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Résumé / Abstract

Nous étudions la problématique de détermination de prix d�options

lorsque la volatilité est stochastique. Normalement, la présence d�une volatilité

stochastique entraîne une incomplétude des marchés. Nous proposons une

approche par arbitrage, malgré cette apparente incomplétude. Elle consiste à

exploiter une modélisation de la volatilité, proposée par Clark (1973), fondée sur

une distinction entre un temps calendaire et un temps de transaction. En faisant

cette distinction et en supposant qu�il y a une simple variable d�état binomiale

en temps de transaction et un taux sans risque en temps calendaire, nous

discutons les conditions d�absence d�opportunités d�arbitrage. Nous caractérisons

les conditions permettant la détermination des prix d�options par arbitrage

dynamique dans le sens de Harrison et Pliska (1981) et nous montrons que les

restrictions à la Merton (1973) ne s�appliquent plus.

Oneof the early examples of stochastic volatility models is Clark

[1973]. He suggested that asset price movements should be tied to the rate at

which transactions occur. To accomplish this, he made a distinction between

transaction time and calendar time. This framework has hitherto been

relatively unexploited to study derivative security pricing. This paper studies

the implications of absence of arbitrage in economies where: (i) trade takes

place in transaction time, (ii) there is a single state variable whose

transaction-time price path is binomial, (iii) there are risk-free bonds with

calendar-time maturities, and (iv) the relation between transaction time and

calendar time is stochastic. The state variable could be interpreted in various

ways. For example, it could be the price of a share of stock, as in Black and

Scholes [1973], or a factor that summarizes changes in the investment

opportunity set, as in Cox, Ingersoll and Ross [1985], or one that drives

changes in the term structure of interest rates (Ho and Lee [1986], Heath,

Jarrow and Morton [1992]). Property (iv) generally introduces stochastic



volatility in the process of the state variable when recorded in calendar time.

The paper investigates the pricing of derivative securities with calendar-time

maturity. The restrictions obtained in Merton (1973) using simple

buy-and-hold arbitrage portfolio arguments do not necessarily hold.

Conditions are derived for all derivatives to be priced by dynamic arbitrage,

i.e., for market completeness in the sense of Harrison and Pliska [1981]. A

particular class of stationary economies where markets are indeed complete

is characterized.

Mots Clés : Marchés incomplets, Temps de transaction, Changement de

temps, Volatilité stochastique

Keywords : Incomplete Markets, Transaction Time, Change of Time,

Stochastic Volatility

JEL : D52, G13



1 Introduction

One of the early examples of stochastic volatility models is Clark [1973].

He suggested that asset price movements should be tied to the rate at

which transactions occur. To accomplish this he made a distinction

between transactions time and calendar time. This framework has hith-

erto been relatively unexploited to study derivative security pricing. We

study the arbitrage pricing restrictions in economies where trade takes

place according to a (discrete) transactions clock which di�ers from the

standard calendar clock. In transaction time, calendar-time ticks are

stochastic. Riskfree bonds with calendar-time maturities are traded.

There is a single state variable whose process in transaction time is bi-

nomial. We are interested in obtaining unique prices for derivatives using

arbitrage arguments. In other words, we are investigating conditions for

markets to be complete in the sense of Harrison and Pliska [1981].

We assume that calendar-time ticks coincide with (randomly chosen)

transaction-time ticks. (The term \tick" is used here in the common

sense of the discrete movement of the hands of a clock.) Most of the pa-

per focuses on trade in transaction time. The assumption that calendar-

time ticks can occur only upon a transaction-time tick, however, allows

us to study also portfolio rebalancing in calendar time and its pricing

implications. When portfolio rebalancing is restricted to calendar time

and the probability of a calendar-time tick at any point in (transaction)

time is bounded away from zero and one, the economies in this paper

are horrendously incomplete. The representation of the process of the

state variable is that of a tree with an in�nite number of branches at

every step.

The state variable could be interpreted in many ways. For instance,

it could be the price of a share of stock, as in Black and Scholes [1973]. It

could also be a factor that summarizes changes in the investment oppor-

tunity set, as in Cox, Ingersoll and Ross [1985], or one that determines

the term structure of interest rates, as in Ho and Lee [1986] and Heath,

Jarrow and Morton [1992].

