
Série Scientifique

Scientific Series

Montréal

Juillet 1996

96s-19

Kernel Autocorrelogram for

Time Deformed Processes

Eric Ghysels, Christian Gouriéroux,

Joanna Jasiak



Ce document est publié dans l�intention de rendre accessibles les résultats préliminaires de la

recherche effectuée au CIRANO, afin de susciter des échanges et des suggestions. Les idées et les

opinions émises sont sous l�unique responsabilité des auteurs, et ne représentent pas nécessairement

les positions du CIRANO ou de ses partenaires.

This paper presents preliminary research carried out at CIRANO and aims to encourage

discussion and comment. The observations and viewpoints expressed are the sole responsibility

of the authors. They do not necessarily represent positions of CIRANO or its partners.

CIRANO

Le CIRANO est une corporation privée à but non lucratif constituée en vertu de la Loi des

compagnies du Québec. Le financement de son infrastructure et de ses activités de recherche

provient des cotisations de ses organisations-membres, d�une subvention d�infrastructure du

ministère de l�Industrie, du Commerce, de la Science et de la Technologie, de même que des

subventions et mandats obtenus par ses équipes de recherche. La Série Scientifique est la

réalisation d�une des missions que s�est données le CIRANO, soit de développer l�analyse

scientifique des organisations et des comportements stratégiques.

CIRANO is a private non-profit organization incorporated under the Québec Companies Act.

Its infrastructure and research activities are funded through fees paid by member

organizations, an infrastructure grant from the Ministère de l�Industrie, du Commerce, de la

Science et de la Technologie, and grants and research mandates obtained by its research

teams. The Scientific Series fulfils one of the missions of CIRANO: to develop the scientific

analysis of organizations and strategic behaviour.

Les organisations-partenaires / The Partner Organizations

�École des Hautes Études Commerciales.

�École Polytechnique.

�McGill University.

�Université de Montréal.

�Université du Québec à Montréal.

�Université Laval.

�MEQ.

�MICST.

�Avenor.

�Banque Nationale du Canada

�Bell Québec.

�Fédération des caisses populaires de Montréal et de l�Ouest-du-Québec.

�Hydro-Québec.

�La Caisse de dépôt et de placement du Québec.

�Raymond, Chabot, Martin, Paré

�Société d�électrolyse et de chimie Alcan Ltée.

�Téléglobe Canada.

�Ville de Montréal.

ISSN 1198-8177



Corespondence Address: Eric Ghysels, CIRANO, 2020, University Street, 25th floor, Montréal, Qc,*

Canada H3A 2A5 Tel: (514) 985-4025 Fax: (514) 985-4039 e-mail: ghyselse@cirano.umontreal.ca

The first author would like to acknowledge the financial support of CREST as well as SSHRC of Canada

and the Fonds F.C.A.R. of Québec.

Université de Montréal, C.R.D.E. and CIRANO�

CREST and CEPREMAP�

York University+

Kernel Autocorrelogram for Time

Deformed Processes*

Eric Ghysels , Christian Gouriéroux , Joanna Jasiak� � +

Résumé / Abstract

L�objectif de cet article est de proposer une procédure d�estimation des

autocorrélations pour les processus échantillonnés à des intervalles inégaux,

modélisés comme processus subordonnés en temps continu. Ces processus, que l�on

appelle aussi processus avec déformation du temps, ont été proposés dans plusieurs

contextes. Avant d�élaborer sur la possibilité de modélisation des séries temporelles

de ce type, on s�intéresse tout d�abord au diagnostic et à l�analyse des statistiques

descriptives. Dans le domaine des processus en temps continu, cette difficile tâche

peut être accomplie en ayant recours à la méthode d�estimation de l�autocorrélation

par noyau. Cet article présente le cadre conceptuel, la procédure d�estimation et ses

propriétés asymptotiques. Pour illustrer, un exemple empirique est aussi inclus.

The purpose of the paper is to propose an autocorrelogram

estimation procedure for irregularly spaced data which are modelled as

subordinated continuous time series processes. Such processes, also called time

deformed stochastic processes, have been discussed in a variety of contexts.

Before entertaining the possibility of modelling such time series one is interested

in examining simple diagnostics and data summaries. With continuous time

processes this is a challenging task which can be accomplished via kernel

estimation. This paper develops the conceptual framework, the estimation

procedure and its asymptotic properties. An illustrative empirical example is also

provided.

Mots Clés : Processus subordonnés, Observations manquantes, Processus en

temps continu, Méthodes non paramétriques

Keywords : Subordinated Processes, Irregularly Spaced Data, Continuous Time

Processes, Nonparametric Methods
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1 Introduction

While the bulk of time series are recorded at regularly spaced intervals
there are many cases where observations are irregularly spaced. Some-
times data are irregularly spaced because some observations are miss-
ing, in other cases it is the data generating mechanism which results
in observations sampled at unequally spaced time intervals. We will be
concerned with the latter class of models. Examples can be found in neu-
rophysiological data (see e.g. Brillinger (1984)), observations collected
from clinical experiments (see e.g. Jones (1984)), in physics (see Jones
and Tryon (1983)) and economics, particularly applications involving
�nancial markets data (see e.g. Clark (1973)).

We will focus on situations where a subordinated process framework
is adopted. This framework is particularly attractive when the rate at
which observations arrive is driven by some other process which is either
latent or observable. This situation is often encountered with intra-daily
�nancial markets applications where trading volume is a directing pro-
cess for asset price movements. Indeed, the concept of subordinated
stochastic processes, originated by Bochner (1960), was used by Man-
delbrot and Taylor (1967) and later re�ned by Clark (1973) to explain
the behavior of speculative prices. They argued that since the number of
transactions in any particular period is random, one may think of asset
price movements as the realization of a process Yt = Y �

Zt
where Zt is a

directing process. This positive nondecreasing stochastic process Zt can
for instance be thought as related to either the number of transactions
or to the cumulated trading volume, or to the cumulated volatility, or
more fundamentally to the arrival of information.

Many applications of interest involve continuous time processes sam-
pled at discrete dates, hence Y � : z 2 IR+ ! Y �z 2 IR and the directing
process Z : t 2 IN ! Zt 2 IR+. Typically they also involve very large
data sets. For �nancial markets applications it can be thousands of data
points for a single trading day. Before entertaining the possibility of
modelling such series we want to compute autocorrelograms and other
diagnostics. The large data sets make the case of nonparametric methods
feasible; the context of continuous time processes with partial observabil-
ity make nonparametric methods necessary. The purpose of our paper
is to introduce kernel autocorrelogram estimation for irregularly spaced
data modelled as discretely sampled continuous time subordinated pro-
cesses with observable directing processes. Hence, we explore the auto-
correlation properties of a process in continuous time which is driven
by an observable Zt. Section 2 presents a brief review of subordinated
processes and their properties. Section 3 discusses the autocorrelogram
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estimation, while section 4 concludes with an application.

