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Résumé / Abstract

Nous analysons les mécanismes optimaux d’échange dans un
contexte où chaque participant possède quelques unités d’un bien à être échangé
et pourrait être soit un acheteur, soit un vendeur, dépendant de la réalisation des
valorisations qui sont de l’information privée des participants. D’abord, le
concept de valeur virtuelle est généralisé aux agents qui ne sont pas ex ante
identifiés comme acheteur ou vendeur; contrairement au cas où les agents sont
bien identifiés, les valeurs virtuelles des agents dépendent maintenant du
mécanisme d’échange et ne sont généralement pas monotones même si la
distribution des valorisations est régulière. Nous montrons que les mécanismes
optimaux d’échange, qui maximisent l’espérance de profit ou de gains d’échange
d’un intermédiaire, sont complètement caractérisés par ces valeurs virtuelles. Le
phénomène de discrimination incomplète (bunching), qui est ici spécifique aux
agents non identifiés ex ante, va être une caractéristique générale dans les
mécanismes optimaux. Nous montrons aussi que la règle de répartition aléatoire
par laquelle les égalités sont brisées est maintenant un instrument important dans
le design de ces mécanismes.

We analyze optimal trading mechanisms in environments where each
trader owns some units of a good to be traded and may be either a seller or a
buyer, depending on the realization of privately observed valuations. First, the
concept of virtual valuation is extended to ex ante unidentified traders; contrary
to the case with identified traders, the traders’ virtual valuations now depend
on the trading mechanism and are generally not monotonic even if the
distribution of valuations is regular. We show that the trading mechanisms that
maximize a broker’s expected profit or expected total gains from trade are
completely characterized by some modified monotonic virtual valuations. Here,
the bunching phenomena, which is specific to ex ante unidentified traders, will
be a general feature in these mechanisms. We also show that the randomization
rule by which ties are broken is now an important instrument in the design of
the optimal mechanisms.



Mots Clés : Design de mécanisme, échange efficace, intermédiation,
discrimination incomplète, information asymétrique

Keywords : Mechanism design, efficient trading, intermediation, bunching,
asymmetric information

JEL : D44, D82



1 Introduction

In this paper, we consider the trading problem for a market composed
of traders who own some units of an indivisible good and have private
information about their own valuations. In this context, a trader holding
some units of the good (but less than his satiated demand level) may be
either a seller or a buyer, depending on the realization of the privately
observed information; however, his role in exchange cannot be identi�ed
prior to trade. The standard double auction is then a special case of our
model in which all traders possess one or zero units of the good and have
unit-demand, so each trader is well identi�ed as a seller or a buyer prior
to trade.

We characterize the pro�t-maximizing trading mechanism and the
ex ante e�cient trading mechanism by solving the general optimal trad-
ing mechanism that maximizes a weighted sum of the expected total
gains from trade and the expected pro�t for the mechanism designer.
First, the concept of virtual valuation (Myerson 1981 and 1984) will be
extended to ex ante unidenti�ed traders; contrary to the case with identi-
�ed traders, the traders' virtual valuations now depend on the allocation
rules. Additionally, the monotonicity of a trader's virtual valuation fails
in any incentive-compatible trading mechanism even if the distribution
of valuations is regular. We show that the optimal trading mechanisms
are completely characterized by some modi�ed monotonic virtual valu-
ations: the goods will be assigned to the traders whose modi�ed virtual
valuations are highest and ties will be broken by randomizing. Also, the
participation constraint may be binding at points other than the highest
and/or lowest types, and the bunching phenomenon will be a general
feature and is speci�cally associated with ex ante unidenti�ed traders
in these optimal mechanisms. In constructing optimal trading mecha-
nisms, we show that the randomization rule by which ties are broken is
an important instrument in the design of these mechanisms. As an illus-
tration, using the technique developed in this paper, we solve explicitly
the optimal mechanisms for three-trader cases.

The rest of the paper is organized as follows. In section 2, we �rst
de�ne the formal structure of the multilateral trading problem. We
then present a general characterization of all incentive compatible and
individually rational mechanisms. In section 3, we show how to construct
a pro�t-maximizing mechanism through an algorithm. In section 4, we
extend the result of section 3 to a general class of maximization problems
and show that the ex ante e�cient mechanism is a special case of this
class. In section 5, we solve explicitly for the optimal mechanism for the
three-trader example.
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2 A Trading Problem with Ex Ante Uniden-

ti�ed Traders

We consider the trading problem for a market composed of n traders
indexed by i 2 N = f1; 2; � � � ; ng. Each trader i owns ki units of an indi-
visible good to be traded and has private information about a preference
parameter vi which is drawn independently from the same distribution
F with support [v; v] and positive continuous density f . Other traders
do not observe a trader's type v but know that it is drawn from F .
Throughout, we shall assume that the traders want to hold at most k0
units of the good and are risk neutral. Since the traders have k0-unit
demand, we assume that ki � k0 for all i 2 N ; that is, no trader is
initially endowed with more than what he wants to hold.