Because of the random nature of calendar-time ticks, the state vari-
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able will generally exhibit stochastic volatility when recorded in calen-

dar time. Hence, we e�ectively study arbitrage pricing under stochastic

volatility. In such an environment, it is generally claimed that, in the

absence of a security with a price that is perfectly correlated with volatil-

ity, dynamic arbitrage arguments are insu�cient to price derivatives.

By considering stochastic volatility as emerging from the randomness of

calendar-time ticks on the transaction clock, we provide a di�erent view

on the issue of market incompleteness.

Empirically, there appears to be high correlation between the process

giving the duration between two transactions and stochastic volatility.

See, e.g., Ghysels and Jasiak [1995]. In fact, the appearance of the two

processes is su�ciently similar for some to model the former by borrow-

ing succesful approaches (in particular, GARCH) from the latter. See

Engle and Russell [1996]. This paper is theoretical. We take the ex-

treme view that stochastic volatility is entirely generated by the random

relationship between transaction and calendar time and we study the

pricing implications of such a view.

We could assume that the (implicit) riskfree rate in transaction time

is strictly positive (we will also, however, investigate the case where the

riskfree rate is zero). This assumption makes it costly to hold on to a

(static) arbitrage position in the face of transactions, and, hence, volatil-

ity. The cost may be interpreted, for instance, as the e�ect of margin

calls. The most profound implication of this assumption is to invalidate

many of the option pricing restrictions derived in Merton [1973]. Euro-

pean put-call parity, for instance, fails to obtain, con�rming empirical

violations (see, e.g., Kamara and Miller [1995]).

We investigate necessary conditions for derivatives written on the

state variable to be priced by dynamic arbitrage. In other words, we

study whether and when markets could be complete. We prove that

interest rates (calendar-time bond yields) have to be stochastic for ar-

bitrage arguments to generate unique derivatives prices. Interest rates

not only have to be stochastic in transaction time; they must not be

constant when recorded in calendar time. We provide a counterexample
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that stochastic interest rates do not constitute a su�cient condition for

arbitrage pricing.

Hull and White [1987] derived a pricing formula for stock options

under constant interest rates, using a risk-neutral probability measure for

which the disturbance process of the stock price and that of the volatility

are independent. Without restricting our attention to pricing under a

single risk-neutral probability measure, we study the e�ects of analogous

assumptions in our context. We assume that prices of traded assets

allow for a state price process such that (i) the (implicit) transaction-

time interest rate is constant, and (ii) the state variable (which could be

interpreted as the stock price) and the calendar-time tick processes are

independent under the corresponding risk-neutral probability measure.

We demonstrate that this makes the economy generically incomplete. As

a by-product, we show what assumptions on the bond price processes

are su�cient for there to be a risk-neutral measure under which the state

variable and calendar-time tick processes are independent, and, hence,

for Hull and White's pricing technique to make sense.

The class of economies where it is possible to price derivatives by

arbitrage is not empty. We characterize a subclass, where state price

processes are stationary. In it, derivatives prices solve a complex dif-

ference equation. We also demonstrate how to imply the (unique) risk-

neutral probabilities (which are really normalized Arrow-Debreu securi-

ties prices) from a set of bond price processes.

One could wonder why we take the transaction-time clock as given,

instead of deriving it as the equilibrium to an economy that is modeled

at some deeper level. The reason is simple: we are not interested in

equilibrium price and transaction processes per se. We study the restric-

tions on price processes that are imposed in the presence of arbitrageurs

who wish to exploit perceived arbitrage opporunities by (potentially) re-

balancing a hedge portfolio. Since arbitrageurs cannot rebalance but in

transaction time, our taking transaction time as the base clock seems

only natural. This also clari�es why we shall not allow there to be more

than one calendar-time tick per transaction-time period. Finer calendar-
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time measurement would be irrelevant for an arbitrageur: she could not