2 Properties of Subordinated Processes

In this section we will present certain properties of subordinated pro-
cesses. De�nitions and notations are �xed in section 2.1. We �rst con-
sider in section 2.2 second order properties of the processes, namely:
second order stationarity and the relation between the autocovariance
functions of Y and Y �. Next we study in section 2.3 some distributional
properties such as strong stationarity and examine when a subordinated
process is Markovian. We conclude with the example of a time deformed
Ornstein-Uhlenbeck process in section 2.4.

2.1 De�nitions and notations

We will make a distinction between calendar time denoted by t, and
intrinsic time, the latter sometimes also called operational time, and
denoted by z. We introduce the following notations:

i) the time changing process, called the directing process by Clark
(1973), associates the operational scale with the calendar time. It is a
positive strictly increasing process:

Z : t 2 IN �! Zt 2 IR+; (1)

ii) the process of interest evolving in the operational time is denoted
by:

Y � : z 2 IR+ �! Y �
z 2 IR; (2)

iii) �nally we may deduce the process in calendar time t 2 IN by
considering:

Yt = Y � � Zt = Y �
Zt
: (3)

The introduction of a time scaling process is only interesting if the
probabilistic properties of the process of interest become simpler in in-
trinsic time. It explains the introduction of the assumption below which
ensures that all the links between the two processes (Yt) and (Zt) in
calendar time result from the time deformation.
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Assumption A.2.1: The two processes Z and Y �are independent.

This assumption can be relaxed under certain circumstances, but it
requires parametric model speci�cations which go far beyond the scope of
autocorrelogram analysis considered here (see for instance Stock (1988),
Ghysels and Jasiak (1994) for further discussion).

2.2 Second order properties

As usual for time series analysis we will �rst study the second order
properties of the processes Y and Y �. Assuming that both processes are
second order integrable, we consider the �rst order moments:�

m (t) = E (Yt) ; defined on IN;

m� (z) = E (Y �z ) ; defined on IR+;
(4)

and the autocovariance functions:

8<:

 (t; h) = E [(Yt �EYt) (Yt+h �EYt+h)] ; t 2 IN; h 2 IN;


� (z0; z) = E
��
Y �z0 �E

�
Y �
z0

�� �
Y �
z+z0

�E
�
Y �
z+z0

���
; z0 2 IR+; z 2 IR+:

(5)

From the de�nition of a time deformed process and by using the
independence assumption between the two processes Z and Y �, we can
establish the following result (stated without proof):

Property 2.2.1: Under Assumption A.2.1:

m (t) = E [m� (Zt)] ;

Cov (Yt; Zt+h) = Cov (m� (Zt) ; Zt+h) ;


 (t; h) = E [
� (Zt; Zt+h � Zt)] + Cov [m� (Zt) ;m
� (Zt+h)] :

It is possible now to discuss some su�cient conditions for the second
order stationarity of the process Y . These conditions are moment condi-

tions on the underlying process Y �, and distributional conditions on the
directing process Z.
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Property 2.2.2: Under the independence Assumption A.2.1., the Y
process in calendar time is second order stationary if the following as-

sumptions are satis�ed:

Assumption A.2.2: Y � is second order stationary:

m� (z) = m�; 8z; 
� (z0; z) = 
� (z) ; 8z0; z:

Assumption A.2.3: The directing process has strongly stationary in-

crements: the distribution of �hZt = Zt+h � Zt is independent of

t; 8h; t:

This property can also be shown straightforwardly. A consequence
of Property 2.2.2 is that we can have second order stationarity of the
processes Y and Y � simultaneously. In such a case we get:
m (t) = m�; 
 (t; h) = E [
� (�hZt)] ; Cov(Yt; Zt+h) = 0; 8h; and in
particular Y and Y � have the same marginal mean and variance, and
we observe no correlation between the series Y and Z, while Y is a
(stochastic) function of Z.

2.3 Strong stationarity and Markov properties

While it is natural to consider �rst the second order properties, it is
obviously also of interest to study distributional properties of the two
processes Y and Y �, like strong stationarity or Markov properties. In
this section we present only the main results; the proofs are given in
Appendix 1.

For identi�cation purpose we introduce the following normalization
of calendar and intrinsic time clocks (see also Stock (1988)):

Assumption A.2.4: For t = 0, the intrinsic time is set at zero, i.e.
Z0 = 0.

Property 2.3.1 Let us assume Assumptions A.2.1 and A.2.4 hold.

Then the process in calendar time is strongly stationary under the two

following conditions:

Assumption A.2.5: Y � is strongly stationary.
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Assumption A.2.6: The directing process has strongly stationary mul-

tivariate increments, i.e. the distribution of (�t1Zt; : : : ;�tnZt)is inde-

pendent of t for any t; t1; : : : ; tn.

Proof: see Appendix 1.

To examine the Markov properties of subordinated processes in cal-
endar time we consider processes whose �nite dimensional distributions
have a pdf with respect to some dominating measures, chosen for con-
venience as the Lebesgue measure. Then assuming that Y � and Z are
each Markov processes of order one, the conditional pdf of Ytn and Ztn
is given by:
f [Ytn = yn; Ztn = znjYtn�1 = yn�1; Ztn�1 = zn�1; :::; Yt1 = y1; Zt1 = z1] =
f [Y �

zn
= yn; Ztn = znjY �

zn�1
= yn�1; Ztn�1 = zn�1; :::; Y

�

z1
= y1; Zt1 = z1] =

f [Y �

zn
= ynjY �

zn�1
= yn�1; :::; Y

�

z1
= y1]f [Ztn = znjZtn�1 = zn�1; :::; Zt1 = z1];

where the latter follows from Assumption A.2.1. Then using the Marko-
vian properties we obtain:

f [Y �zn = ynjY �zn�1 = yn�1]f [Ztn = znjZtn�1 = zn�1]:

Therefore the conditional distribution depends on the past values
through the most recent ones Ytn�1 ; Ztn�1 : Hence, we showed that:

Property 2.3.2: Under Assumption A.2.1, if Y � and Z are Markov

processes of order one, then the joint process (Y; Z) is also a Markov

process of order one.

It is well known that, while the joint process (Y; Z) is Markovian, it
does not necessarily imply that the marginal process Y is also Markovian
of order one. However, this property is satis�ed under the following
additional conditions.

Property 2.3.3: Let the conditions of Property 2.3.2 hold. The process

Y is a Markov process of order one under the additional assumptions:

Assumption A.2.7: The conditional distribution of Y �z+z0 given Y �z0 =
y0 only depends on (z; z0) through z.

Assumption A.2.8: The directing process has independent increments.
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Proof: see Appendix 1.

Assumption A.2.7 means that the conditional pdf:

f
�
Y �
zn

= yn

���Y �
zn�1

= yn�1

�
= f�n (yn; yn�1; zn � zn�1), i.e. depends on

zn and zn�1 through the di�erence zn � zn�1.
A byproduct of the proof is an expression of the transition kernel for

the process Y , namely:

f(Ytn = ynjYtn�1 = yn�1) = Ef�n(yn; yn�1;Ztn � Ztn�1);

and as usual we can easily check in this case that:
f [Ytn = ynjYtn�1 = yn�1] = f [Ytn = ynjYtn�1 = yn�1; Ztn�1 = zn�1];
i.e. that (Zt) does not Granger cause (Yt) as discussed for instance in
Florens and Mouchart (1985).