A trader of type v has preferences represented by the utility function

ui(q; t; v) = vmin(q; k0 � ki)� t

where q � �ki is the number of units acquired by the trader and t is total
spending on these units. The utility is normalized in order to measure
the bene�t from net trade and we have ui(0; 0; v) = 0 for all v. Note
that v is the trader's reservation price for each unit of the k0 �rst units
of the good.1 In this context, ex post e�ciency requires that all units
of good are assigned to the traders with the highest valuations. Denote
the total number of units by K =

Pn

i=1 ki and let K = n0k0 + r with
n0; r positive integers and 0 � r < k0. Formally, the ex post e�cient
allocation can be de�ned as2

qi(vi; v�i) =

8<
:

k0 � ki; if vi is among the n0 highest values

r � ki; if vi is the (n0 + 1)th highest value
�ki; otherwise

(1)

We consider the direct revelation mechanisms in which traders simul-

1An alternative assumption is that each trader has a vector of valuations vi =

(v1
i
; v2

i
; � � � ; vk0

i
), where v

j

i
represents the trader's valuation of his jth unit of the

good. If these valuations are not perfectly correlated, it involves a problem of mul-

tidimensional uncertainty which appears to be much more complicated. (see Rochet

1985, and La�ont, Maskin, and Rochet 1987) For simplicity, we restrict ourselves to

the one-dimensional case.
2Notice that since ties occcur with zero probability, they will not a�ect the ex-

pected quantities and so will be ignored in what follows. In general, the private

information about valuations and asymmetric initial endowments may lead to some

ine�ciency in trade; that is, a procedure that can implement the ex post e�cient

allocation while satisfying individual rationality and budget balance may not always

exist. (see Cramton et al. 1987, and Lu 1996)
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taneously report their valuations3 v = (v1; v2; � � � ; vn) and then receive
an allocation q(v) = (q1(v); � � � ; qn(v)) and t(v) = (t1(v); � � � ; tn(v)),
where qi is the net trade for trader i and ti is the net money trans-
fer from trader i. We assume that each trader is endowed with enough
money that any required transfer is feasible. Also, we require that these
allocations balance:

Pn

i=1 qi(v) = 0 for all v 2 [v; �v]n. Since all traders
want to hold at most k0 units, we can assume that �ki � qi � k0 � ki
for all i 2 N . The pair of outcome functions fq; tg is referred to as a
direct trading mechanism.

Denote �i = Nnfig and let E�i[ � ] be the expectation operator with
respect to v�i. Then we can de�ne the expected net trade and payment
for trader i when he announces vi as his type

Qi(vi) = E�i[qi(vi; v�i)]

and
Ti(vi) = E�i[ti(vi; v�i)]

so the trader's expected payo�, when everyone truthfully reports, is given
by

Ui(vi) = E�i[ui(qi(vi; v�i); ti(vi; v�i); vi)] = viQi(vi)� Ti(vi)

The trading mechanism fq; tg is incentive compatible if each type
of each trader wants to report his private information truthfully when
others report truthfully

Ui(vi) � viQi(v̂i)� Ti(v̂i); 8i 2 N 8vi; v̂i 2 [v; v] (2)

As is well known from the Revelation Principle, any Bayesian equilib-
rium outcome of any conceivable mechanism can be obtained as the
equilibrium outcome of a direct incentive compatible mechanism. Thus,
when we look for trading mechanisms, there is no loss of generality in
restricting our attention to direct incentive compatible mechanisms. The
mechanism fq; tg is interim individually rational if all types of all traders
are better o� participating in the mechanism (in terms of their expected
payo�) than holding their initial endowments

Ui(vi) � 0; 8i 2 N; 8vi 2 [v; v] (3)

The mechanism fq; tg is feasible if it is incentive compatible and individ-
ually rational. The following lemma develops a necessary and su�cient
condition for a mechanism to be feasible.

3We assume that the initial endowments (k1; k2; : : : ; kn) are common knowledge,

but it is not essential. If the total number of units of the good K is known, we can ask

the traders to report their number of units and then forbid trade if the total number

reported does not equal K, and implement the mechanism if the reports agree with

K.
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Lemma 1. A trading mechanism fq; tg is feasible if and only if for every

i 2 N , Qi(vi) is non-decreasing and

Ui(vi) = Ui(v
�
i ) +

Z vi

v�
i

Qi(u) du; 8vi 2 [v; v] (4)

Ui(v
�
i ) � 0; 8i 2 N (5)

where

v�i 2 V �
i (qi) = fvijQi(u) � 0;8u < vi;Qi(w) � 0;8w > vig (6)

Proof: See Appendix
Given a feasible mechanism fq; tg, since Qi(vi) is non-decreasing,

V �
i (qi) is well-de�ned and equation (4) implies that expected net utility
Ui(vi) is continuous and convex in vi. Also, from (6), Ui(vi) is minimized
at v�i 2 V �

i (qi) , which will be called the worst-o� type of the trader.
Hence, (5) is equivalent to the individual rationality (3). If V �

i (qi) is
not a singleton, it is easy to check that V �

i (qi) is a closed interval and
all worst-o� types in V �

i (qi) satisfy Qi(v
�
i ) = 0. That is, the worst-o�

types expect to have net trade zero or receive a quantity equal to their
initial endowment. Intuitively, a worst-o� type expects on average to be
neither a buyer nor a seller of the good, and therefore he has no incentive
to overstate or understate his valuation. Hence, he does not need to be
compensated in order to induce him to report his valuation truthfully,
which is why he is the worst-o� type of trader. In general, it is no longer
clear who is selling and who is buying prior to revelation of types; but
on average, trader i is a buyer if his type vi > maxV �

i (qi) and a seller if
his type vi < minV �

i (qi).
Let us de�ne, for all v 2 [v; v]

�(v) = v �
1� F (v)

f(v)
and �(v) = v +

F (v)

f(v)

�(�) and �(�) are referred to as the virtual valuation of \buyer-type" and
\seller-type" respectively. For any v�i 2 [v; v], let

�(vijv
�
i ) =

�
�(vi); vi < v�i
�(vi); vi > v�i

(7)

�(vijv
�
i ) is referred to as the v�i -virtual valuation.