possibly use them to rebalance hedge portfolios.1

Since a hedge portfolio consists almost by de�nition of more than one

security (in the present case, bonds with di�erent calendar-time maturi-

ties), our transaction time is essentially de�ned as the count of occasions

when it is possible to simultaneously trade in each of the component se-

curities. The fact that such a count is possible at all is not a trivial

requirement. If the state variable is the price of a share of stock, for

instance, whose process is binomial when recorded in its own transac-

tion time (the count of the stock's transactions), then the only realistic

way for a hedge portfolio consisting of bonds to become rebalanceable

in the stock's transaction time would be for the bonds to be traded

continuously.2

Therefore, our notion of transaction time is essentially the count of

occasions such that: (i) it is feasible to trade in bonds with calendar-

time maturities, (ii) the state variable's values lie on a binomial tree. The

main contribution of the present paper, then, is to point out that new

hedging opportunities are created when trading takes place according to

the nonstandard clock that this count generates.

Time deformation has been used before to facilitate computation of

prices of derivatives, but the implications of the possibility to trade ac-

cording to a di�erent clock have not yet been investigated. For a com-

prehensive example of the use of time deformation in the calculation of

prices, see Geman and Yor [1993]. Their paper actually mentions the

idea of trading according to di�erent clocks (\business time scale"; see

p. 351), but does not exploit its implications for option pricing.3

1In the language of market microstructure theory, what we envisage is an order-

driven system, whereby the arbitrageur can post a trade, but is unsure when her

trade will be executed. The time till execution is taken to be exogenous. This
contrasts with a quote-driven system, where middlemen post bid and ask prices for

immediate execution. Because of this discrepancy between bid and ask quotes, a

study of arbitrage pricing in quote-driven systems is necessarily one of transaction

costs.
2In most countries, however, riskfree bonds (in the form of government securities

or other money market securities), are indeed traded much more frequently than

stock.
3Geman and Yor used time-changed Bessel processes to compute path-dependent
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The remainder of the paper is organized as follows. Section 2 intro-

duces the economy. Section 3 presents the basic issues. Section 4 studies

simple arbitrage restrictions on standard options (puts and calls). Sec-

tion 5 provides necessary conditions for derivatives to be priceable by

arbitrage. In Section 6, an example is given that these conditions are

not su�cient. Section 7 studies the case where transaction-time interest

rates are constant and the state variable and calendar-time tick pro-

cesses are independent under a risk-neutral probability measure. Sec-

tion 8 characterizes a class of economies where derivatives can be priced

by arbitrage. Section 9 concludes with a list of open questions.

2 The Economy

First some de�nitions. Transaction time is denoted by t = 0; 1; 2; :::.

Uncertainty in the economy is generated by two binomial processes, Xt

and Zt, both taking values in f0; 1g.

1. fXtgt�0 is referred to as the calendar-time tick process. Calendar

time is de�ned as:

�t =

tX
�=0

X� :

2. fZtgt�0 is referred to as the state variable jump process; it drives

the evolution of the \state variable" (to be discussed shortly).

Securities prices will be measurable in the information �ltration gen-

erated by fXt; Ztgt�0. Let Ft denote the information set at time t.

Let P denote the probability measure associated with the probability

space on which Xt and Zt live and let Pt�1 denote the probability

measure conditional on Ft�1. We assume: 0 < Pt�1fXt = 1g < 1,

0 < Pt�1fZt = 1g < 1. In Section 8, though, we shall examine the con-

sequence of cases where the conditional probability of the event fXt = 1g

equals 1.

option price formulas. This approach has been further explored in Geman and Yor

[1995], Leblanc and Scaillet [1995] and Delbaen and Shirakawa [1996].
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We introduce a state variable, whose value at t is denoted st, and

whose evolution is derived from that of Zt, as follows. There are positive

constants u and d (u > d) such that:

st =

�
st�1u if Zt = 1;
st�1d if Zt = 0:

(We could make u and d time-dependent, or even path-dependent, but

the added complexity does not introduce new economic insights.) No-

tice that the logarithm of the state variable process (ln st � ln st�1) is

conditionally homoscedastic if Pt�1fZt = 1g is constant over time.

