design
in a �rst subsection before reporting the �ndings.

4.1 The design

The data samples we generate are drawn from two types of processes, the
�rst is a GARCH(1,1) process, while the second is a seasonal GARCH
which will be presented momentarily. The former is de�ned as:

yt = "t with "2t = ! + (�+ �) "2t�1 + �t + ��t�1 (4.1)

It should be noted that we do not consider a weak GARCH, hence �2t =
IEt

�
"2t+1

�
, which means that it is based on a conditional expectation

instead of a linear projection. The technical aspects of the simulation
design are quite similar to those described in section 2.4.3 of Ghysels,
Granger and Siklos (1996) (henceforth referred to GGS). We used the
PROC X-11 procedure of SAS version 6.01. The number of replications
was 1000, which is a larger number than in GGS yet small relative to the
usual standards. As discussed in detail in that paper, using the actual
X-11 procedure is computationally intensive and therefore forces one to
consider a relatively small number of replications. Because the linear
�lter is two-sided it requires pre- and post- sample data. To generate
such data points we took 10 years of monthly pre-sample and a equal
number of post-sample points. Starting values are less of an issue here
than in GGS since we do not model the mean but instead generate
zero mean processes which are uncorrelated. We consider two sample
sizes, one is called \small" and amounts to 10 years of monthly data,
i.e. 120 observations, and the second is called \large", or roughly 1000
observations. As in GGS we took 83 years or 996 observations to be more
precise. Before describing the second data generating process and the
parameter values for both processes let us also point out that we only
consider the so-called additive version of the X-11 program (see GGS
section 1.2 for a description of their di�erences). The additive version is
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directly comparable to the linear �lter version described in the previous
section.

The second process is quite similar to that described in (3.1). Indeed,
the only di�erence is that it involves a seasonal AR lag.4 Namely, the
second process is de�ned as:

yt = "t with "2t = ! + (�+ �) "2t�12 + �t + ��t�1 (4.2)

We have to choose three parameters for both processes since (3.2)
does not entail any additional parameters. We know that
E"2t = != (1� (�+ �)) for the process in (3.1). We set E"2t = 1, i.e.
generate a zero mean uncorrelated process with unit variance. This
setup allows us to eliminate ! and substitute it by 1 � (�+ �) for the
GARCH(1,1) and the seasonal GARCH. Hence we are left with the choice
of the parameters � and �. We �rst take � = � = 0, and ask if there is no
heteroskedasticity of any kind to start with, does X� 11 produce some?
For the processes de�ned by (3.1) we have many empirical examples
suggesting that �+� � 1. In view of this evidence we also took �+� =
1: with � = :2 and :1 since the latter is usually estimated as roughly
between :1 and :2. The third and �nal speci�cation for the GARCH(1,1)
involves parameters � = � = :4, and hence covers a non-unit root case.
For the seasonal GARCH we have somewhat less empirical guidance,
yet analogous to the GARCH(1,1) case we took the same parameter
settings.

To conclude the description of the design we have to discuss what fea-
tures of the simulated series will be retrieved and studied. In line with
the results presented in section 2 we study the autocorrelation function
(ACF) of the linear �lter seasonally adjusted and the additive X-11 ad-
justed series. For the ACF's we computed twenty six lags.

4.2 Results

Tables A.1 through A.5, which appear in the Appendix, report the sim-
ulation results. To keep the number of tables to a reasonable minimum
we do not report all the simulation results as certain patterns emerged
which became repetitive. Table A.1 covers the case of a white process
(i.e. � = � = 0). Each of the tables reporting simulation results have

4Seasonality in ARCH can be obtained either through seasonal lags
(i.e. p and/or q equal to the seasonal lag), through unobserved compo-
nents, as in Fiorentini and Maravall (1996) or through periodic structures
as studied by Bollerslev and Ghysels (1996). We focus here only on the
former.
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the same structure. The top panel of �ve rows covers the large sample
results while the lower panel pertains to the small sample sizes. Each
panel contains the ACF of the un�ltered squared simulated processes,
the linearly �ltered with their bias as well as the X-11 �ltered cases
and their bias. In the case of white noise we observe a slight downward
bias in the ACF when the series are adjusted with the linear X-11 �l-
ter except at the seasonal lag where the autocorrelation attains a small
positive value of 0.0569. The actual X-11 program also produces biases
which are typically of comparable size but opposite sign at nonseasonal
lags. At the seasonal lag the X-11 procedure produces a downward bias,
namely -0.0917. The behavior in small samples is similar to that in large
samples. In summary, from the white noise case reported in Table A.1
we learn that the linear �lter introduces some small biases at nonseasonal
lags and a more serious upward bias at the seasonal lag. The latter was
expected since the transfer function plotted in Figure 2.1 showed small
peaks at the seasonal frequency and its harmonics. The X-11 program
also produces a considerable bias at the seasonal frequency, double in
size compared to the linear �lter, but here the bias is downward. Some
di�erences between the linear X-11 and actual procedure start to ap-
pear, yet more signi�cant ones will be revealed by the simulation results
involving genuine ARCH processes. It should also be noted that the
magnitude of the biases found so far are small.5

We turn our attention now to several classes of ARCH models, the
�rst appearing in Table A.2 with � = � = :4 and GARCH(1,1) dynamics.
We observe a very serious downward bias. For instance the �rst order
autocorrelation of the volatility for the un�ltered series is roughly on
the order of .769 while after �ltering the raw series with the linear X-
11 �lter this autocorrelation drops dramatically to .334 and with the
actual X-11 procedure even further to .209. Hence the smoothing e�ect
of seasonal adjustment has a serious impact on the volatility dynamics
in terms of persistence. What happens at the seasonal frequencies is the
opposite of what happens elsewhere. Indeed, the linear version produces
an upward bias in the ACF at lag 12, again due to the peak in the
transfer function. According to the results in Table A.2 the un�ltered
series volatility has .015 autocorrelation at lag 12 while it attains 0.066
with linearly �ltered series. For the actual X-11 procedure the bias
remains negative, however.