2.4 Time deformed Ornstein-Uhlenbeck processes

The Ornstein-Uhlenbeck process is of course the simplest example of a
stationary continuous time process satisfying a di�usion equation. It
will therefore be ideal for illustrating the properties we discussed in the
previous sections. Moreover, it is worth noting that this type of process
appears in continuous time �nance applications particularly in stochastic
volatility models. Ghysels and Jasiak (1994) for instance used a subor-
dinated Ornstein-Uhlenbeck process to analyze a stochastic volatility
model with a time deformed evolution of the volatility process. We will
�rst examine the autocovariance structure of a subordinated Ornstein-
Uhlenbeck process and show how time deformation a�ects the time de-
pendence of the process. Typically, in intrinsic time these processes
are the analogues of AR(1) processes whereas in discrete calendar time
such processes have an ARMA representation with uncorrelated, though
nonlinearly dependent, innovations.

The process Y � is de�ned as the stationary solution of the stochastic
di�erential equation:

dY �
z = k (m� Y �

z ) dz + �dW �
z ; k > 0; � > 0; (6)

where W � is a standard Brownian motion indexed by IR+, independent
of the directing process. It is well known that Y � is a Markov process of
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order one, and that the conditional distribution of Y �z+z0 given Y �
z0

has
a Gaussian distribution, with conditional mean:

E
�
Y �z+z0 j Y

�
z0

�
= m+ �z

�
Y �
z0
�m

�
; (7)

and conditional variance:

V
�
Y �
z+z0

j Y �z0
�
= �2

1� �2z

1� �2
; (8)

where: � = exp�k. Using the independence Assumption A.2.1, we can
rewrite (8) in calendar time as:

Yt = m+ ��Zt (Yt�1 �m) +

�
�2

1� �2�Zt

1� �2

� 1
2

�t; (9)

where �t � I:I:N (0; 1) and are independent of Z; and where �Zt =
Zt � Zt�1. Moreover, we also have a similar relation for lag h:

Yt = m+ ��hZt(Yt�h �m) +

�
�2

1� �2�hZt

1� �2

�1=2

"h;t;

where "h;t � N(0; 1) and is independent of Z; and where �hZt = Zt �
Zt�h: The previous relation gives the conditional distribution of Yt given
Yt�h and the current and past values of the directing process. The
conditional distribution of Yt given Yt�h is deduced by integrating out
the directing process. To perform such an integration let us consider a
directing process with iid increments. The conditions of Properties 2.3.1
and 2.3.3 are satis�ed, so that the process in calendar time is strongly
stationary and Markov of order one. Its autocovariance function is given
by:


(h) = E
�(�hZt) = 
� (0) E
�
��hZt

�
= 
� (0)

�
E(��Zt)

�h
;

since (Zt) is with iid increments. Hence, the process in calendar time has
a weak AR(1) representation with an autoregressive coe�cient E(��Zt)
which is smaller than one. The conditional pdf is:

f(Yt = ytjYt�1 = yt�1) = Ef�(yt; yt�1;�Zt)
=
R
f�(yt; yt�1; �Zt = �z)g (�z) d(�z);

where g is the pdf of �Zt:
Since the heterogeneity introduced by the time deformation both

a�ects the conditional mean and conditional variance, we immediately

7



deduce that the conditional distribution of Yt given Yt�1 is not Gaus-
sian. Moreover, the value of, say the autoregressive coe�cient depends
on the distribution of �Zt. To illustrate this, let us consider increments
corresponding to a gamma process, i.e. (Zt) � 
 (�t; �) ; hence the incre-
ments �Zt are mutually independent with identical distribution 
 (�; �) :
It follows that:

r (�; �; �) = E
�
��Zt

�
=

1R
0

(� (�))
�1

exp (���) (��)��1
���d�

=
1R
0

(� (�))
�1

exp (� (�� log �)�) (��)
��1

�d� = (�= (�� log �))
�
:

It should be noted that 0 < �= (�� log �) < 1. Moreover, one can
examine how r (�; �; �) varies with respect to the parameters � and �,
and relates to �. Intuitively, since EZt = �=�, we expect that deformed
time on average accelerates or slows down relative to calendar time de-
pending on whether �=� is larger or smaller than one. In addition, since
r (�; �; �) = (1 + (log �= (�� log �)))

�
; we note that it is an increasing

function of �, given � and �, with r ! 0 as � ! 0 and r ! 1 as
� ! 1. As Figure 2.1 illustrates, we can consider a monotone and in-
creasing mapping from � to r. Hence, there is a unique �� (�; �) such
that r [�� (�; �) ; �; �] = �. If � < �� (�; �) ; then r < �; so that calen-
dar time autocorrelation is weaker than deformed time autocorrelations.
Moreover, it may be noted that �� (�; �) is an increasing function of �.
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3 Kernel correlogram estimation

The literature on kernel nonparametric estimation of time series models
is rather scant and focuses exclusively on equally spaced data gener-
ated by discrete time models (see e.g. Collomb (1981), Robinson (1983,
1988), Bierens (1983, 1987), Georgiev (1984), Altman (1990), Gy�or� et
al. (1990), H�ardle (1990), H�ardle and Vieu (1992), Gouri�eroux et al.
(1994) among others). In this section we propose a kernel-based estima-
tor of the intrinsic time autocorrelogram for continuous time processes
suspected to have a subordinated representation driven by an observ-
able Zt. A �rst subsection is devoted to the de�nition of the intrinsic
time autocorrelogram. A second subsection deals with its asymptotic
distribution. A �nal subsection deals with con�dence bounds.

3.1 Estimation of the intrinsic time correlogram

In section 2.2 we discussed the second order properties of subordinated
stochastic processes, and we examined the links between autocovariance
functions for Y and Y �. In this section we assume that observations of
Yt and Zt; t = 1; ::::; T are available and propose estimators for 
 (h) and

� (z) under the assumption that Property 2.2.2 holds. Let us �rst recall
that the empirical autocovariance function for a zero mean calendar time
process can be written as:


̂T (h) = 1
T

TP
t=1

YtYt+h=
1
T

TP
t=1

TP
�=1

YtY�1t��=h �

TP
t=1

TP
�=1

YtY�1t��=h

TP
t=1

TP
�=1

1t��=h

:

This formulation of the empirical autocovariance function would suggest
an estimator for 
� (z) by analogy. The di�culty is that the autoco-
variance function 
� is de�ned on the real line, whereas we only have a
�nite number of observations Zt, t = 1, ..., T , therefore a small number
of pairs (Zt; Z� ) such that Zt � Z� = z given (this number is generally
speaking equal to zero). This forces us to rely on smoothing through a
kernel namely:


̂�T (z) =

TP
t=1

TP
�=1

YtY�
1
hT
K
h
Zt�Z��z

hT

i
TP
t=1

TP
�=1

1
hT
K
h
Zt�Z��z

hT

i ; (10)
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where hT is a bandwidth, depending on the size of the sample, and
K is a kernel function. It is worth noting that, contrary to 
̂T (h),
the computation of 
̂�T (z) requires double sums, which may imply a
large number of terms in practice. This numerical drawback may be
circumvented by choosing a kernel with bounded support.