It is interesting to examine the behavior of the state variable in cal-

endar time, i.e., across increments in the process �t. Let:

~u = lnu;

~d = ln d:

De�ne:

t(�) = minft : �t = �g:

The calendar-time state variable process s�� (� = 0; 1; 2; :::) is determined

as follows:

s�� = st(�):

We have:

ln s�� = ln s���1 + U�� ;

where

U�� =

t(�)�1X
�=t(��1)

�
Z�+1(~u� ~d) + ~d

�
:

Now assume the following.

Assumption 2.1: the processes fXtgt�0 and fZtgt�0 are mutually

independent;

Assumption 2.2: the Zt are independent and identically distributed

over time;

Assumption 2.3: E[Zt+1(~u� ~d) + ~djFt] = 0.
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We are interested in the conditional variance of U�� . The assumptions

allow us to focus on the conditional second moment. Let �2 denote the

(time-invariant) conditional variance of Zt+1(~u� ~d) + ~d. Let G��1 denote

the information generated up to calendar time � � 1. This information

set is generated by the sequences fX�g�=0;:::;t(��1) and fZ�g�=0;:::;t(��1),

where t(� � 1) is the minimal time t at which �t = � � 1.

Theorem 1 Under Assumptions 2.1{2.3,

E[(U�� )
2
jG��1] = �2E[t(�)� t(� � 1)jG��1]: (1)

Proof: see Appendix.

Notice that (1) typi�es a process with stochastic volatility: the con-

ditional variance can be written as the product of a volatility parameter

and the conditional expectation of a positive random scaling factor. This

is precisely the stochastic volatility framework through time deformation

as suggested by Clark [1973]. For an explicit analysis of a model of time

deformation in the spirit of ours and its relation with stochastic volatility,

see, e.g., Madan and Seneta [1990] and Ghysels and Jasiak [1995].

This translation into calendar time is a good occasion to illustrate

how the introduction of a new clock e�ectively generates a new infor-

mation �ltration. In calendar time, the relevant information �ltration is

fG�g�; in transaction time, it is fFtgt. Under the former, markets are

incomplete. We will show that markets may be complete under the new

�ltration. In short, time changes are equivalent to changes in the infor-

mation �ltration; since completeness hinges critically on the information,

it should come as no surprise that we can reach di�erent conclusions de-

pending on the notion of time used.

At this point, we must emphasize an important fact: the information

sets are not necessarily strictly ordered. It is easy to see how transaction

time generates information which is not available in calendar time. But

the reverse is also possible. Take an example where there are bonds with

calendar-time maturities whose yields are constant in calendar time but
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stochastic in transaction time. (Section 5 will discuss this case in more

detail.) Now consider realizations for which t(�) (= minft : �t = �g)

= t�, in which case we would compare G� with Ft� . Future bond prices,

at � + 1; � + 2; :::, are in G� , but bond prices at t� + 1; t� + 2; ::: are not

in Ft� .

In fact, if bond prices are known for some t > t�, this may be an

indication that a calendar-time tick will occur at that point. Hence,

strict subsidiarity of G� to Ft� may imply that the arbitrageurs know

beforehand the path of calendar-time ticks on the transaction-time clock.

We are not assuming that.

Continuing with the speci�cation of our economy, we do not neces-

sarily assume that there is a security that is riskfree in transaction time.

Letting bt denote the (often only implicit) price of a one-period pure-

discount bond with face value of $1 (this price may not be unique), we

will impose:

bt � 1:

The case where bt < 1, all t, has profound implications. See Section 4.

We do assume, however, the existence of a set of pure discount bonds

with calendar-time maturities. At maturity, they pay $1. m denotes

maturity (m = 1; 2; 3; :::). Bm
t is the time-t price of a bond with maturity

m remaining calendar time ticks. We add: m = 0, and set:

B0
t = 1;

all t.

Time-t securities prices are measurable in Ft. We wish to make

explicit how prices change as a function of Xt and Zt, in addition to

Ft�1. Whence the following notation:

Bm
t = Bm

t (Xt; Zt;Ft�1):

Sometimes, the information in Ft�1 that is relevant to determine Bm
t

may be limited, e.g., to Xt�1. We then write:

Bm
t = Bm

t (Xt; Zt; Xt�1):
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We also study stationary economies, in which:

Bm
t = Bm(Xt; Zt; Xt�1)

(see Section 8).