The most remarkable di�erences between the X-11 procedure and
its linear counterpart are revealed when we examine seasonal volatility

5If we think of �F2 (j) � N(0; 1=
p
n) under the null, we would not very

often �nd signi�cant correlations in the case of �ltered white noise.
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dynamics. The �rst such case appears in Table A.3 where a seasonal
GARCH process is simulated with parameters � = � = :4. First, it
should be noted that we observe again a downward bias at the non-
seasonal frequencies. With the linear �lter the downward bias becomes
more serious in small samples. The interesting results appear at the sea-
sonal lags. In large samples as well as small ones the autocorrelations are
roughly cut in size by 56 % (down form 0.6550 to 0.3284 in large samples
for instance) with the linear X-11 �lter. It should also parenthetically
be noted that the baises reported at lag 12 also extend to the 24th lag in
this as well as all the other cases we report. The actual X-11 procedure
has a far more devastating impact as it completely erases the seasonal
volatility dynamics. This result is quite typical as we found it to appear
in all our simulations. An explanation for this phenomenon must be
sought in the di�erences between the linear X-11 �lter and the actual
procedure. Ghysels, Granger and Siklos (1996) describe the di�erent
steps that are involved in the X-11 program. These steps remove trends,
seasonal means and correct for outliers. The series which we simulated
have neither a trend nor a seasonal in the mean. Hence, we can think
of our simulations as generating an irregular component. At the end of
the section we will elaborate further on this issue but �rst we will move
on to the last case which involves IGARCH processes.

The results in Tables A.4 and A.5 report the unit root and seasonal
unit root cases, i.e. � + � = 1. We only report simulations based on
setting � = :1. We observe an enormous downward bias with the linear
X-11 �lter which tends to be even bigger in small samples and larger
when the actual X-11 procedure is used. This is a very signi�cant result
as it shows that IGARCH is erased by seasonal adjustement �ltering.
The seasonal case reported in Table A.5 shows again the complete elim-
ination of seasonal heteroskedasticity by the X-11 program. Since the
case � + � = 1 is quite relevant from an empirical point of view we
must conclude from these simulations that whenever seasonal adjust-
ment is applied to (monthly) data we expect to �nd little evidence of
GARCH and in particular persistence in volatility as well as seasonality
in volatility left after �ltering.

To conclude the section we will examine closer the reason why the
actual X-11 di�ers so much from the linear �lter. The X-11 program
involves an outlier detection procedure applied to the irregular com-
ponent, which in our case corresponds to the raw "t series. First, a
moving sample window �ve-year standard deviation �̂t of the "t series is
computed. Implicitly, it is assumed that volatility is either constant or
changes slowly to justify a �ve-year (i.e. 60 monthly observations) rolling
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window estimate of the volatility. A �rst estimate is denoted �
(1)
t . After

eliminating observations with j"tj � 2:5 �
(1)
t the standard error is recom-

puted, yielding �
(2)
t which is a based on a sample with a random number

of observations less or equal 60. This second estimate is used to purge
in
uential observations from "t and replace them by smoothed nearest
neighbor estimates using a weighting scheme described by equations (1.3)
and (1.4) in GGS (1996). This data replacement scheme intervenes ex-

cept when 0 � j"tj � 1:5 �
(2)
t , which is an extremely tight margin. The

1.5 value can be changed by the X-11 program user. To verify whether
it is indeed the outlier detection scheme which has such a devastating
impact we ran our simulation setting extremely wide margins on the

outlier detection scheme, i.e. it intervenes only when j"tj > 9:9 �
(2)
t

which is the maximum allowable in the X-11 program. For all practical
purposes such a wide margin means that socalled outliers are rarely cor-
rected. The results with the outlier corrections turned o� were the same
as those which were obtained with the linear �lter. Clearly, the outlier
detection scheme can have devastating e�ects when volatility is highly
persistent, particularly when the persistence is seasonal. For nonsea-
sonal GARCH dynamics the sixty-observations rolling window scheme

producing �
(1)
t is very much like historical volatility computation ap-

plied to (daily) �nancial time series. One way to check the e�ect of
the outlier corrections is to simulate data and examine the frequency
of interventions by the procedure. In Table A.6 we report Monte Carlo
simulation distributions of X-11 outlier intervention frequencies for two
types of processes, the white noise process and the IGARCH process
(nonseasonal and seasonal). The simulation setup is exactly the same
as in the previous tables, i.e. we consider two sample sizes, small and
large. The simulations are based on 10000 replications and the entries
to the table are percentiles of the percentage of the sample a�ected by
the outlier procedure. There is one caveat we should note regarding the

simulations. They are based only on �
(1)
t , i.e. the standard error was not

reestimated. This slight deviation from the actual procedure results in
conversative estimates of the outlier intervention procedure since most