3.2 Asymptotic properties

Under certain regularity conditions the kernel autocorrelogram estimator
de�ned in (3.1) is consistent and has an asymptotic normal distribution.
We present this distribution and discuss the regularity conditions it takes
to obtain the result. The proofs appear in Appendix 3. We start with a
short subsection treating the regularity conditions.

3.2.1 Regularity conditions

Generally speaking, one must impose conditions on (1) the processes, (2)
the kernel function K(�) and (3) the bandwidth hT to ensure consistency
and asymptotic normality. The purpose of this section is to highlight
the conditions speci�cally related to the time deformation features of
the process, particularly focusing on those related to (1).

Typically one assumes in the standard context of equally spaced ob-
servations that time series processes are strictly stationary and satisfy
some mixing conditions. For instance, Robinson (1983) shows for a ker-
nel time series regression strong consistency and asymptotic normality
using �-mixing conditions (for de�nitions see e.g. McLeish (1974), White
(1984), Bierens (1994) among others). Uniform consistency was shown
by Bierens (1983) under slightly di�erent conditions, namely �-stability
in L2 with respect to a '-mixing base. For the relationships to other con-
cepts of stochastic stability, see Potscher and Prucha (1991) and Bierens
(1994).

Since the kernel autocorrelogram 
̂�T depends jointly on (Yt; Zt) or
equivalently on [(Y �

z ) ; (Zt)] ; it is clear that we need some regularity con-
ditions on the joint behavior of such processes. In particular, we expect
to need some mixing conditions for (Y �

z ), some independence between
[(Y �z ) ; (Zt)], and some assumptions implying that the directing process,
while stochastic, mimicks on average a deterministic time deformation.
Moreover, if we are also interested in the calendar time autocorrelogram

̂T , we also need some mixing condition for (Yt). Let us summarize some
of the regularity conditions which we have already encountered in section
2 and add some new ones.
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Assumption A.3.1: The processes Y � and Z are independent.

Assumption A.3.2: The time origins coincide, Z0 = 0.

Assumption A.3.3: Y � is strongly stationary, with zero mean.

Assumption A.3.4: (Yt; Zt) is ��mixing, with ��mixing coe�cients:

�j = sup
A�Ft

�1
;B�F+1

t+j

jP (A \ B)� P (A)P (B)j

such that : 9� > 2 :
1P
j=J

�j = O
�
J��

�
, as J !1.

Assumption A.3.5: The directing process has iid increments.

Assumption A.3.6: The directing process satis�es 0 <
+1P
k=1

fck(z) < +1,

8z; where fck (z) is the pdf of �kZt, and because of the iid increments:
+1P
k=1

fck (z) =
+1P
k=1

fk (z), where fk is the kth convoluate of the pdf of �Zt.

Consider lim
dz!0

1
dz

1P
t=1

P [Zt�(z; z + dz)] =
+1P
k=1

fck (z) ; which is the cov-

erage density function of z by the directing process. The last assumption
A.3.6 can easily be understood by noting that we may only expect con-
sistency and asymptotic normality for 
̂�T (z), for all the values z, with
equivalent rates, if such a coverage density exists. This condition is crit-
ical with regard to the tail behavior of the distribution f . For instance
if �Zt has a gamma distribution 
 (�;�), we get:

1X
k=1

fck (z) = �

1X
k=1

1

� (�k)
exp��z (�z)�k�1

< +1;

while if �Zt has a Cauchy distribution, we get:

1X
k=1

fck (z) =
1

�

1X
k=1

k

1 + k2z2
= +1 :

Under Assumption A.3.5, or more generally whenever �Zthas some
ergodic properties (see Appendix 2), mixing conditions on Y � are strongly
linked with mixing conditions on Y: To understand this link, we will con-
sider the case where 
� has an asymptotic geometric decline, namely:
9A > 0; 0 < � < 1 : j
� (z)j < A�z. Then we know that: 
 (h) =
E (
� (�hZt)) ; and:
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j
 (h)j � E j
� (�hZt)j

� A E
�
��hZt

�
= A

�
E��Zt

�h
;

and we deduce the geometric decline of 
 (h).

3.2.2 Consistency and asymptotic normality

It is possible to establish di�erent consistency results. We will focus on
a weak form of consistency, su�cient to ensure the use of the autocor-
relograms. Stronger forms of consistency could be derived, like uniform
a.s. consistency, but are beyond the scope of our paper. The following
theorem is proven in Appendix 3:

Theorem: The nonparametric kernel autocorrelogram estimator de�ned

in (3.1) is: (a) consistent: 
̂�T (z) converges in probability to 
�(z),
and (b) asymptotically normal with distribution:

p
ThT [
̂�T (z)� 
� (z)]

d! N

�
0; V ar

�
Y �

z0
Y �

z0+z

� �R
K2(�)d�

�
=

�
2
1P
k=1

fck(z)

��
;

where fck(z) is the pdf of �kZt, under the following regularity conditions:

(i) Assumptions A.2.1 through A.2.7 in section 2

(ii) Assumptions A.3.1 through A.3.6 in section 3.2.1

(iii) Technical conditions appearing in sections A.3.1 - A.3.3 of Ap-

pendix 3.

Proof: See Appendix 3.

It is interesting to note that:

V
�
Y �z0Yz+z0

�
= V

�
Y �z0E

�
Y �
z+z0

��Y �
z0

��
+E

�
Y �2
z0
V
�
Y �z+z0 jY �

z

��
;

and therefore the asymptotic precision of this estimator depends on the
conditional �rst and second order moments of Y �.

12



3.3 Con�dence bounds for the kernel autocorrelo-

gram

For the calendar time autocorrelogram it is standard to compute con-
�dence intervals for the autocorrelations associated with the di�erent
lags. The usual approach is to calculate bounds lag by lag, and estimate
them under the null hypothesis that the covariances are equal to zero
for the lags larger than the one of interest. A similar approach can be
followed for the intrinsic time autocorrelogram. The pointwise asymp-
totic result derived in the previous theorem is su�cient to derive the
theoretical point wise bounds, equal to:

�2� = � 2p
ThT

V ar
�
Y �zoY

�
zo+z

� 1
2
�R

K2 (�) dv
� 1
2

2
1P
k=1

fck (z)

For equally spaced calendar time autocorrelograms the con�dence
bounds only depend on the lag through the numerator. For irregularly
spaced data it also depends on the denominator through the coverage
density. Hence, con�dence bounds do not necessarily decrease mono-
tonely for large lags. To compute the con�dence bounds we need a con-
sistent estimator of �, under a suitable null hypothesis of no correlation,
which avoids an additional functional estimation of the density functions
appearing in the denominator and of the cross moment V ar

�
Y �zo ; Y

�
zo+z

�
.