4 Given a feasible
trading mechanism fq; tg, if v�i is a worst-o� type of trader i, �(vijv�i )

4There is no importance of the value of �(vijv
�

i
) at v�

i
since the probability of

vi = v�
i
is zero.
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will be called the trader's virtual valuation of this mechanism. Now,
the trader's virtual valuation �(vijv�i ) is of \buyer-type" (\seller-type")
if and only if his worst-o� type is v�i = v (v�i = v). Typically, a trader
may have virtual valuations of both \buyer-type" and \seller-type". For
example, when his valuation is greater than v�i , he is considered as a
buyer since he will receive on average more than his initial endowment;
when vi < v�i , his virtual valuation is calculated as a seller's since he will
receive on average less than his initial endowment. Moreover, �(v) >
�(v), the trader's virtual valuation is discontinuous at v�i , where the
trader is expected to change his behavior. Lemma 1 leads to the following
characterization of expected revenue from trade of the mechanism.

Lemma 2. For any function q = (q1; � � � ; qn) such that Qi(vi) is non-

decreasing in vi for all i 2 N , there exists a payment function t such that

fq; tg is incentive compatible and individually rational. The maximum

expected revenue from any feasible trading mechanism implementing q

is given by5

R(q) =

nX
i=1

E[�(vijv
�
i )qi(v)] =

nX
i=1

E[�(vijv
�
i )Qi(vi)] (8)

where v�i 2 V �
i (qi) is a worst-o� type of trader i for which the individual

rationality is binding, i.e., Ui(v
�
i ) = 0.

Proof : See Appendix
Note that when V �

i (qi) is an interval, since the expected net trade
Qi(vi) is zero on this interval, the expected revenue (8) does not depend
on the choice of v�i 2 V �

i (qi). A direct implication of Lemma 2 is revenue
equivalence: the expected revenue from a feasible trading mechanism is
completely determined by the allocation functions q = (q1; � � � ; qn) and
the utility levels of the worst-o� type Ui(v

�
i ) for all i 2 N . A feasible

trading mechanism can be extremely complicated, Lemma 2 helps sim-
plify, however, the problem of mechanism design by establishing that
if q is such that Qi(�) is non-decreasing for all i, then there exists cor-
responding payment function t(�) such that fq(v); t(v)g is an incentive
compatible mechanism in which truth-telling is an equilibrium. Thus,
the design of incentive compatible and individually rational mechanisms
boil down to �nding suitable allocation functions q(�).

5As a corollary, there exists a trading mechanism that can implement the ex post

e�cient allocation (1) while satisfying individual rationality and budget balance if

and only if the ex post e�cient allocation satis�es
P

n

i=1
E[�(vijv�i )qi(v)] � 0.
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3 Pro�t-maximizing Mechanism

We �rst consider the case where the traders are intermediated by a broker
who can be a net source or sink of money, but cannot himself own the
objects. In markets in which exchange requires costly search for trading
partners, an intermediary can help to reduce the trading frictions. An
interesting question is to ask for the mechanism which maximizes the
expected pro�t to the broker, subject to incentive compatibility and
individual rationality for traders. That is, if the traders can only trade
through the broker, then what is the optimal mechanism for the broker
? From Lemmas 1 and 2, the problem can be written as

Pm

8<
:

max R(q) =
Pn

i=1E[�(vijv
�
i )qi(v)]

s.t. �ki � qi � k0 � ki for all i and
Pn

i=1 qi = 0
Qi(vi) is non-decreasing in vi and v�i 2 V �

i (qi)

In Pm, the virtual valuations �(vijv
�
i ) now depend on the traders'

worst-o� types, so generally they will depend on the quantity schedules
q. Thus, the main di�culty of the problem is that we must consistently
determine the traders' worst-o� types at which the individual rationality
is binding as well as the allocation rules and, at the same time, maxi-
mize the expected pro�t to the broker. Fortunately, we can show that
the solution to Pm can be characterized by some non-decreasing function
modi�ed from �(vijv�i ) with some appropriate value v�i . Here, the bunch-
ing phenomena will be a general feature in the optimal mechanism even
if the distribution of valuations is regular. To simplify matters, we will
assume that �(�) and �(�) are continuous and strictly increasing on [v; �v]
(the monotone hazard rate assumption) and concentrate our attention
on the more interesting type of bunching that is speci�c to intermediate
traders.6 We can now state and prove the main result of this paper.

Theorem 1. (i) There exists a unique x� = (x�1; � � � ; x
�
n) 2 [v; v]n for

which there will exist at least one allocation q� = (q�1 ; � � � ; q
�
n) which

satis�es

(A) q�(v) solves�
max

Pn

i=1 E[�i(vijx
�
i )qi(v)]

s.t. �ki � qi � k0 � ki for all i and
Pn

i=1 qi = 0

where

�i(vijx
�
i ) =

�
�(vijx

�
i ); if vi =2 [x�i ; y

�
i ]

�(x�i ); if vi 2 [x�i ; y
�
i ]

6See, e.g., Myerson (1981), for details in the case where the distribution of valua-

tions is not regular.
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with y�i such that �(y�i ) = �(x�i ) or y
�
i = v whenever �(v) � �(x�i ); and

(B) 8i, Q�
i (vi) = E�i[q

�
i (vi; v�i)] = 0 for vi 2 [x�i ; y

�
i ].

(ii) An allocation q� = (q�1 ; � � � ; q
�
n) is a solution to Pm if and only if

it satis�es (A) and (B) for this vector x�.
Proof: (i) We �rst show that there exists a pair x� and q� which

satisfy (A) and (B). To prove existence we proceed by submitting an
algorithm to construct the solution.