often �
(2)
t � �

(1)
t . The results in Table A.6 show that an average of 5.12

percent or roughly �fty observations are a�ected in large samples (i.e.
996 observations) when the data are white noise Gaussian. The distri-
bution is rather concentrated, as it ranges from 2.61 to 7.73 percent.
In small samples containing 120 observations the distribution is more
spread out but has the same mean. This �rst case shows that the outlier
intervention is too invasive as it should not a�ect a Gaussian process.
When we examine the nonseasonal IGARCH process we observe actually
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a drop in the mean to 2.63 percent in large samples, yet the distribution
is entirely shifted, often no corrections occur, but when the outlier pro-
cedure intervenes it does a�ect more data, up to 13.15 percent in large
samples and even 43.33 percent in small samples which is roughly 50
out of 120 observations. The seasonal IGARCH case has a much higher
mean in both large and small samples. The large sample distribution
is the more shifted to the right compared to the two other large sam-
ple distributions, while the small sample distribution also attains high
values, though not as extreme as the nonseasonal IGARCH case. From
these results we must conclude that the X-11 outlier corrections scheme
can seriously a�ect data and perhaps somewhat unintentionally seems
to erase all seasonality in the conditional variance, something which the
linear version of X-11 does not accomplish. More importantly, the out-
lier correction scheme reduces signi�cantly the persistence in volatility.
Last but not least we also need to observe that the linear �lter is not
a good approximation of what actually happens to seasonal volatility
dynamics when data are passed through the X-11 program. Clearly, if
one wants to remove seasonality both in mean and variance, the actual
X-11 procedure does it remarkably well, but at some cost elsewhere in
the analysis because the outlier correction procedure is responsible for
the remarkable performance.

5 Empirical evidence

We initially considered a total of 28 monthly and quarterly time series
covering a span of 20 or more years of data. A list is provided in Table
A.7. In comparing actual time series with the simulation experiment
conducted above we face several di�culties. First, for the sake of sim-
plicity, it was assumed in the simulations that all series are additively
seasonally adjusted when in practice this is not always the case (see GGS
1996). Second, we assumed that no mean regression model was �tted
while in practice a model for the conditional mean is necessary. Obvi-
ously, any source of misspeci�cation in the mean will a�ect the residuals
and therefore potentially interfer with ARCH e�ects. Despite these con-
siderations, the simulations suggest potentially large biases in the ACF's
of the arti�cial series �ltered in a number of ways and one would expect
this phenomenon should be broadly replicated with actual time series.
Space limitations prevent us from showing all the ACF's for the various
combinations tested. Instead we report results for a set of key macroe-
conomic time series at the monthly frequency. They are as follows: the
Consumer Price Index (CPI), the CPI excluding energy prices, the CPI
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excluding food and energy prices, the adjusted Monetary Base, and the
M1 measure of the money stock. The latter two series are additively
adjusted since they themselves are aggregated from a variety of com-
ponents (i.e. currency outside banks, reserves of the banking system,
checkable deposits) and are known to display considerable seasonality.
The CPI series are of obvious policy interest and food and energy prices
are also known to have a seasonal component.

Testing proceeded as follows. In the �rst instance, we �t an AR(6)
model to the �rst log di�erence of the o�cially seasonally adjusted se-
ries. In the case of unadjusted data, that is, the "un�ltered" series, two
types of regression models were considered. First, a seasonal di�erenc-
ing �lter was applied to the log levels of the series. A second approach
was to estimate a �rst log di�erence AR speci�cation involving twenty
four lags and also projected on centered deterministic seasonal dummy
variables. Both of these speci�cations are commonly used in applied
work. We examined the ACF of the squared residuals, as we did in
the simulations, and a GARCH(1,1) model was also �tted to all of the
above speci�cations. The results of the ACF's appear in Table A.8. The
ACF's of squared residuals of the regressions for M1 and the adjusted
monetary base display features which resemble very much those of the
simulation results. Indeed, we �nd that the persistence in volatility is
greatly reduced after seasonal adjustment and the seasonal dependence
in the autocorrelations was also erased. There are some di�erences be-
tween the two ACF's for the unadjusted series, i.e. the speci�cation of
the mean regression had an impact on the volatility dynamics of the
residuals as expected but fortunately those di�erences did not alter the
interpretation of the results. The situation is quite di�erent with the
price indices, however. Here the results are not so much in line with the
simulation evidence and moreover they are also very much a�ected by
the speci�cation of the mean regression. For the CPI we �nd more per-
sistence with the seasonally adjusted data if we look at the �rst lags of
the ACF's. We still �nd that the seasonal autocorrelation has been elim-
inated, however, which is in line with the simulation results we obtained.
Similar results were found for the other price indices, except that they
show still a fair amount of seasonality in volatility after �ltering with
X-11.

In a �nal Table A.9 we report the parameter estimates for GARCH(1,1)
models �tted to the residuals. For the sake of presentation we only re-
port the case of seasonal di�erencing with NSA data. The monetary
base data appear �rst in the table. When we use the sum of � and � as
a measure of persistence we observe that for the SA data we �nd roughly
.34 while for the seasonal di�erencing speci�cation we �nd .76. For M1
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the di�erence in persistence is rather small, .92 (SA) versus .99 (NSA).
This is also the case with the price index series considered.

6 Conclusions

This paper is a �rst towards understanding the e�ect of �ltering on
nonlinear time series models. The class of models we examined were
GARCH-type processes. We explored a neglected dimension of the im-
pact of seasonal adjustment �lters such as X-11. While previous research
has focused on the distortions, such as non-linearities, introduced by the
application of seasonal �lters we examine the impact of seasonal adjust-
ment and other �lters on the volatility dynamics. Our analysis reveals
that �lters such as X-11 (or linear X-11) introduce substantial biases
in the volatility dynamics. Volatility is modelled via GARCH-type pro-
cesses with allowances made for di�ering degrees of persistence. Focus-
ing on the autocorrelation function of the squared residuals from various
GARCH processes we �nd that X-11 tends to reduce, and in some cases,
completely eliminates seasonal volatility dynamics and substantially re-
duce the overall persistence. We also found substantial di�erences be-
tween the linear X-11 and actual X-11 �lter, showing the signi�cant
impact outlier corrections have in practice. Our results also showed that
the linear X-11 �lter in fact introduces a small seasonal dependence in
volatility which appears most clearly in the case of white noise residuals.
We also examined (1�LS) �lters for S � 1. In the case of GARCH(1,1)
we showed that such �lters always introduce upward biases in the ACF
of squared residuals. Despite the inherent problems that exist when one
moves from the comfort of the simulations to the use of actual time se-
ries we were able to �nd similar types of biases uncovered in the Monte
Carlo experiments. It is clear from our paper that much is still to be
learned about the e�ects seasonal adjustment �lters such as X-11 have
on the (nonlinear) time series properties of data. The case of ARCH-
type features is only a �rst small step on a very relevant and practical
subject.
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Appendix