Given the low dimensionality of the stochastic processes driving the

uncertainty in the economy, bond price processes cannot be set arbitrar-

ily. Absence of arbitrage opportunities imposes restrictions. Applying a

well-known result from Harrison and Kreps [1979], we have:

Lemma 1 In the absence of arbitrage opportunities, there exist pro-

cesses fq
X;Z
t gt�0 (X = 0; 1; Z = 0; 1), such that, for all m > 0:

Bm
t = q

1;1
t Bm�1

t+1 (1; 1;Ft) + q
1;0
t Bm�1

t+1 (1; 0;Ft)

+ q
0;1
t Bm

t+1(0; 1;Ft) + q
0;0
t Bm

t+1(0; 0;Ft); (2)

with 0 < q
X;Z
t < 1, all t;X; Z.

(Proof: see Appendix.)

q
X;Z
t is the time-t price implicit in bond prices of the (Arrow-Debreu)

security that pays $1 if Xt+1 = X and Zt+1 = Z, and $0 otherwise. It

is also often referred to as the price of the state X;Z. It may not be

unique. The purpose of this paper is precisely to determine when they

are.

In analogy with the notation for bond prices, we shall use:

q
X;Z
t = q

X;Z
t (Xt; Zt;Ft�1):

Sometimes,

q
X;Z
t = q

X;Z
t (Xt; Zt; Xt�1);

or even:

q
X;Z
t = qX;Z(Xt; Zt; Xt�1):

Using this notation, we can rewrite (2):

Bm
t (Xt; Zt;Ft�1)

= q
1;1
t (Xt; Zt;Ft�1)B

m�1
t+1 (1; 1;Ft) + q

1;0
t (Xt; Zt;Ft�1)B

m�1
t+1 (1; 0;Ft)

+ q
0;1
t (Xt; Zt;Ft�1)B

m
t+1(0; 1;Ft) + q

0;0
t (Xt; Zt;Ft�1)B

m
t+1(0; 0;Ft): (3)

9



The state variable, st, may (but need not) be the price of a traded

security, such as a share of stock. If so, Lemma 1 will also restrict its

evolution. In other words, u and d will be restricted through:

st = (q1;1t + q
0;1
t )stu+ (q1;0t + q

0;0
t )std: (4)

To better understand the nature of bond price processes that are

consistent with absence of arbitrage (Lemma 1), consider an extreme

case, where:

q
X;Z
t = qX;Z ;

all t. Then, Bm
t solves the following di�erence equation:

Bm
t (Xt; Zt;Ft�1) = q1;1Bm�1

t+1 (1; 1;Ft) + q1;0Bm�1
t+1 (1; 0;Ft)

+ q0;1Bm
t+1(0; 1;Ft) + q0;0Bm

t+1(0; 0;Ft):

Applying this to m = 1 produces:

B1
t (Xt; Zt;Ft�1) = q1;1+q1;0+q0;1B1

t+1(0; 1;Ft)+q
0;0B1

t+1(0; 0;Ft) (5)

This di�erence equation has multiple solutions. Some of them are ex-

plosive: B1
t " 1. Such solutions correspond to bubbles. To see this,

take the case where B1
t (Xt; Zt;Ft�1) = ~B1

t , a deterministic function of

t. Then:

~B1
t = (q1;1 + q1;0) + (q0;1 + q0;0) ~B1

t+1; (6)

where q0;1+ q0;0 < 1. This is a forward equation which admits explosive

behavior.

The only stationary solution to (5) is:

B1
t (Xt; Zt;Ft�1) = B1 =

q1;1 + q1;0

1� (q0;1 + q0;0)
:

With this solution B1, bond prices of all maturities will also be constant.