Given some vector x�, the allocation q�(v) solves (A) if and only if

q�i (vi; v�ijx
�) =

8<
:

k0 � ki; if �i(vijx�i ) > l(vjx�)
randomizing; if �i(vijx�i ) = l(vjx�)
�ki; otherwise

(9)

where l(vjx�) for any v is such that the number, M1, of traders with
parameter values vi for which �i(vijx�i ) � l(vjx�) is at least n0 + 1,
and the number, M2, for which �i(vijx�i ) > l(vjx�) is at most n0. The
randomization rule by which ties are broken is here irrelevant. We can
reindex participants so that k1 � k2 � � � � � kn. Since �i(ujx�i ) �
�j(ujx

�
j ) for all u when x�i > x�j , from (9), we are clearly looking for a

vector x� such that x�1 � x�2 � � � � � x�n.
For now, consider the solution to (A) ~q(vjx�) (given some x�) where

ties are always broken in favor of those with the highest index. LeteQi(x
�
i ) = E�i[~q(x

�
i ; v�ijx

�)] be the expected net trade for the participant

indexed i when vi = x�i under this alloaction rule. eQi(x
�
i ) is well-de�ned

and continuous and strictly increasing.7

Lemma 3. For a given vector x�, there will exist a q� satisfying Con-

ditions (A) and (B), if and only if we have: eQi(x
�
i ) = 0 whenever

7Since x�
1
� x�

2
� � � � � x�

n
, we have

eQi(x
�

i
) = (k0 � ki)Probfthere are less than n0 other traders who have either

valuation greater than y�
i
and index lower than i or

valuation greater than x�
i
and index higher than ig

+ (r � ki)Probfthere are exactly n0 other traders who have either

valuation greater than y�
i
and index lower than i or

valuation greater than x�
i
and index higher than ig

� kiProbfthere are at least n0 + 1 other traders who have either

valuation greater than y�
i
and index lower than i or

valuation greater than x�
i
and index higher than ig

where y�
i
is de�ned as in (A) of Theorem 1. Obviously y�

i
is continuous and non-

decreasing in x�
i
, hence eQi(x

�

i
) is continuous and strictly increasing.

7



x�i�1 < x�i < x�i+1; and whenever x�i�1 < x�i = x�i+1 = � � � = x�j < x�j+1

we have: 8i � j,
Pm

l=i
eQl(x

�
l ) � 0 for all m < j and

Pj

l=i
eQl(x

�
l ) = 0.

Proof: (a) Necessity: Note that the �i's increase up to some x�i , then
is constant between x�i and y

�
i and increases afterward. A positive proba-

bility of a tie between two traders i and j is possible if and only if x�i = x�j .
If so, �i(vjx�i ) = �j(vjx�j ) = �(x�i ) for a positive mass of values v. Hence,
when x�i�1 < x�i < x�i+1, the probability of a tie between i and any other
participant when vi = x�i is zero. So for all solutions q� to (A), we must

have Q�
i (xi) =

eQi(x
�
i ). Ties will occur only if for a subset of participants,

S = fi; i+ 1; � � � ; jg, we have x�i�1 < x�i = x�i+1 = � � � = x�j < x�j+1. In

such a case, we have eQi(x
�
i ) � Q�

i (x
�
i ) for all admissible solutions q� to

(A) because i always loses ties against participants of higher indexes in

the solution leading to eQi. Similarly,
Pm

l=i
eQl(x

�
l ) �

Pm

l=iQ
�
l (x

�
l ) for

all m < j. Further, since the expected net trade for a group of par-
ticipants is independent of how ties are randomly broken between them
and the probability of a tie between any two traders l 2 S and h =2 S

when vl = x�l is zero, we must have
Pj

l=i
eQl(x

�
l ) =

Pj

l=iQ
�
l (x

�
l ) for all

solutions q� to (A).
From the above argument, there will be a q� satisfying (A) and (B)

for a given x�, only if for all i � j,
Pm

l=i
eQl(x

�
l ) � 0 for all m < j andPj

l=i
eQl(x

�
l ) = 0 when x�i�1 < x�i = x�i+1 = � � � = x�j < x�j+1.

(b) Su�ciency is more involved. If x�i�1 < x�i < x�i+1, then q
�
i (vjx

�
i ) is

uniquely speci�ed by the rule. But if we have x�i�1 < x�i = x�i+1 = � � � =
x�j < x�j+1, we must specify a (random) tie breaking rule for participants
in the subset S = fi; : : : ; jg. We need to increase the probability that
the low index participants are awarded units in case of a tie to garantee
that the expected net trades are equal for all participants in S. One can
implement any randomization rule, by randomly assigning a hierarchy
rank to each participant in the subset S. Participants assigned to a
higher hierarchy rank win in case of a tie with participants of lower
index. The random assignment process is constructed in such a way
that participants in subset S have the same expected net trade, that is
0. For all m, we must have:

P
l2S �

l
m(
eQl(x

�
l ) + kl) = km, where �

l
m is

the probability that participant m is assigned rank l in the hierarchy. To
achieve this, one can construct a sequence of at most (j � i) one-by-one
random permutations from the initial index to a �nal hierarchy. Details
are left to the reader.8 2

8Let m1 be the lowest index such that net trade is strictly negative and m2 be the

lowest index with strict positive net trade. We must have m1 < m2, otherwise we

would have
P

m2

l=i
eQl(x

�

l
) > 0. Then we assign some probability that participant m1

8



In order to complete the proof of Theorem 1(i), we need to prove
the existence and uniqueness of the vector x� satisfying the condition of
Lemma 3. Existence can be established by construction. We �rst look
for the (unique) vector ~x = (~x1; ~x2; � � � ; ~xn) such that98>>>>>>><

>>>>>>>:

eQ1(~x1) = 0eQ1(min(~x1; ~x2)) + eQ2(~x2) = 0
: : :Pl

i=1
eQi(min(~xi; � � � ; ~xl)) = 0

: : :Pn

i=1
eQi(min(~xi; � � � ; ~xn)) = 0

then we set x�i = min(~xi; � � � ; ~xn). One can verify that the vector x� as
constructed above satis�es the conditions in Lemma 3.