It is worth recalling that in the usual context of equally spaced data
the autocorrelation coe�cient �̂T (h) can be recovered as the estimated
regression coe�cient âT in the following regression:

Yt = aYt�h + ut: (11)

Moreover under the null hypothesis H0;h = f� (h) = 0g = fa = 0g ; we
can obtain an estimate of the variance of âT using a White (1980)
correction. The White correction would be used for estimating the
appropriate variance of âT , realizing that V ar âT is proportional to

(
TP
t=1

Yt�h)�2
TP
t=1

TP
�=1

ûtû�Yt�hY��h, where the û
0
ts are the OLS residuals.

We proceed along the same lines in the case of continuous time sub-
ordinated processes. Namely, by analogy with the equally spaced case
covered in (3.2), we can consider the quantity:

13



�̂T (z) =

TP
t=1

TP
�=1

YtY�K
�
Zt�Z��z

hT

�
TP
t=1

TP
�=1

Y 2
� K

�
Zt�Z��z

hT

� :

Since asymptotically:

TP
t=1

TP
�=1

Y 2
� K

�
Zt�Z��z

hT

�
TP
t=1

TP
�=1

K
�
Zt�Z��z

hT

� ' EY 2
t = EY �2

z ;

we directly note that:

�̂T (z) �

̂T (z)


̂T (0)
:

Moreover this estimator �̂T (z) may be obtained as a Generalized Least
Squares (GLS) estimator based on the following arti�cial regression:

Yt = aY� + ut;� (z) � = 1; ::; :T; t = 1; : : : ; T;

where ut;z (z) are zero-mean, uncorrelated and have variance: V (ut;� (z))

=
h

1
hT
K
�
Zt�Z��z

hT

�i�1

. This arti�cial regression may also be written

under a matrix form as:

YT = aXT + uT (z);

where YT = (�T 
 (Y1; � � � ; YT ))0 ; XT = ((Y1; � � � ; YT ) 
 �T )
0 and Var

uT (z) =diag
�
K ((Zt � Z� � z) =hT )

�1
�
= 
T :

The GLS estimator of a coincides with �̂T (z). Its variance is given
by

V âT (z) = (X 0
T


�1
T XT )�1X 0

T

�1
T 
�
�1

T XT (X
0

T

�1
T XT )�1;

where 
� is the true variance-covariance matrix of the error term. It is
possible to avoid a direct estimation of this matrix 
� by using the White
correction based on the residuals ût (z) = Yt� âT (z)Y , and by replacing

� by the matrix 
̂�T whose element are ût;� (z) ût0;� 0 (z) : Therefore, a
consistent estimator of the variance of �̂T (z) is:
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V̂ �̂T (z) =

"
TX
t=1

TX
�=1

Y
2
� K

�
Zt � Z� � z

hT

�#�2
�

TX
t=1

TX
�=1

TX
t0=1

TX
� 0=1

Y�Y� 0 ût;� (z) ût0;� 0 (z)K
�
Zt � Z� � z

hT

�
K

�
Zt0 � Z� 0 � z

hT

�
Such an estimator is di�cult to implement, however, because of the large
number of terms appearing in the second sum. This di�culty may be
circumvented if we follow the standard approach for autocorrelograms
which consists of estimating the variance under the null hypothesis:

~Ho;z = f� (z0) = 0;8z0 � zg :

Indeed, under ~Ho;z, we may consider the simpli�ed estimator:

V̂o�̂T (z) =

"
TX
t=1

TX
�=1

Y
2
� K

�
Zt � Z� � z

hT

�#�2
�

TX
t=1

TX
�=1

TX
t0=1

TX
� 0=1

n
Y�Y� 0YtYt0K

�
Zt � Z� � z

hT

�
K

�
Zt0 � Z� 0 � z

hT

�
1jZt�Zt0 j<z

o
;

by using the fact that the constrained residual ût;� (z) is equivalent to
Yt and the absence of correlation between Yt and Yt0 when jZt � Zt0 j is
larger than z.

4 Empirical examples

We consider applications involving �nancial markets data. The exam-
ple involves daily return and trading volume data from the New York
Stock Exchange (NYSE). Hence, we use equally spaced data in calendar
time, where the cumulated volume series ful�lls the role of the directing
process.

The NYSE data covers the entire year 1992, a total of 232 trading
days of observations of the daily returns of the S&P500 index and the
daily volumes of trades on the NYSE. The data have been trended ad-
justed and non-trading day e�ects were also removed. The data transfor-
mations we undertook are standard and are described in Gallant, Rossi
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and Tauchen (1992). Figures 4.1 and 4.2 display plots of the return and
volume series. The mean and variance for the return series are 0.014 and
0.2692 and for the volume series 9.3192 and 0.0119. As will be discussed
in detail later we will use the daily average volume mV = 9.3192 to com-
pute the lags in the kernel autocorrelations. The kurtosis and skewness
for the returns are 0.0955 and -0.0087 while the volume series exhibit
more asymmetry (0.3018) and features thicker tails (1.0262).

The calculations involve two types of kernels. First, we consider a
Gaussian kernel with a bandwidth of 0.0184. The bandwidth selection
procedure was based on the Sheather and Jones (1991) method. It is
obtained as the solution to the �xed point equation:

h =

"
R (K) =nR

�
f̂ 00g(h)

��Z
uK (u) du

�2
#1=5

;

where R (a) =
R
au2du and g (h) denotes the pilot bandwidth. This

approach is known as \Solve the Equation" method (see e.g. Jones,
Marron and Sheather (1994)). We also considered a second type of
kernel, a straightforward one which greatly simpli�ed the calculations.
It amounts to computing:


̂T (z) =

TP
t=1

TP
�=1

YtY�1(jZt�Z��zj<hT )

TP
t=1

TP
�=1

1(jZt�Z��zj<hT )
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Table 4.1: Autocorrelations and Kernel Autocorrelations

Daily Returns NYSE with Trading Volume Directing Process

Sample Jan-Dec. 1992

Standard Kernel
Autocorrelations Autocorrelations

LAGS* Gaussian Bounded

0 1.00 1.00000000 1.00000000
.25 - .96109012 .98912166
.50 - .85545780 .04118434
.75 - .71047791 .02053376
1.00 -0.07 .55632985 -.05664217
1.25 - .41449688 -.00990475
1.50 - .29487185 -.02156523
1.75 - .19983379 .04182950
2.00 -0.03 .12864804 -.02136905
2.25 - .07835496 -.21960051
2.50 - .04311944 -.31013754
2.75 - .01566146 -.21134475
3.00 -0.04 -.00898645 -.19482959
4.00 -0.02 -.04963489 .16279907
5.00 -0.00 -.10870389 .22826619
6.00 -0.07 -.24866865 -.25052412
7.00 -0.01 -.37000344 .12951130
8.00 -0.08 -.50365109 -.55722679
9.00 -0.08 -.56670803 .36045349
10.00 0.00 -.92926302 -.51138681

Notes: The lags for the standard autocorrelations are based on daily
observations. For the kernel autocorrelations lag x corresponds to z =
xmV ; where mV is the average daily trading volume.
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Table 4.1 contains the autocorrelograms estimated from the data.
The �rst column displays the standard autocorrelation function com-
puted from the daily data. The next two columns show the autocorre-
lations for the returns subordinated to detrended trading volume series.
A calendar time lag x corresponds to z = xmV where mV is the aver-
age daily trading volume. Hence, in Table 4.1. we present the calendar
time and time deformed autocorrelations side-by-side for integer values
of x = 1; ::::; 10; i.e. up to ten trading days. The trading volume distri-
bution is not symmetric and has fat tails, as noted before and as shown
more explicitly in Figure 4.3.