Take m = 2. We deduce from (2) that:

B2
t (Xt; Zt;Ft�1) = (q1;1+q1;0)B1+q0;1B2

t+1(0; 1;Ft)+q
0;0B2

t+1(0; 0;Ft):

This equation also admits a constant solution B2 with the property:

B2 = (B1)2:
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Iterating over m, we obtain:

Bm = (B1)m:

While generating constant interest rates in calendar time, this ex-

ample is not very interesting, because it implies that the evolution of

bond prices in transaction time only depend on the residual maturity in

calendar time, and not on transaction time. The bond price process is bi-

nomial, depending only on the calendar-time tick process; the time-t+1

payo� on the bond with maturity m (as of time t) becomes:

�
Bm�1 if Xt+1 = 1;
Bm if Xt+1 = 0:

In this paper, we shall ignore explosive bond price paths if there exist

stationary ones that are compatible with absence of arbitrage. In other

words, we do not investigate equilibria with bond price bubbles. As a

matter of fact, we thereby make our search for economies with complete

markets more di�cult. As will be clear from Section 8, it is fairly easy to

�nd examples of stationary economies that are complete conditional on

a calendar-time tick. The problem is that such economies are generally

incomplete in states of the world where there is no calendar-time tick.

These economies would readily become complete, however, if bond prices

were allowed to wander in arbitrary ways o� their stationary path during

spells of transactions in-between two calendar-time ticks.
A �nal remark about bond prices. Consider the general case in (5)

again. If we substitute for B1
t+1(0; 1;Ft) and B1

t+1(0; 0;Ft), we must be
careful. Mechanically, we would replace with the following:

B1
t+1(0; 1;Ft) = q1;1 + q1;0 + q0;1B1

t+2(0; 1;Ft+1) + q0;0B1
t+2(0; 0;Ft+1); (7)

B1
t+1(0; 0;Ft) = q1;1 + q1;0 + q0;1B1

t+2(0; 1;Ft+1) + q0;0B1
t+2(0; 0;Ft+1): (8)

Somehow, however, we must make clear that Ft+1 in (7) di�ers from

that in (8). In (7),

Ft+1 = Ft ^ fXt+1 = 0; Zt+1 = 1g;

in (8),

Ft+1 = Ft ^ fXt+1 = 0; Zt+1 = 0g:
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If such ambiguities arise, we shall be explicit. Hence, after one recursion,

we would write (5) as follows:

B1
t (Xt; Zt;Ft�1)

= (q1;1 + q1;0) + (q0;1 + q0;0)(q1;1 + q1;0)

+ q0;1(q0;1B1
t+2(0; 1;Ft ^ fXt+1 = 0; Zt+1 = 1g)

+ q0;0B1
t+2(0; 0;Ft ^ fXt+1 = 0; Zt+1 = 1g))

+ q0;0(q0;1B1
t+2(0; 1;Ft ^ fXt+1 = 0; Zt+1 = 0g)

+ q0;0B1
t+2(0; 0;Ft ^ fXt+1 = 0; Zt+1 = 0g)):

3 Basic Issues

Can a derivative with calendar-time maturity whose payo� depends on

the state variable be priced by a dynamic arbitrage argument based on

the riskfree bonds? This is the question we set out to answer.

Pricing by dynamic arbitrage requires that the one-period payo� on

the derivative be spanned by payo�s on a certain number of bonds.

The price of the derivative must equal the value of the hedge portfolio

for there to be no arbitrage opportunities. The arbitrage price will be

unique.

Let cmt denote the time-t price of a derivative with (calendar-time)

maturity m (as of time t) and whose payo� depends on the value of the

state variable at maturity. If a calendar-time tick occurs, maturity is

reduced from m to m � 1. We prescribe what c0t is (the value of the

derivative when the maturity is reduced at t from 1 to 0). E.g., for a call

option with exercise price k,

c0t = max(0; st � k):

Assume that cmt is measurable in Ft. Analogous with the notation of

the previous section, we shall write:

cmt = cmt (Xt; Zt;Ft�1):

Using bonds with maturities m1, m2, m3 and m4 to construct the

hedge portfolio, we can introduce the following de�nition.