Uniqueness follows from the strict monotonicity of eQi's. Suppose
that x� and z� satisfy the system of equations in Lemma 3 and x�i < z�i
for some i. Let i1 � i � i2 and i3 � i � i4 such that x�i1�1 < x�i1 = � � � =
x�i = � � � = x�i2 < x�i2+1 and z�i3�1 < z�i3 = � � � = z�i = � � � = z�i4 < z�i4+1,
then we have

0 �

i2X
l=i3

eQl(x
�
l ) <

i2X
l=i3

eQl(z
�
l ) � 0

which is a contradiction.
(ii) Su�ciency: Assume that x� and q� satisfy (A) and (B), then we

can show that q� must be a solution to Pm.
Since q� solves (A), then q�i (vi; v�i) is obviously non-decreasing in vi,

and similarly for Q�
i (vi). For all feasible allocation q̂ = (q̂1; � � � ; q̂n) we

have
nX
i=1

E[�i(vijx
�
i )Q

�
i (vi)] �

nX
i=1

E[�i(vijx
�
i )
bQi(vi)] (10)

is given index m2 and vice versa. The probability is chosen such that the expected

net trade of either m1 or m2 becomes zero. We then recalculate the new expected

net trade given this reassignment probability and proceed with the new m1 and m2.

In each round, we bring the net expected trade of at least one participant to zero, so

after a �nite number of rounds, the net expected trade of all in S will be zero.
9We �rst �nd ~x1 such that eQ1(~x1) = 0. Since eQ1(v) = �k1 < 0 and eQ1(v) =

k0 � k1 > 0, strict monotonicity and continuity of eQ1(�) implies the existence of a

unique solution ~x1. Given ~x1, we next �nd ~x2 such that eQ1(min(~x1; ~x2))+eQ2(~x2) = 0.

Again, we have eQ1(v) + eQ2(v) < 0 and eQ1(~x1) + eQ2(v) > 0, hence there exists a

unique ~x2 which solves the above problem. We then proceed recursively to �nd all ~xl.

Note that for all l,
P

l

i=1
eQi(�) is continuous, strictly increasing and

P
l

i=1
eQi(v) < 0

and eQl(v) > 0.
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But note that for all v�i 2 [x�i ; y
�
i ], we have

nX
i=1

E[�i(vijx
�
i )Q

�
i (vi)] =

nX
i=1

E[�(vijv
�
i )Q

�
i (vi)] (11)

this follows immediately from the fact that by construction, we have
�i(vijx�i ) = �(vijv�i ) for vi =2 [x�i ; y

�
i ] and Q�

i (vi) = 0 for vi 2 [x�i ; y
�
i ].

If bQi(vi) is non-decreasing, then V �
i (q̂i) is well-de�ned. For any v̂i 2

V �
i (q̂i), we have

nX
i=1

E[�i(vijx
�
i )
bQi(vi)] =

nX
i=1

E[�(vijv̂i) bQi(vi)]

+

nX
i=1

E[(�i(vijx
�
i )� �(vijv̂i)) bQi(vi)]

�
nX
i=1

E[�(vijv̂i) bQi(vi)] (12)

the inequality follows from the facts that �i(vijx�i ) � �(vijv̂i) � 0 andbQi(vi) � 0 when vi < v̂i, and �i(vijx�i ) � �(vijv̂i) � 0 and bQi(vi) � 0
when vi > v̂i. Using (10) and (11), (12) implies

nX
i=1

E[�(vijv
�
i )Q

�
i (vi)] �

nX
i=1

E[�(vijv̂i) bQi(vi)] (13)

for all feasible q̂ with non-decreasing bQi's. Hence q
� solves Pm.

Necessity: Now suppose that some alternative solution q̂ to Pm exists.
Clearly, (10) cannot hold with strict inequality: if so, (13) will hold with
strictly inequality contradicting the assumption that q̂ solves Pm. q̂ must
also solve the program in (A). Now suppose that q̂ does not satisfy (B),

i.e., for at least one i there is an open set (u;w) � [x�i ; y
�
i ] such that

for all vi 2 (u;w), bQi(vi) 6= 0. If so, for some v̂i 2 V �
i (q̂i), there will

exist a positive probability of values vi such that �i(vijx
�
i ) > �(vijv̂i) (or

< �(vijv̂i)) and bQi(vi) < 0 (or bQi(vi) > 0). Hence

E[(�i(vijx
�
i )� �(vijv̂i)) bQi(vi)] > 0

The inequality in (12) is strict, so must be the inequality in (13), which
contradicts the assumption that q̂ is a solution to Pm. Therefore, q̂ must
satisfy (B). 2

From Theorem 1, in the optimal allocation, the objects should always
be assigned to the traders with the highest modi�ed virtual valuations

10



�i(vijx�i ). But, since �i(vijx�i ) is constant on [x�i ; y
�
i ], ties may occur

with positive probability and should be broken by randomizing. The
randomization rule by which ties are broken may now a�ect the traders'
expected quantities and hence becomes an important instrument in the
design of the optimal trading mechanism. Intuitively, the optimal allo-
cation is designed in such a way that higher types are expected to be
buyers and lower types are expected to be sellers, yielding the most gains
from trade. By construction, we have v < x�i < v when 0 < ki < k0,
that is, the individual rationality constraint for an intermediate trader is
necessarily binding between the highest and lowest types. Also, we have
x�i � x�j when ki � kj , but we may also have x�i = x�j when ki < kj .
That is, two traders with di�erent initial endowments may have the same
types at which the individual rationality is binding and they expect to
be neither a buyer nor a seller. In general, j does not always win ties
against i in the optimal allocation, so if x�j is separated from x�i (just
above x�i ), the chance of winning of xj will be increased by a positive
probability. This implies that x�i and x

�
j can be separated only if kj � ki

is large enough.
Theorem 1 proves a characterization of the optimal trading mech-

anism. In the following theorem, we provide some basic comparative
results.