Proof of Proposition 2.1: From the de�nition of the �ltered autoco-
variance function we have that:
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where the latter expression follows from the weak GARCH Assumption
2.1. Moreover, using the same assumption we can show that the second
term in (A.1) specializes to that appearing in (2.7).

Proof of Proposition 2.2: In the special case of �L � (1 � LS) we
have that
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Equation (A.2) then yields for j=0, the autocovariance appearing in

(2.10), provided Assumption 2.1 holds. With j>0 we also obtain (2.11)
under the same Assumption.

Proof of Proposition 3.1: From Proposition 2.2 we know that:


F2 (j) = 2
2(j) + 
2(j + 1) + 
2(j � S)
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Using the GARCH(1,1) formula (3.1) through (3.3) we have
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Substituting � = (�+�) and � = (�+2�) yields (3.4). The bias in the
autocorrelation is zero when�
2�S + �S+1 + 1

� �
1 + �2 + ��

�
= 2�S

�
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�
+6�2S�1(1+���)

Algebraic simpli�cation yields equation (3.5).
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Table A.1: Biases in Volatility Autocorrelation Functions: GARCH(1,1) Model with α = β = 0

Lags 1 2 3 4 5 6 7 8 9 10

Large Sample Results

Unfil 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Fil -0.0010 -0.0009 -0.0008 -0.0007 -0.0006 -0.0005 -0.0005 -0.0005 -0.0006 -0.0009Lin

Bias 0.0010 0.0009 0.0008 0.0007 0.0006 0.0005 0.0005 0.0005 0.0006 0.0009

Fil 0.0150 0.0159 0.0129 0.0127 0.0107 0.0005 -0.0049 -0.0068 -0.0060 -0.0073
X-11

Bias -0.0150 -0.0159 -0.0129 -0.0127 -0.0107 -0.0005 0.0049 0.0068 0.0060 0.0073

Small Sample Results

Unfil -0.0084 -0.0072 -0.0086 -0.0076 -0.0081 -0.0062 -0.0084 -0.0076 -0.0069 -0.0082
Fil 0.0104 0.0096 0.0091 0.0094 0.0083 0.0082 0.0088 0.0073 0.0074 0.0086Lin

Bias -0.0188 -0.0170 -0.0177 -0.0170 -0.0164 -0.0144 -0.0172 -0.0151 -0.0143 -0.0169

Fil 0.0089 0.0086 0.0098 0.0105 0.0047 -0.0012 -0.0066 -0.0107 -0.0108 -0.0048
X-11

Bias -0.0173 -0.0158 -0.0184 -0.0181 -0.0128 -0.0050 -0.0018 -0.0029 0.0039 -0.0034

Notes: All computations are based on 1000 Monte Carlo Simulations using the linear approximation to the X-11 filter (denoted Lin) and the SAS Proc X11
procedure (denoted X-11). The bias is defined as in eq. (2.9). The large sample configuration is based on 996 data points while the small sample reflects 120
observations. Details of the simulation design appear in Section 3.1.



Table A.1 (cont’d)

Lags 11 12 13 14 22 23 24 25 26

Large Sample Results

Unfil 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Fil -0.0011 0.0569 -0.0003 0.0000 -0.0014 -0.0015 0.0052 -0.0011 -0.0010Lin

Bias 0.0011 -0.0569 -0.0003 0.0000 0.0014 0.0015 0.0052 0.0011 0.0010

Fil -0.0070 -0.0917 -0.0071 -0.0090 -0.0088 -0.0071 -0.0660 -0.0070 -0.0091
X-11

Bias 0.0070 0.0917 0.0071 0.0090 0.0088 0.0071 0.0660 0.0070 0.0091

Small Sample Results

Unfil -0.0080 -0.0084 -0.0092 -0.0078 -0.0066 -0.0072 -0.0082 -0.0064 -0.0052
Fil 0.0096 0.0464 -0.0079 -0.0087 -0.0085 -0.0079 -0.0024 -0.0071 -0.0060Lin

Bias -0.0176 -0.0548 -0.0013 0.0009 0.0019 0.0005 -0.0058 0.0007 0.0008

Fil -0.0102 -0.0904 -0.0102 -0.0132 -0.0099 -0.0047 -0.0633 -0.0069 -0.0041
X-11

Bias 0.0022 0.0820 0.0010 0.0054 0.0033 0.0025 0.0551 0.0005 -0.0011

Notes: All computations are based on 1000 Monte Carlo Simulations using the linear approximation to the X-11 filter (denoted Lin) and the SAS Proc X11
procedure (denoted X-11). The bias is defined as in eq. (2.9). The large sample configuration is based on 996 data points while the small sample reflects 120
observations. Details of the simulation design appear in Section 3.1.