The results in Table 4.1 show remarkable di�erences between the cal-
endar time and operational time autocorrelation functions. Indeed, the
standard ACF shows that returns show very little temporal autocorrela-
tion. The �rst order autocorrelation for instance is negative and small.
In contrast the �rst order correlation of the subordinated representation
is high regardless of the kernel being used. The insensitivity with regard
to the kernel choice does unfortunately not carry through for the other
lag speci�cations. With the Gaussian kernel we obtain a slowly declin-
ing ACF function. With the bounded support kernel it tapers o� quite
quickly but picks up again at a lag of 3mV .
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Appendix 1

Proofs of Strong Stationarity and Markov Property

A.1.1 Strong stationarity

For any integrable function g (Yt1 ; :::; Ytn), we get:

E g [Yt1 ; :::; Ytn ]

= E E (g (Yt1 ; :::; Ytn) jZt1 ; :::; Ztn )

= E E
�
g
�
Y �
Zt1

; :::; Y �Ztn

�
jZt1 ; :::; Ztn

�
= E

�
g
�
Y �
0 ; Y

�
Zt2�Zt1 ; :::; Y

�
Ztn�Zt1

�
jZt1 ; :::; Ztn

�
;

the latter follows from the independence between Y � and Z, and strong
stationarity of Y �. Furthermore, the above expression equals:

E
�
g
�
Y �
0 ; Y

�
Zt2�Zt1

; :::; Y �Ztn�Zt1

��
;

which, using Assumption A.6. yields:

E
�
g
�
Y �
0 ; Y

�
Zt2�t1

; :::; Y �
Ztn�t1

��
= E

�
g
�
Y0; Yt2�t1

; :::; Ytn�t1

��
:

Q.E.D.

A.1.2 Markov Property

Let us consider the conditional pdf:

f [Ytn = ynjYtn�1 = yn�1; : : : ; Yt1 = y1] =
f [Y �Ztn

=yn;Y
�

Ztn�1
=yn�1;:::;Y

�

Zt1
=y1]

f [Y �
Ztn�1

=yn�1;:::;Y
�

Zt1
=y1]

=
Ef [Y �Ztn

=yn;Y
�

Ztn�1
=yn�1;:::;Y

�

Zt1
=y1jZt1 ;:::;Ztn ]

Ef [Y �
Ztn�1

=yn�1;:::;Y
�

Zt1
=y1jZt1 ;:::;Ztn�1 ]
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= Eff [Y �Ztn = ynjY �Ztn�1 = yn�1; Zt1 ; : : : ; Ztn ]�
f [Y �Ztn�1

= yn�1; : : : ; Y
�
Zt1

= y1jZt1 ; : : : ; Ztn�1 ]g=
Ef [Y �Ztn�1

= yn�1; : : : ; Y
�
Zt1

= y1jZt1 ; : : : ; Ztn�1 ]g

=
Eff�n(yn;yn�1;Ztn�Ztn�1 )f [Y

�

Ztn�1
=yn�1;:::;Y

�

Zt1
=y1jZt1 ;:::;Ztn�1 ]g

Ef [Y �
Ztn�1

=yn�1;:::;Y
�

Zt1

=y1jZt1 ;:::;Ztn�1 ]

= Ef�n(yn; yn�1;Ztn � Ztn�1);

where the latter equalities follow from Assumptions A.2.7 and A.2.8
respectively.

Q.E.D.
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Appendix 2

Geometric declines of 
 and 
�

We discussed in subsection 3.2.1 that, when the increments are i.i.d.,
the geometric decline of 
� implies the geometric decline of 
. We will
verify in this appendix that this property holds under weaker assump-
tions. In particular, let us consider:

Assumption : The increments �Zt of the directing process satisfy:

i) (�Zt) is strongly stationary;

ii)
�
�
p
h
��1 hP

k=1

(�Zt+k � �)
d! N (0; 1) ;

where: � = E (�Zt), �
2 = � (0) + 2

1P
k=1

� (k) < 1; with � (k) =

cov (�Zt;�Zt+k) :

iii) There exists a positive constant c such that :

P

��
�
p
h
��1 hP

k=1

(�Zt+k � �) > c
p
h

�
� 1��

�
c
p
h
�
;

when h!1, where � is the c.d.f of the standard Normal distribu-

tion.

As in the proof of subsection 3.2.1, we know that:

j
 (h)j � E j
� (�hZt)j

� A E
�
��hZt

�
� A

�
E
�
��hZt1�hZt>h(�+c�)

�
+ E

�
��hZt1�hZt<h(�+c�)

�	
� A P [�hZt > h (�+ c�)] +A �h(�+c�)

� A�
h
1��

�
c
p
h
�i

+A �(�+c�)h
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� A�� exp� c2

2
h+A �(�+c�)h;

which establishes the geometric decline of the 
 function. Q.E.D.

It is worth noting that (omitting the technical aspects) we have ap-
proximately:

A E
�
�(�hZt)

�
' AE

�
��h+�

p
hu
�
, where u is standard normal,

= AE exp
h
�h log �+ � log �

p
hu
i

= A exp
�
�h log �+

�2(log �)2

2
h
�

= A
�
exp log �

h
�+ �2 log �2

2

i
h
�
;

which gives an idea of the new rate of geometric decline: r = ��+(�
2 log �)=2:

It is larger or smaller than � depending on the sign of �+
�
�2 log �

�
=2,

i.e. of the magnitude of the variance-covariance term �2 in comparison
with �.

22



Appendix 3

Asymptotic properties of the kernel autocorrelogram

estimator

We �rst determine the asymptotic �rst and second order moments
and deduce the stochastic convergence of 
̂�T (z) to 


� (z). Next, we turn
our attention to asymptotic normality of the estimator. A preliminary
section is devoted to technical conditions, the next one covers the �rst
and second order moments and �nally a third one is devoted to the
asymptotic distribution.

A.3.1.Technical conditions

In sections 2 and 3 we listed and discussed a number of regularity
conditions. The purpose of this section is to complement these with a
set of technical conditions. They are as follows:

(i) Lipschitz conditions

(L1) jgk (z + hT �)� gk (z)j � Gk (z)hT j�j ;

with: gk (z) = 
� (z) fck (z) ; and
+1P

k=�1
Gk (z) < +1.