Theorem 2. The expected revenue from the optimal trading mecha-

nism is (i) non-decreasing when the initial endowments are more sym-

metric and (ii) strictly increasing with k0.

Proof: (i) Let q� be the optimal allocation with initial endowments
ki and kj . Now suppose that we reallocate the initial endowment so that
i receives kai = aki+(1�a)kj and j has k

a
j = (1�a)ki+akj , 0 < a � 1

2
.

We �rst claim that the allocation, where qal = q�l for all l 6= i; j and
qai = aq�i +(1�a)q�j and q

a
j = (1�a)q�i +aq

�
j , is feasible. Indeed, for any v,Pn

i=1 q
a
i (v) =

Pn

i=1 q
�
i (v) = 0; �ki � q�i � k0�ki and�kj � q�j � k0�kj

imply �(aki + (1� a)kj) � aq�i + (1� a)q�j � k0 � aki � (1� a)kj .
Second, we show that qa generates at least as much return as q�. We

have

E[�(vijv
�

i
)Q�

i
(vi)] + E[�(vj jv

�

j
)Q�

j
(vj )]

� E[(a�(vijv
a

i
) + (1� a)�(vi jv

a

j
))Q�

i
(vi)] + E[((1� a)�(vj jv

a

i
) + a�(vj jv

a

j
))Q�

j
(vj)]

= E[�(vijv
a

i
)(aQ�

i
(vi) + (1� a)Q�

j
(vi))] +E[�(vj jv

a

j
)(aQ�

j
(vj ) + (1 � a)Q�

i
(vj))]

= E[�(vijv
a

i
)Qa

i
(vi)] +E[�(vj jv

a

j
)Qa

j
(vj )]

The �rst inequality follows from the fact that (�(vijv
a
i )��(vijv

�
i ))Q

�
i (vi) �

0 for all vai . (A similar result applies for j). Note that that the inequality
is strict if the range over which Q�

i (vi) = 0 and the range over which

11



Q�
j (vj) = 0 do not coincide. In this case, there will exist values vi such

that a�(vijvai ) + (1� a)�(vijvaj ) > �(vijv�i ) and Q�
i (vi) > 0.

(ii) To show that expected revenue must strictly increase in k0, notice
that the optimal allocation q� given some initial k00 is feasible with a
higher k000 > k00. Furthermore, q� is not optimal since q� cannot satisfy
condition (A) of Theorem 1. There must exist a q̂ which generates higher
return. 2

Intuitively, when the initial endowments are more unevenly distributed
amongst the participants, then everyone with more (less) good would
more likely expect to be a seller (buyer) and want to overstate (under-
state) his valuation. Such behavior, which is the essence of bargaining,
may increase the \bribe" one must o�er them to induce truthful revela-
tion of private information. Hence, there will be less expected revenue
from the trading mechanism. On the other hand, the optimal allocation
requires that all goods go to the traders with the highest valuations.
When the traders have a higher level of demand, then the number of
traders to whom the goods are assigned is smaller. Hence, less incen-
tives are required to induce truthful revelation of the smaller number of
traders with the highest valuations; additionally, the gains from trade are
higher. Thus, the expected revenue from the optimal trading mechanism
is increasing with k0.

4 Ex ante e�cient mechanisms

We can also extend the result of section 3 by introducing a general
objective function that is a weighted sum of the expected total gains
from trade and the expected revenue for the mechanism designer, i.e.,
for any � 2 [0; 1]

W�(q) = (1� �)E

"
nX
i=1

viqi(v)

#
+ �R(q)

We seek a mechanism that maximizes the above objective function sub-
ject to the incentive compatibility and individual rationality for traders.
Using some algebra, W�(q) can be rewritten as

W�(q) = E

"
nX
i=1

�(vijv
�
i ; �)qi(v)

#

where for any v�i 2 V �
i (qi) and � 2 [0; 1],

�(vijv
�
i ; �) =

(
�(vi; �) = vi + �

F (vi)�1
f(vi)

; vi > v�i

�(vi; �) = vi + �
F (vi)

f(vi)
; vi < v�i

12



From Lemmas 1 and 2, the maximization problem can be written as

P�

8<
:

max W�(q) = E[
Pn

i=1 �(vijv
�
i ; �)qi(v)]

s.t. �ki � qi � k0 � ki for all i and
Pn

i=1 qi = 0
Qi(vi) is non-decreasing in vi and v�i 2 V �

i (qi)

Notice that if �(vi) and �(vi) are strictly increasing, it is straightforward
to verify that for any �, �(vi; �) and �(vi; �) are also strictly increasing
in vi, so the virtual valuation �(vijv

�
i ; �) is increasing over [v; v�i ) and

(v�i ; v], but there is a \buyer-seller" spread of virtual valuation at v�i .
Also, the trader's virtual valuations are distorted downward (upward)
to be below (above) his true reservation values when he expects to be a
buyer (seller).

P� has exactly the same structure as Pm, so to solve P�, as in Theo-
rem 1 we should �rst modify the virtual valuations by de�ning a mono-
tonic function

�i(vijx
�
i ; �) =

�
�(vijx�i ; �); if vi =2 [x�i ; y

�
i ]

�(x�i ; �); if vi 2 [x�i ; y
�
i ]

with y�i such that �(y�i ; �) = �(x�i ; �) or y�i = v whenever �(v; �) �
�(x�i ; �). Also, let

q�i (vi; v�ijx
�; �) =

8<
:

k0 � ki; if �i(vijx�i ; �) > l(vjx�; �)
randomizing; if �i(vijx�i ; �) = l(vjx�; �)
�ki; otherwise

(14)

where l(vjx�; �) is similar to l(vjx�) in de�nition (9). The following the-
orem characterizes the optimal mechanism for P�, and can be obtained
as a direct generalization of Theorem 1.