Table A.2: Biases in Volatility Autocorrelation Functions: GARCH(1,1) Model with α = β = .4

Lags 1 2 3 4 5 6 7 8 9 10

Large Sample Results

Unfil 0.7692 0.5104 0.3474 0.2405 0.1686 0.1194 0.0852 0.0609 0.0435 0.0309
Fil 0.3339 0.2227 0.1529 0.1073 0.0777 0.0574 0.0440 0.0373 0.0342 0.0356Lin

Bias 0.4532 0.2877 0.1945 0.1333 0.0909 0.0620 0.0412 0.0236 0.0093 -0.0047

Fil 0.2093 0.1488 0.1053 0.0810 0.0603 0.0340 0.0213 0.0149 0.0122 0.0123
X-11

Bias 0.5599 0.3616 0.2421 0.1595 0.1083 0.0854 0.0639 0.0460 0.0313 0.0186

Small Sample Results

Unfil 0.7342 0.4495 0.2784 0.1715 0.1036 0.0590 0.0292 0.0094 -0.0046 -0.0149
Fil 0.3022 0.1830 0.1114 0.0682 0.0398 0.0221 0.0097 0.0045 0.0014 0.0029Lin

Bias 0.4320 0.2665 0.1670 0.1033 0.0638 0.0369 0.0195 0.0049 -0.0060 -0.0178

Fil 0.1912 0.1304 0.0852 0.0639 0.0394 0.0156 0.0037 -0.0034 -0.0018 -0.0045
X-11

Bias 0.5430 0.3191 0.1932 0.1076 0.0762 0.0434 0.0255 0.0128 -0.0028 -0.0104

Notes: All computations are based on 1000 Monte Carlo Simulations using the linear approximation to the X-11 filter (denoted Lin) and the SAS Proc X11
procedure (denoted X-11). The bias is defined as in eq. (2.9). The large sample configuration is based on 996 data points while the small sample reflects 120
observations. Details of the simulation design appear in Section 3.1.



Table A.2 (cont’d)

Lags 11 12 13 14 22 23 24 25 26

Large Sample Results

Unfil 0.0217 0.0150 0.0100 0.0062 -0.0048 -0.0051 -0.0050 -0.0047 -0.0044
Fil 0.0422 0.0661 0.0370 0.0252 0.0089 0.0137 0.0060 0.0134 0.0079Lin

Bias -0.0205 -0.0510 -0.0270 -0.0189 -0.0136 -0.0188 -0.0110 -0.0180 -0.0124

Fil 0.0162 -0.0798 0.2090 0.1474 0.0113 0.0160 -0.0803 -0.0512 -0.0333
X-11

Bias 0.0055 0.0948 -0.1990 -0.1412 -0.0161 -0.0211 0.0753 0.0665 0.0289

Small Sample Results

Unfil -0.0217 -0.0271 -0.0312 -0.0337 -0.0357 -0.0358 -0.0360 -0.0365 -0.0370
Fil 0.0097 0.0349 0.0049 -0.0064 -0.0156 -0.0128 -0.0162 -0.0135 -0.0178Lin

Bias -0.0314 -0.0620 -0.0361 -0.0274 -0.0201 -0.0230 -0.0198 -0.0230 -0.0192

Fil 0.0001 -0.0643 0.1872 0.1286 -0.0047 -0.0010 -0.0845 -0.0021 -0.0033
X-11

Bias -0.0218 0.0616 -0.2184 -0.1623 -0.0310 -0.0348 0.0485 -0.0344 -0.0337

Notes: All computations are based on 1000 Monte Carlo Simulations using the linear approximation to the X-11 filter (denoted Lin) and the SAS Proc X11
procedure (denoted X-11). The bias is defined as in eq. (2.9). The large sample configuration is based on 996 data points while the small sample reflects 120
observations. Details of the simulation design appear in Section 3.1.



Table A.3: Biases in Volatility Autocorrelation Functions: Seasonal GARCH(1,1) Model with α = β = .4

Lags 1 2 3 4 5 6 7 8 9 10

Large Sample Results

Unfil 0.1830 -0.0089 -0.0096 -0.0083 -0.0087 -0.0097 -0.0086 -0.0083 -0.0094 -0.0085
Fil 0.0768 -0.0039 -0.0036 -0.0038 -0.0037 -0.0041 -0.0045 -0.0039 -0.0036 -0.0032Lin

Bias 0.1062 -0.0050 -0.0060 -0.0045 -0.0050 -0.0056 -0.0041 -0.0044 -0.0058 -0.0053

Fil 0.0448 0.0058 0.0043 0.0064 0.0023 -0.0056 -0.0073 -0.0068 -0.0065 -0.0079
X-11

Bias 0.1382 -0.0145 -0.0139 -0.0147 -0.0110 -0.0041 -0.0013 -0.0015 -0.0029 -0.0006

Small Sample Results

Unfil 0.1359 -0.0500 -0.0458 -0.0460 -0.0452 -0.0459 -0.0441 -0.0454 -0.0451 -0.0467
Fil 0.0489 -0.0278 -0.0252 -0.0267 -0.0247 -0.0256 -0.0247 -0.0254 -0.0255 -0.0250Lin

Bias 0.0870 -0.0222 -0.0206 -0.0193 -0.0205 -0.0203 -0.0194 -0.0196 -0.0196 -0.0217

Fil 0.0317 -0.0052 -0.0070 0.0002 -0.0074 -0.0150 -0.0144 -0.0194 -0.0126 -0.0184
X-11

Bias 0.1042 -0.0448 -0.0388 -0.0452 -0.0478 -0.0309 -0.0297 -0.0260 0.0325 -0.0283

Notes: All computations are based on 1000 Monte Carlo Simulations using the linear approximation to the X-11 filter (denoted Lin) and the SAS Proc X11
procedure (denoted X-11). The bias is defined as in eq. (2.9). The large sample configuration is based on 996 data points while the small sample reflects 120
observations. Details of the simulation design appear in Section 3.1.