(L2) j~gk (z + hT �)� ~gk (z)j � ~Gk (z)hT j�j ; with: ~gk (z) = �� (z) fck (z) ;
and

+1P
k=�1

~Gk (z) < +1

(ii) Kernel conditions

(K1) K is continuous with bounded support;
(K2)

R
K (u) du = 1;

(K3)
R
uK (u) du = 0;

(K4)
R
jujK (u) du < +1;

(K5)
R
jujK2 (u) du < +1;

(iii) Bandwidth conditions
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(B1) hT ! 0; as T ! +1;
(B2) ThT ! +1; as T ! +1;

A.3.2.Asymptotic �rst and second moments

To establish the consistency of the �rst and second order moments,
let us write the estimator as:


̂�T (z) = g1T (z) =g2T (z) ;

where:

g1T (z) = T�1

TX
t=1

TX
�=1

YtY�h
�1
T K

�
Zt � Z� � z

hT

�
;

g2T (z) = T�1

TX
t=1

TX
�=1

h�1
T K

�
Zt � Z� � z

hT

�
:

We will focus primarily on g1T (z) ; since g2T (z) can be viewed as a
special case of the former.

i) First order moments

E (g1T (z)) = T�1

TX
t=1

TX
�=1

E

�
YtY� h

�1
T K

�
Zt � Z� � z

hT

��

= T�1

TX
t=1

TX
�=1

E

�
Y �
0 Y

�
Zt��

h�1
T K

�
Zt�� � z

hT

��
;

because of the stationarity of the Y � process and the stationarity of the
increments of the Zt process. Moreover, using Assumption A.3.4, we
know that Z0 = 0, and therefore Y �

Z0
= Y0. This yields:

E (g1T (z)) = T�1

TX
t=1

TX
�=1

E

�

� (Zt�� ) h

�1
T K

�
Zt�� � z

hT

��

= T�1

T�1X
k=�(T�1)

(T � jkj)E
�

� (Zk) h

�1
T K

�
Zk � z

hT

��
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= 2T�1

T�1X
k=1

(T � jkj)
Z


� (u) h�1
T K

�
u� z

hT

�
fck (u) du;

using the property 
� (�z) = 
� (z). As we take the limit T ! 1; we

expect that: Eg1T (z)! 
� (z) 2
1P
k=1

fck (z) :

To check this, let us examine the di�erence:

lim
T!1

"
E

 
g1T (z)� 
� (z) 2

+1X
k=0

fck (z)

!#

= lim
T!1

f 2T�1

T�1X
k=1

(T � jkj)
Z
[
� (z + hT �) f

c
k (z + hT �)

�
� (z) fck (z)]K (�) d� g

+ lim
T!1

(

� (z) 2

"
T�1X
k=1

fck (z)� T�1

T�1X
k=1

(T � jkj) fck (z)
#)

:

From the regularity conditions A.3.6 on the density functions fck (:) ; we
know that the second limit on the right hand side is zero.

Indeed we get:
T�1P
k=1

jkj
T
fck (z)

=

p
TP

k=1

jkj
T
fck (z) +

T�1P
k=
p
T+1

jkj
T
fck (z)

� 1p
T

p
TP

k=1

fck (z) +
P

k>
p
T

fck (z)

� 1p
T

1P
k=1

fck (z) +
P

k>
p
T

fck (z) ;

and this last quantity tends to zero because of A.3.6.
To show that the �rst limit on the right hand side also equals zero,

we rely on the Lipschitz condition (L1) listed in section A.3.1. It yields:������T�1
T�1X

k=�(T�1)

(T � jkj)
Z

[
� (z + hT �) f
c
k (z + hT �)� 


� (z) fck (z)]K (�)d�

������
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� T�1

T�1X
k=�(T�1)

(T � jkj)Gk (z)hT

�Z
j�jK (�) d�

�
:

At T !1 the right hand side converges to zero (using the summability
of Gk(z) and condition (K4) on the kernel). To summarize, so far we
have established that:

lim
T!1

E (g1T (z)) = 
� (z) 2
+1X
k=1

fck (z) :

Similarly, we get:

lim
T!1

E (g2T (z)) = 2

+1X
k=1

fck (z) :

ii) Second order moments

We now turn our attention to the second order properties. We focus
again exclusively on g1T (z) and study its normalized variance. However,
instead of tackling immediately the normalized variance we will �rst
focus on E [

p
ThT (g1T (z) � E (g1T (z) j�T (z)))]2 with �T (z) the ��

algebra generated by (Zt)
T
t=1 ; and show it has a �nite limit as T ! 1.

The latter expression can be written as:

E
hp

ThT (g1T (z)�E (g1T (z) j�T (z) ))
i2

= C1 + C2;

where:

C1 = E

(
(ThT )

�1
TX
t=1

TX
�=1

�� (Zt�� )K
2

�
Zt�� � z

hT

�)
;

C2 = E

8<:(ThT )�1
TX
t=1

TX
t0 6=t

TX
�=1

TX
� 0 6=�

�
Y �
Zt
Y �
Z�
� 
� (Zt � Z� )

�

�
Y �
Zt0

Y �Z�0 � 
� (Zt0 � Z� 0)
�
K

�
Zt � Z� � z

hT

�
K

�
Zt0 � Z� 0 � z

hT

��
;
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where: �� (z) = E [Y �
z � 
� (z)]2. We will show that C1 has a �nite

limit while C2! 0 as T !1.
Let us �rst write C1 as:

C1 = T�1

T�1X
k=�(T�1)

(T � jkj)h�1
T E

�
�� (Zk)K

2

�
Zk � z

hT

��

= T�1

T�1X
k=�(T�1)

(T � jkj)
Z

�� (z + hT �) f
c
k (z + hT �)K

2 (�) d�;

where by convention for negative k, Zk denotes �Zjkj, and fck the asso-
ciated density function.

Using Lipschitz condition (L2) and kernel condition (K5) we can
easily establish that C1 has a �nite limit. To show that C2 ! 0 as
T !1 let us rewrite C2 as:

C2 = (ThT )
�1

E

TX
t=1

TX
t0 6=t

TX
�=1

TX
� 0 6=�

E [�� (Z��t; Zt0�t; Z� 0�t)]�

K

�
Zt�� � z

hT

�
K

�
Zt0�� 0 � z

hT

�
;

where �� (:; :; :) is de�ned in analogy to �� (�). The above quadruple sum
can be reduced to a triple sum, namely:

C2 = (ThT )
�1

T�1X
k=�(T�1)

T�1X
k0=�(T�1)

T�1X
k
00

=�(T�1)

(T � jkj)E [�� (Zk; Zk0 ; Zk00 )�

K

�
Zk � z

hT

�
K

�
Zk0 � Zk00 � z

hT

�

= (ThT )
�1

T�1X
k=�(T�1)

T�1X
k0=�(T�1)

T�1X
k00=�(T�1)

(T � jkj)E

Z Z Z
��(z + hT �; z + hT �

0

; hT �
00)
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f
c
k;k

0;k00

�
z + hT �; z + hT �

0

; hT �
00

�
K
�
�; �

0

; �
00

�
d�d�

0

d�
00

;

with similar conventions as before for the negative values of k; k0; k00:
Using a Lipschitz condition argument similar to the previous one yields
an expression involving h3T =h

2
T which results in C2! 0 as T !1.

So far we considered
p
ThTE [(g1T (z)�E (g1T (z)) j�T (z) )]2 ; and

showed it had a �nite limit as T !1. Let us de�ne u1T (z) = g1T (z)�
E (g1T (z) j�T (z)). It is relatively easy to show that E u1T (z) = 0 and

that E u1T (z)
2
= (ThT )

�1
C; where C < +1 so that u1T (z) ! 0 in

the L2 norm. The above computations can also be applied to g2T (z) :
Together they yield:

Vas

 p
ThT

(
g1T (z)� lim

T
E g1T (z)

g2T (z)� lim
T
E g2T (z)

)!