12



De�nition: The derivative's price cmt is determined by arbitrage if

there exists a solution (w1
t ; w

2
t ; w

3
t ; w

4
t ), measurable in Ft, to the following

system of equations:

cm�1t+1 (1; 1;Ft) = w1
tB

m1�1
t+1 (1; 1;Ft) + w2

tB
m2�1
t+1 (1; 1;Ft)

+ w3
tB

m3�1
t+1 (1; 1;Ft) + w4

tB
m4�1
t+1 (1; 1;Ft)

cm�1t+1 (1; 0;Ft) = w1
tB

m1�1
t+1 (1; 0;Ft) + w2

tB
m2�1
t+1 (1; 0;Ft)

+ w3
tB

m3�1
t+1 (1; 0;Ft) + w4

tB
m4�1
t+1 (1; 0;Ft)

(9)

cmt+1(0; 1;Ft) = w1
tB

m1

t+1(0; 1;Ft) + w2
tB

m2

t+1(0; 1;Ft)

+ w3
tB

m3

t+1(0; 1;Ft) + w4
tB

m4

t+1(0; 1;Ft)

cmt+1(0; 0;Ft) = w1
tB

m1

t+1(0; 0;Ft) + w2
tB

m2

t+1(0; 0;Ft)

+ w3
tB

m3

t+1(0; 0;Ft) + w4
tB

m4

t+1(0; 0;Ft)

These are four equations, each representing one particular state of

the world at t+1. From top to bottom: (Xt+1 = 1; Zt+1 = 1), (Xt+1 =

1; Zt+1 = 0), (Xt+1 = 0; Zt+1 = 1), (Xt+1 = 0; Zt+1 = 0). The world is

said to be tetranomial.

More generality could be introduced by letting m1;m2, m3 and m4

change over time. We shall not need that.4

If they exist, the solutions to (9) across t form a stochastic process

adapted to fFtgt�0. The existence of solutions hinges critically on the

dimensionality of the payo� space of the bonds. Because of the tetra-

nomial nature of uncertainty and Lemma 1, the dimension of the payo�

space of any set of bonds cannot be more than four. Hence, we can

restrict our attention to the payo�s of sets of four bonds. Then, for (9)

to have a solution, there must be a choice of four maturities such that

the payo� space generated by the bonds has dimension four.

Due to a result of Harrison and Kreps [1979], an equivalent way of

investigating whether derivatives can be priced by arbitrage is to verify

4Notice that, if the state variable is the price of a share of stock, we will e�ectively

be covering the risk of derivatives written on the stock using a bond portfolio. Such

techniques have been considered before in the literature. See, e.g., Jarrow and Madan

[1995]. If the stock is traded at each point in transaction time, it could replace one

of the bonds in the hedge portfolio.
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whether there exists a set of four bonds such that their prices imply

unique Arrow-Debreu securities prices for each of the four states. We

shall not take that route here, although we rejoin this approach at the

end of Section 8.5

When solutions exist to (9) for all derivatives, we call the economy

dynamically complete. Otherwise, it is incomplete.

In our economy, trading takes place in transaction time. The hedg-

ing equations in (9) are based on the possibility to rebalance the hedge

portfolio in transaction time. What if we restrict our attention to rebal-

ancing in calendar time? This would mean that if at time t, calendar

time increases to � and a position is established at that point, it can be

changed only when calendar time augments to (�+1), i.e., at the earliest

� > t for which X� = 1. The payo� space generated by this rebalancing

restriction becomes very complex. It has a countably in�nite number of

possible outcomes. The change in the state variable over calendar period

(�, � + 1), for instance, could be any element in the following list:

s��+1 � s�� =

8>>>>>>>>>><
>>>>>>>>>>:

s��(u� 1);

s��(d� 1);

s��(u
2 � 1);

s��(ud� 1);

s��(d
2 � 1);

s��(u
3 � 1);

s��(u
2d� 1);

:::

(10)

It is clear that derivatives cannot be priced by arbitrage if only a �nite

number of bonds is available. Consequently, when trading is restricted

to calendar time, the economy is incomplete.

Before we turn to a study of conditions for our economy to be dy-

namically complete (when trading takes place in transaction time), it is

good to discuss �rst some basic restrictions on derivative prices which

would hold even in an incomplete economy. These restrictions should

5The two approaches are, however, not entirely equivalent. The De�nition con-
siders only a single derivative. Equivalence requires that solutions exist to (9) for all

derivatives that one could possibly write. Later, we shall give an example where one

derivative can be priced by arbitrage, but others may not. See Section 7.
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be familiar from standard options analysis, but it is not clear that they

continue to hold in our economy.