Table A.3 (cont’d)

Lags 11 12 13 14 22 23 24 25 26

Large Sample Results

Unfil 0.1325 0.6550 0.1320 -0.0087 -0.0081 0.0963 0.4480 0.0960 -0.0840
Fil 0.0781 0.3284 0.0600 -0.0035 -0.0035 0.0449 0.1981 0.0452 -0.0037Lin

Bias 0.0544 0.3266 0.0720 -0.0087 -0.0046 0.0514 0.2499 0.0508 -0.0803

Fil 0.0245 0.0194 0.0449 0.0052 -0.0074 0.0242 0.0216 0.0189 0.0101
X-11

Bias 0.1080 0.6356 0.0871 -0.0139 -0.0070 0.0721 0.4624 0.0771 -0.0941

Small Sample Results

Unfil 0.0762 0.5613 0.0723 -0.0467 -0.0419 0.0386 0.3229 0.0342 -0.0423
Fil 0.0411 0.2826 0.0276 -0.0247 -0.0233 0.0139 0.1397 0.0114 -0.0235Lin

Bias 0.0351 0.2787 0.0447 -0.0220 -0.0186 0.0247 0.1832 0.0228 -0.0188

Fil 0.0090 0.0176 0.0297 -0.0070 -0.0176 0.0123 0.0176 0.0161 0.0098
X-11

Bias 0.0672 0.5435 0.0426 -0.0390 -0.0243 0.0263 0.3033 0.0181 -0.0521

Notes: All computations are based on 1000 Monte Carlo Simulations using the linear approximation to the X-11 filter (denoted Lin) and the SAS Proc X11
procedure (denoted X-11). The bias is defined as in eq. (2.9). The large sample configuration is based on 996 data points while the small sample reflects 120
observations. Details of the simulation design appear in Section 3.1.



Table A.4: Biases in Volatility Autocorrelation Functions: GARCH(1,1) Model with α = .1 and β = .9

Lags 1 2 3 4 5 6 7 8 9 10

Large Sample Results

Unfil 0.9902 0.9799 0.9699 0.9600 0.9503 0.9408 0.9313 0.9220 0.9128 0.9037
Fil 0.2935 0.2914 0.2886 0.2865 0.2833 0.2821 0.2793 0.2779 0.2752 0.2735Lin

Bias 0.6967 0.6885 0.6813 0.6735 0.6670 0.6583 0.6520 0.6441 0.6376 0.6302

Fil 0.2083 0.1465 0.1073 0.0802 0.0595 0.0357 0.0217 0.0149 0.0104 0.0126
X-11

Bias 0.7819 0.8334 0.8626 0.8798 0.8908 0.9051 0.9096 0.9071 0.9124 0.8911

Small Sample Results

Unfil 0.9374 0.8714 0.8098 0.7522 0.6981 0.6472 0.5991 0.5537 0.5109 0.4702
Fil 0.1828 0.1684 0.1576 0.1479 0.1389 0.1291 0.1231 0.1142 0.1047 0.0987Lin

Bias 0.7546 0.7031 0.6522 0.6043 0.5592 0.5181 0.4760 0.4395 0.4062 0.3715

Fil 0.1894 0.1286 0.0874 0.0622 0.0400 0.0180 -0.0008 -0.0028 -0.0098 -0.0050
X-11

Bias 0.7480 0.7428 0.7224 0.6900 0.6581 0.6292 0.5999 0.5565 0.5207 0.4752

Notes: All computations are based on 1000 Monte Carlo Simulations using the linear approximation to the X-11 filter (denoted Lin) and the SAS Proc X11
procedure (denoted X-11). The bias is defined as in eq. (2.9). The large sample configuration is based on 996 data points while the small sample reflects 120
observations. Details of the simulation design appear in Section 3.1.



Table A.4 (cont’d)

Lags 11 12 13 14 22 23 24 25 26

Large Sample Results

Unfil 0.8946 0.8857 0.8769 0.8682 0.8017 0.7938 0.7859 0.7781 0.7704
Fil 0.2711 0.2943 0.2661 0.2632 0.2451 0.2425 0.2267 0.2377 0.2356Lin

Bias 0.6235 0.5914 0.6108 0.6050 0.5567 0.5513 0.5592 0.5405 0.5348

Fil 0.0147 -0.0794 0.1599 0.1554 0.1175 0.1164 -0.0151 0.0112 0.0312
X-11

Bias 0.8799 0.9651 0.7170 0.7128 0.6842 0.6774 0.7910 0.7893 0.7392

Small Sample Results

Unfil 0.4318 0.3954 0.3610 0.3284 0.1226 0.1028 0.0839 0.0658 0.0487
Fil 0.0909 0.1188 0.0793 0.0793 0.0714 0.0227 0.0073 0.0163 0.0116Lin

Bias 0.3402 0.2766 0.2818 0.2571 0.0961 0.0801 0.0766 0.0495 0.0371

Fil -0.0042 -0.0643 0.1183 0.1060 0.0381 0.0335 -0.0798 0.0234 0.0501
X-11

Bias 0.4360 0.4797 0.2427 0.2224 0.0845 0.0693 0.1647 0.0424 0.0186

Notes: All computations are based on 1000 Monte Carlo Simulations using the linear approximation to the X-11 filter (denoted Lin) and the SAS Proc X11
procedure (denoted X-11). The bias is defined as in eq. (2.9). The large sample configuration is based on 996 data points while the small sample reflects 120
observations. Details of the simulation design appear in Section 3.1.