Theorem 3. (i) There exists a unique x� = (x�1; � � � ; x
�
n) 2 [v; v]n for

which there will exist at least one randomization rule such that the

allocation (14) satis�es Q�
i (vijx

�; �) = E�i[q
�
i (vi; v�ijx

�; �)] = 0 for all

vi 2 [x�i ; y
�
i ]. (ii) An allocation q� = (q�1 ; � � � ; q

�
n) is a solution to P� if

and only if it satis�es (14) and Q�
i (vijx

�; �) = 0 for all vi 2 [x�i ; y
�
i ].

Theorem 3 can be useful to characterize the most e�cient trading
mechanism subject to the constraint that traders are not subsidized. In
some economic environments, (e.g., double auctions,) ex post e�ciency
cannot be achieved by any individually rational mechanism, unless some
outsider is willing to provide a subsidy to the traders for participating
in the trading mechanism. Since there is no reason to subsidize a pri-
vate goods market, ex post e�ciency is unattainable. Therefore, it is
natural to seek a mechanism that maximizes expected total gains from
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trade, subject to the incentive compatibility and individual rational-
ity constraints, as well as the market-maker's budget constraint. (This
maximization is equivalent to maximizing the sum of the traders' ex
ante expected utilities because each trader's utility function is separable
in money and his valuation.) That is, we are looking for the ex ante

e�cient mechanism10 which solves

Ps

8<
:

max E[
Pn

i=1 viqi(v) ]
s.t. �ki � qi � k0 � ki and

Pn

i=1 qi = 0
fq; tg is feasible and E[

Pn

i=1 ti(v)] � 0

This problem can be rewritten as

Ps

8>><
>>:

max E[
Pn

i=1 viqi(v) ]
s.t. �ki � qi � k0 � ki and

Pn

i=1 qi = 0
Qi(vi) is non-decreasing in vi and E[

Pn

i=1 �(vijv
�
i )qi(v)] � 0;

where v�i 2 V �
i (qi)

We can show that Ps is a special case of P� for some �. In fact, if
the ex post e�cient allocation is a solution to problem Ps, then it is also
a solution to P� for � = 0. Otherwise, we need to set � = �

1+�
where �

corresponds to the Lagrangian multiplier associated with the no-subsidy
constraint for the market-maker. Since the ex post e�cient allocation is
not a solution to problem Ps, any allocation that satis�es the no-subsidy
constraint with equality and solves P� must be a solution to Ps. Thus,
any solution q to P� for some � such that

E

"
nX
i=1

�(vijv
�
i )qi(v)

#
= 0 (15)

must be a solution to Ps.

5 Three-trader Cases

We consider the case where there are 3 traders and everyone possesses
ki units of the good with k1 + k2 + k3 = K and wants to hold at most
K units. We normalize K = 1, so each ki corresponds to i's share of
total units. We assume that traders' valuations are drawn from a uniform
distribution F on [0; 1]. We are looking for the pro�t-maximizing trading
mechanism.

10See, e.g., Holmstr�om and Myerson 1983. Here we focus just on the ex ante

e�cient mechanism that places equal welfare weights on every trader and maximizes

the sum of all traders' expected gains from trade.
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Under the uniform distribution on [0; 1], we have �(v) = 2v � 1 and
�(v) = 2v. Also, �(y�i ) = �(x�i ) implies y�i = x�i +

1
2
if x�i �

1
2
, and let

y�i = 1 if x�i >
1
2
. Hence, for any v�i 2 [0; 1]

�(vijv
�
i ) =

�
2vi; vi < v�i
2vi � 1; vi > v�i

and 8x�i 2 [0; 1]

�(vijx
�
i ) =

8<
:

2vi; 8vi < x�i
2x�i ; 8x�i � vi � y�i
2vi � 1; 8vi > y�i

To solve the pro�t-maximizing mechanism, we need to determine
the vector x� according to the algorithm constructed in the proof of
Theorem 1. Without loss of generality, let k1 � k2 � k3, then we must
have x�1 � x�2 � x�3. We �rst consider the allocation rule ~q which always
breaks ties in favor of the participant with the highest index. We have8><

>:
eQ1(x

�
1) = (x�1)

2 � k1eQ2(x
�
2) = x�2(x

�
2 +

1
2
)� k2eQ3(x

�
3) = (x�3 +

1
2
)2 � k3

So we are looking for the (unique) vector ~x = (~x1; ~x2; ~x3) which solves

8>><
>>:

eQ1(~x1) = ~x21 � k1 = 0eQ1(min(~x1; ~x2)) + eQ2(~x2) = min(0; ~x22 � k1) + ~x2(~x2 +
1
2
)� k2 = 0eQ1(min(~x1; ~x2; ~x3)) + eQ2(min(~x2; ~x3)) + eQ3(~x3) =

min(0; ~x22 � k1; ~x
2
3 � k1) + min(0; ~x3(~x3 +

1
2
)� k2) + (~x3 +

1
2
)2 � k3 = 0

Next, we let x�1 = min(~x1; ~x2; ~x3), x
�
2 = min(~x2; ~x3) and x�3 = ~x3,

Depending on the respective values on k1, k2 and k3, there are four
di�erent possibilities: (i) x�1 < x�2 < x�3, (ii) x

�
1 = x�2 < x�3, (iii) x

�
1 <

x�2 = x�3, and (iv) x�1 = x�2 = x�3. Figure 1 illustrates the di�erent set of
values for k1, k2 and k3 for which these di�erent cases occur.