= lim
T

(
1

T

TX
t=1

TX
�=1

E

��
YtY�
1

�
[YtY� 1]

1

hT
K2

�
Zt � Z� � z

hT

��

�hT

T

TX
t=1

TX
�=1

E

��
YtY�
1

�
1

hT
K

�
Zt � Z� � z

hT

��

E

��
YtY�
1

�
1

hT
K

�
Zt � Z� � z

hT

���

= lim
T

1

T

TX
t=1

TX
�=1

E

��
YtY�
1

�
[YtY� 1]

1

hT
K2

�
Zt � Z� � z

hT

��

= lim
T

1

T

TX
t=1

TX
�=1

E

��
Y �2
Zt
Y �2Z� Y �ZtY

�
Z�

Y �ZtY
�
Z�

1

�
1

hT
K2

�
Zt � Z� � z

hT

��
;

which follows because the second term is asymptotically negligeable.
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Let us introduce the quantity �� (z) = E
�
Y �2zo Y

�2
zo+z

�
. We directly

deduce after a change of variable similar to the one previously used that:

B (z) =

Z
K2 (�) d� 2

1X
k=1

fck (z)

�
�� (z) 
� (z)

� (z) 1

�
:

iii) Consistency in probability and asymptotic variance of 
̂�T (z).

The asymptotic properties derived on �rst and second order moments
of g1T (z) and g2T (z) imply the stochastic convergence of these two se-
quences, and also the stochastic convergence of 
̂�T (z). The asymptotic
variance of 
̂�T (z) is then deduced by the �-method. We get:

Vas
�p

ThT [b
�T (z)� 
 (z)]
�
=
h
�� (z)� 
� (z)2

i
�R

K2 (�) d�
�
=

�
2
1P
k=1

fck (z)

�
;

where :

�� (z)� 
� (z)2 = E
�
Y �2
zo
Y �2z+zo

�
�E

�
Y �
zo
Y �z+zo

�2
= V

�
Y �
zo
Y �
z+zo

�
:

A.3.3. Asymptotic normality

The asymptotic normality of the kernel autocorrelogram may be de-
rived from the joint asymptotic normality ofp
ThT [g1T (z)�Eg1T (z) ; g2T (z)�Eg2T (z)]

0

, by usual arguments.

i) A decomposition of g1T (z)

Now let us examine the expression of a di�erence such asp
ThT (g1T (z)�Eg1T (z)) : We get:

p
ThT (g1T (z)�Eg1T (z)) =

1p
ThT

TP
t=1

TP
�=1

h
Y �
Zt
Y �
Z�
K
�
Zt�Z��z

hT

�
�E

�
Y �
Zt
Y �
Z�
K
�
Zt�Z��z

hT

��i
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=
T�1P

k=�(T�1)

1p
ThT

Min(T;T�k)P
t=Max(1;1�k)

�
Y �
Zt
Y �
Zt+k

K
�
Zt�Zt+k�z

hT

�
� E

�
Y �ZtY

�
Zt+k

K
�
Zt�Zt+k�z

hT

���
=

T�1P
k=�(T�1)

1p
ThT

Min(T;T�k)P
t=Max(1;1�k)

�
Y �ZtY

�
Zt+�kZt

K
�
�kZt�z

hT

�
� E

�
Y �ZtY

�
Zt+�kZt

K
�
�kZt�z

hT

���
=

T�1P
k=�(T�1)

p
Min(T;T�k)�Max(1;1�k)p

T
Uk;T ;

where Uk;T is simply a kernel regression of ~Ykt = Y �
Zt
Y �Zt+�kZt

on ~Zkt =
�kZt. Therefore it will be possible to apply usual results concerning the
asymptotic normality of such regressograms, as soon as the regressors
~Yk and the regressand ~Zk satisfy suitable regularity conditions.

ii) Asymptotic normality of the kernel regression estimator

We may for instance consider the set of regularity conditions intro-
duced by Robinson (1983) [Theorem 5.3] for deriving the asymptotic

normality of the kernel regression estimator of
�
~Yt

�
on
�
~Zt

�
. We de-

note g (z) = E
�
~Yt j ~Zt = z

�
:

(N1)
�
~Yt; ~Zt

�
is ��mixing, with ��mixing coe�cients such that:

9� > 2 :
1P
j�J

�j = O
�
J��

�
; as J !1

(N2) E
���~Yt���� <1, with the same � as in (N1)

(N3) The pdf of
�
~Zt

�
is strictly positive:

(N4) The regression function is such that there exist:

� > 0; zo; c < +1; such that :

jg (zo � z)� g (zo)� Pr (z)j < C jzj� ;

where r is the greatest integer less than � and Pr is a polynomial in
z of degree r.
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(N5) The conditional second order moment E
�
~Y 2
t j ~Zt = �

�
is con-

tinuous in z.

(N6) E
����~Yt���
 j Zt = �

�
is locally bounded in a neighborhood of z for

a 
 > �:

iii) Asymptotic normality of g1T (z).

To derive the asymptotic normality of g1T (z), we have �rst to impose
the set of assumption (N1)-(N6) to the various processes ~Ykt = YtYt+k ,
~Zkt = �kZt: It may be noted that assumption (N1) written for the

various process
�
~Ykt; ~Zk

�
k = 1::: is implied by assumption A.3.4 in

section 3.2.1. The assumption (N2) implies in particular the existence
of fourth order moments of Yt. Assumption (N3) means that the various
pdf fck (z) ; k = 1; ::: are all strictly positive, and not only their sum (see
assumption A.3.6).

Under these assumptions the asymptotic normality ofp
ThT [g1T (z)�Eg1T (z)] results from the asymptotic normality of the

�nite sums

KX
k=�K

p
min (T;T � k)�max (1; 1� k)p

T
Uk:T ;

and from the fact that the remaining terms of the series may be bounded
in probability by a term tending to zero with K.
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Fig 4.1: S&P 500 (Adjusted)
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Fig 4.3: Volume NYSE (Adjusted)
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