Table A.5: Biases in Volatility Autocorrelation Functions: Seasonal GARCH(1,1) Model with α = .1 and β = .9

Lags 1 2 3 4 5 6 7 8 9 10

Large Sample Results

Unfil 0.0407 0.0318 0.0300 0.0314 0.0337 0.0302 0.0333 0.0304 0.0286 0.0298
Fil 0.0169 0.0136 0.0126 0.0130 0.0138 0.0123 0.0137 0.0127 0.0120 0.0129Lin

Bias 0.0238 0.0182 0.0174 0.0184 0.0199 0.0179 0.0196 0.0177 0.0166 0.0169

Fil 0.0450 0.0057 0.0051 0.0047 0.0044 -0.0028 -0.0070 -0.0086 -0.0075 -0.0085
X-11

Bias -0.0043 0.0261 0.0263 0.0267 0.0293 0.0330 0.0403 0.0390 0.0361 0.0383

Small Sample Results

Unfil -0.0575 -0.0637 -0.0618 -0.0592 -0.0581 -0.0583 -0.0579 -0.0583 -0.0597 -0.0614
Fil -0.0286 -0.0321 -0.0311 -0.0287 -0.0285 -0.0283 -0.0283 -0.0282 -0.0302 -0.0302Lin

Bias -0.0289 -0.0316 -0.0307 -0.0305 -0.0296 -0.0300 -0.0296 -0.0301 -0.0295 -0.0312

Fil 0.0273 -0.0143 -0.0030 -0.0087 -0.0010 -0.0155 -0.0229 -0.0193 -0.0146 -0.0147
X-11

Bias -0.0848 -0.0494 -0.0588 -0.0494 -0.0573 -0.0424 -0.0350 -0.0390 -0.0451 -0.0467

Notes: All computations are based on 1000 Monte Carlo Simulations using the linear approximation to the X-11 filter (denoted Lin) and the SAS Proc X11
procedure (denoted X-11). The bias is defined as in eq. (2.9). The large sample configuration is based on 996 data points while the small sample reflects 120
observations. Details of the simulation design appear in Section 3.1.



Table A.5 (cont’d)

Lags 11 12 13 14 22 23 24 25 26

Large Sample Results

Unfil 0.0382 0.9596 0.0377 0.0290 0.0269 0.0352 0.9223 0.0347 0.0264
Fil 0.0114 0.4298 0.0161 0.0120 0.0116 0.0149 0.3784 0.0146 0.0111Lin

Bias 0.0268 0.5298 0.0216 0.0170 0.0153 0.0203 0.5239 0.0201 0.0153

Fil 0.0223 0.0210 0.0488 0.0088 -0.0017 0.0350 0.0547 -0.0110 -0.0010
X-11

Bias 0.0159 0.9386 -0.0189 0.0202 0.0286 0.0002 0.8676 0.0457 0.0274

Small Sample Results

Unfil -0.0553 0.8259 -0.0553 0.0606 -0.0568 -0.0521 0.6765 -0.0518 -0.0556
Fil -0.0144 0.3623 -0.0260 -0.0296 -0.0280 -0.0251 0.2650 -0.0235 -0.0274Lin

Bias -0.0409 0.4636 -0.0293 -0.0306 -0.0288 -0.0270 0.4115 -0.0283 -0.0282

Fil 0.0066 0.0201 0.0251 -0.0198 -0.0247 0.0095 0.0490 0.0099 -0.0001
X-11

Bias -0.0619 0.8058 -0.0804 -0.0404 -0.0321 -0.0616 0.6275 -0.0619 -0.0555

Notes: All computations are based on 1000 Monte Carlo Simulations using the linear approximation to the X-11 filter (denoted Lin) and the SAS Proc X11
procedure (denoted X-11). The bias is defined as in eq. (2.9). The large sample configuration is based on 996 data points while the small sample reflects 120
observations. Details of the simulation design appear in Section 3.1.



Table A.6: Monte Carlo Simulation Distributions of X-11 Program Outlier Intervention Frequencies

Percentiles Min 5% 10% 25% 50% 75% 90% 95% More Mean

White Noise

Large Sample 2.61 4.12 4.32 4.72 5.12 5.52 5.92 6.13 7.73 5.12

Small Sample 0.00 2.50 2.50 3.34 5.00 6.67 7.50 10.00 13.34 5.11

IGARCH  α = .1 and  β = .9

Large Sample 0.00 0.00 0.00 0.00 2.21 4.22 6.22 7.33 13.15 2.63

Small Sample 0.00 0.00 0.00 0.00 0.00 6.67 15.83 20.00 43.33 4.32

Seasonal IGARCH  α = .1 and  β = .2

Large Sample 0.00 2.21 3.01 4.72 6.73 8.73 10.64 11.85 19.78 6.83

Small Sample 0.00 0.83 1.67 5.00 8.33 10.83 14.17 15.83 27.50 8.04

Notes: Entries to this table are Monte Carlo simulation distributions of percentage of the sample observations (large is 996 observations and small is 190) affected
by the X-11 program outlier selection procedure.



34

Table A.7: Data Sources and Descriptions

Series Description

Industrial A monthly index of the output of manufacturing,
Production mining, and electric and gas utilities.  Source: Federal

Reserve Board, Statistical Release G.17.  Available on
the Internet at http://www.stls.frb.org.

Money Supply M1, monetary aggregate.  Source: Federal Reserve
Board, Statistical Release H.6.  Available on the
Internet at http://www.stls.frb.org.

Nominal Interest rate on 3-month Treasury bills.  Source:
Interest Rates Federal Reserve Board, Statistical Release H15. 

Available on the Internet at http://www.stls.frb.org.

Unemployment Civilian labor force unemployment rate.  Source:
Rate Bureau of Labor Statistics.  Available on the Internet at

http://stats.bls.gov.