In area (i), which is determined by k2 > k1 + 1
2

p
k1 and k3 >�

1
4
+
q

1
16

+ k2

�2
, we have

x�1 =
p
k1 < x�2 =

r
1

16
+ k2 �

1

4
< x�3 =

p
k3 �

1

2
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In area (ii), which is determined by k1 � k2 � k1 +
1
2

p
k1 and k3 >�

3
8
+
q

1
64

+ k1+k2
2

�2

, we have

x�1 = x�2 =

r
1

64
+
k1 + k2

2
�

1

8
< x�3 =

p
k3 �

1

2

In area (iii), which is determined by k1 �
3�

p
5

8
and k1 +

1
2

p
k1 <

k2 � k3 �
�
1
4
+
q

1
16

+ k2

�2
, we have

x�1 =
p
k1 < x�2 = x�3 =

r
1

64
+
k2 + k3

2
�

3

8
<

1

2

In area (iv), which corresponds to all cases other than (i), (ii) and
(iii), we have

x�1 = x�2 = x�3 =

p
5� 1

4
(
1

4
< x�i <

1

2
)

In cases (ii), (iii) and (iv), there will be a positive probability of ties.
In case (iii), for instance, there is a 1

4
probability that both 2 and 3

declare valuations between x�2 and y
�
2 = x�2 +

1
2
. In case of a tie between

2 and 3, let p denote the probability that the tie is broken in favor of 2.
If p = 0, then Q2(x

�
2) =

eQ2(x
�
2) � 0 � eQ3(x

�
3) = Q3(x

�
3); if p = 1, we

have Q3(x
�
1) =

eQ2(x
�
2) + k2 � k3 � 0 � eQ3(x

�
3) + k3 � k2 = Q2(x

�
2). So

there exists a value for p such that Q2(x
�
2) = Q�

3(x
�
3) = 0. In particular,

let k1 = 0, k2 = 1
3
and k3 = 2

3
. In this case, we have x�1 = 0 and

x�2 = x�3 =
p
33�1
8

. (Note that the worst-o� types of participants 2 and

3 are the same although k3 = 2k2.) It is easy to �nd that p = 7�
p
33

12
.

We see that the randomization rule is used here as an instrument in the
design of an optimal allocation. Following a similar argument, we can
�nd a randomization in case of a tie in cases (ii) and (iv).
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Appendix
Proof of Lemma 1. If the trading mechanism fq; tg is incentive com-

patible, i.e., for any two valuations vi; v
�
i 2 [v; v],

Ui(vi) = viQi(vi)� Ti(vi) � viQi(v
�
i )� Ti(v

�
i )

and
Ui(v

�
i ) = v�iQi(v

�
i )� Ti(v

�
i ) � v�iQi(vi)� Ti(vi)

These two inequalities imply that

(vi � v�i )Qi(vi) � Ui(vi)� Ui(v
�
i ) � (vi � v�i )Qi(v

�
i )

Thus, if vi > v�i , we must have Qi(vi) � Qi(v
�
i ), so Qi(vi) is non-

decreasing. Furthermore, the above inequalities also imply that Ui(vi) is
absolutely continuous, thus di�erentiable almost everywhere with deriva-
tive dUi

dvi
(vi) = Qi(vi); or in the more convenient integral form

Ui(vi) = Ui(v
�
i ) +

Z vi

v�
i

Qi(u) du (16)

Also, if v�i 2 V �
i (qi), by de�nition of V �

i (qi), we have Ui(vi) � Ui(v
�
i ) =R vi

v�
i

Qi(u) du � 0; that is, the expected net utility Ui(vi) is minimized at

v�i , hence fq; tg is individually rational if and only if Ui(v
�
i ) � 0.

Suppose now that Qi(vi) is non-decreasing and Ui(vi) satis�es (16)
for some v�i 2 V �

i (qi), then for any vi and v̂i,

Ui(vi)� Ui(v̂i) =

Z vi

v̂i

Qi(u) du

� (vi � v̂i)Qi(v̂i)

where the inequality follows from the fact that Qi(u) is non-decreasing

in u. This inequality can be rewritten as

Ui(vi) � Ui(v̂i) + (vi � v̂i)Qi(v̂i) = viQi(v̂i)� Ti(v̂i)

Thus, fq; tg is incentive compatible. In the above, we have already shown
that when Ui(v

�
i ) � 0, an incentive compatible mechanism is also indi-

vidually rational. 2
Proof of Lemma 2. From Lemma 1, if fq; tg is a feasible trading

mechanism, the expected revenue of the mechanism equals

R = E

"
nX
i=1

ti(v)

#
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= E

"
nX
i=1

(viQi(vi)� Ui(vi))

#

= E

"
nX
i=1

(viQi(vi)�

Z vi

v�
i

Qi(u) du)

#
�

nX
i=1

Ui(v
�
i )

Integrating the second term on the right by parts, we obtain

R =

nX
i=1

E[�(vijv
�
i )Qi(vi)]�

nX
i=1

Ui(v
�
i )

For any function q(v) such that qi(vi; v�i) is non-decreasing in vi,
from the above and individual rationality constraints, the maximum ex-
pected revenue from any feasible mechanisms implementing q(v) cannot
be greater than

R(q) =

nX
i=1

E[�(vijv
�
i )Qi(vi)]

To complete the proof, we must construct a payment function t(v) so
that fq; tg is a feasible trading mechanism leading R(q). There are many
such functions which could be used; we will consider a function de�ned
as follows:

ti(v) = E�i

"
viqi(vi; v�i)�

Z vi

v�
i

qi(u; v�i) du

#
� kiv

�
i

Note that the payment by trader i depends only on his own valuation
vi. From Lemma 1, the mechanism fq; tg is incentive compatible and
individually rational, and the expected revenue from this mechanism
equals R(q). Thus, our proof of Lemma 2 is complete. 2
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