CPI Consumer price index, all urban consumers.  Source:
Bureau of Labor Statistics.  Available on the Internet at
http://stats.bls.gov.

PPI-Crude Crude materials for further processing.  Source:
Material Bureau of Labor Statistics.  Available on the Internet at

http:///stats.bls.gov.

PPI-Finished Goods ready for sale to final demand.  Source: Bureau
Goods of Labor Statistics.  Available on the Internet at

http://stats.bls.gov.

Real Interest Three-month treasury bill yield less CPI inflation.
Rate

Real Earnings Earnings deflated by the CPI.  I use the average hourly
earnings series from the Bureau of Labor Statistics,
available on the Internet at http://stats.bls.gov.
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Table A.8: Autocorrelations of Squared Residuals Empirical Data

Adjusted Monetary Base

Lags SA NSA - Seas. Diff. NSA - Seas. Dum.

1 0.071 0.330 0.214

2 -0.016 0.155 0.198

3 0.109 0.048 0.032

4 -0.010 0.069 0.098

5 0.063 0.082 0.084

6 0.095 0.092 0.100

7 0.038 0.087 0.052

8 0.027 0.100 0.124

9 0.159 0.180 0.112

10 0.038 0.104 0.186

11 0.023 0.259 0.192

12 0.036 0.262 0.398

13 0.054 0.127 0.199

14 0.006 0.123 0.079

22 0.084 0.100 0.087

23 0.078 0.090 0.138

24 0.081 0.126 0.131

25 -0.021 0.138 0.225

26 -0.002 0.150 0.169
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Table A.8 (cont’d)

M1 Money Stock

Lags SA NSA - Seas. Diff. NSA - Seas. Dum.
1 0.155 0.259 0.241

2 0.184 0.052 0.025

3 0.051 0.044 0.059

4 0.169 0.091 0.070

5 0.177 0.043 0.108

6 0.127 0.020 0.117

7 0.052 0.029 0.097

8 0.250 0.060 0.183

9 0.175 0.108 0.047

10 0.069 0.042 0.046

11 0.148 0.135 0.149

12 0.087 0.223 0.323

13 0.160 0.111 0.106

14 0.071 0.005 0.084

22 0.155 0.087 0.181

23 0.032 0.128 0.088

24 -0.002 0.176 0.008

25 -0.016 0.062 0.043

26 0.013 0.004 0.005
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Table A.8 (cont’d)

CPI all items

Lags SA NSA - Seas. Diff. NSA - Seas. Dum.
1 0.398 0.275 0.173

2 0.188 0.145 0.348

3 0.126 0.145 0.237

4 0.109 0.081 0.173

5 0.164 0.198 0.239

6 0.274 0.258 0.352

7 0.210 0.145 0.169

8 0.116 0.216 0.385

9 0.094 0.191 0.383

10 0.093 0.094 0.125

11 0.098 0.161 0.158

12 0.083 0.155 0.229

13 0.104 0.164 0.217

14 0.072 0.175 0.441

22 0.126 0.104 0.188

23 0.087 0.149 0.091

24 0.055 0.043 0.392

25 0.050 0.081 0.103

26 0.061 0.106 0.104
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Table A.8 (cont’d)

CPI all items less energy

Lags SA NSA - Seas. Diff. NSA - Seas. Dum.
1 0.165 0.062 0.057

2 0.012 0.011 0.019

3 0.018 -0.017 0.091

4 0.002 -0.003 0.068

5 0.166 0.189 0.116

6 0.069 0.039 0.038

7 0.096 0.034 0.014

8 0.048 0.048 0.025

9 0.013 0.050 0.092

10 0.033 0.014 0.056

11 0.018 0.001 0.069

12 0.168 0.066 0.248

13 0.084 0.041 0.143

14 0.030 0.025 0.105

22 0.581 -0.012 -0.001

23 0.102 0.063 0.094

24 0.042 0.139 0.165

25 0.019 -0.015 -0.023

26 -0.013 -0.003 0.045
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Table A.8 (cont’d)

CPI all items less food and energy

Lags SA NSA - Seas. Diff. NSA - Seas. Dum.
1 0.040 0.052 0.009

2 0.165 0.093 0.062

3 0.168 0.072 0.120

4 0.075 0.053 0.089

5 0.076 0.073 0.020

6 0.100 0.091 0.087

7 0.089 0.034 0.005

8 0.081 0.144 0.024

9 0.041 0.042 0.075

10 0.062 0.094 0.075

11 0.072 0.020 0.025

12 0.160 0.149 0.415

13 0.044 0.009 -0.024

14 0.068 0.069 0.136

22 0.040 0.004 0.071

23 0.026 0.002 0.059

24 -0.016 -0.005 0.071

25 0.018 -0.028 -0.023

26 0.075 0.035 0.071
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Table A.9: GARCH(1,1) Parameter Estimates

Series - Sample

Monetary Base SA 59:08-95:12 .002 (.03) .34 (1.39)

Monetary Base seas. Diff -.01 (.02) .77 (.35)@

M1 SA 59:01-95:12 .24 (.06) .68 (.07)* *

M1 seas. Diff .09 (.03) .90 (.03)* *

CPI 46:01-95:12 .14 (.019) .83 (.022)* *

CPI seas. Diff .13 (.82) .82 (.04)* *

CPI ex energy SA 57:01-95:12 .10 (.02) .90 (.02)* *

CPI ex energy seas. Diff .10 (.02) .91 (.02)* *

CPI ex food & energy SA .14 (.04) .86 (.04)* *

CPI ex food & energy seas. Diff .30 (.05) .73 (.03)* *

Notes:  significant at the 1%, @ at the 5%, + at the 10% level.  *

Seas. Diff means the seasonal difference operator was applied.
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