4 General No-Arbitrage Restrictions

Merton [1973] proves a set of restrictions on the pricing of put and call

options written on a traded state variable. The analysis is entirely in

calendar time and makes heavy use of the existence of a risk-free asset.

In our economies, (i) trade takes place in transaction time, not calendar

time; (ii) the relation between transaction time and calendar time is

stochastic; (iii) there may not be a transaction-time risk-free asset; (iv)

the state variable may not be traded.

Let us discard (iv) for the purpose of this section. In other words,

we shall assume that the state variable is traded, and, to facilitate cross-

reference to Merton's analysis, we shall refer to it as the \stock." Notice

also that (iii) ought not be a problem if there exist (calendar-time) risk-

free bonds that mature at the same moment in transaction time (as

Merton implicitly did).

Problems may emerge, however, because the time elapsed till the

next calendar-time tick may be very large. In other words, (i) and (ii)

are the major hurdle. This is easiest to see with an example.

Translate into transaction time Merton's result that, for a European

call with exercise price k and maturity m,

cmt � st � kBm
t : (11)

This restriction on the call price obtains from considering the payo� on

the following two static portfolios:
P1: Purchase one unit of the stock;
P2: Purchase one call and k bonds.

(The zero-coupon bonds in P2 should carry the same maturity as the

call.) At maturity of the call, say, at t = t�, the payo� on P1 equals st� ,

whereas that on P2 equals max(k; st�). Hence, the payo� on the second

position is always at least as large as that on the �rst one. If t� is known

and �nite, (11) immediately obtains.
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In our case, however, t� is random and possibly in�nite (it is a stop-

ping time). Even if

lim
T!1

Pft� > Tg = 0;

(11) may not hold. The answer depends on how the arbitrageur dis-

counts events in the future. bt, the price of the one-transaction-period

zero coupon bond, provides clues. We should immediately point out

that bt may not be unique; if so, we take it to be the shadow price of

this bond for the arbitrageur who contemplates exploiting the potential

arbitrage caused by violation of (11). If bt < 1, the arbitrageur explic-

itly discounts in transaction time. If bt = 1, passage of transaction time

is not discounted (this does not exclude the arbitrageur's discounting

events in calendar time).

First, consider the case bt < 1. The arbitrageur discounts events in

transaction time, and, hence, passage of transaction time must be dealt

with explicitly. To simplify matters, take m = 1. t� then becomes the

�rst date in transaction time such that Xt� = 1. Now take a large,

�nite T . In states of the world where t� � T , the previous analysis is

correct. Otherwise, all one can say is that, at T , P1 pays sT and P2 pays

c1T � kB1
T .

It may very well be that sT > c1T �kB1
T on the set of outcomes where

t� > T . As one increases T , Pft� > Tg may decrease to zero, but sT �

c1T �kB1
T may increase without bound. The result is that investors (risk-

averse ones in the �rst place) may not perceive an arbitrage opportunity

even when initially c1t < st � kB1
t .

To see how sT�c
1
T�kB

1
T could increase without bound in the absence

of arbitrage opporunities, note that the result in Lemma 1 applies to

call prices as well. This means that the Arrow-Debreu state prices that

are consistent with bond prices ought to price an option as well. If

state prices happen to be constant (the assumption merely simpli�es the

argument), we imply the following time-T call price when XT = 0 and

ZT = Z:

c1T (0; Z;FT�1)

= q1;1max(0; STu� k) + q1;0max(0; ST d� k)
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+ q0;1c1T+1(0; 1;FT ) + q0;0c1T+1(0; 0;FT ): (12)

Let us investigate the feasibility of solutions of the form

c1T (0; Z;FT�1) = �T (0; Z;FT�1)sT ;

where:

�T (0; Z;FT�1) < � < 1: (13)

If such solutions are feasible, boundedness of B1
T immediately implies

that sT � c1T � kB1
T increases with sT without bound.

Substitution of the suggested solution into (12) reveals that �T ought

to satisfy the following recursion:

�T (0; Z;FT�1) = (q1;1
sTu� k

sTu
+ q0;1�T+1(0; 1;FT ))u

+ (q1;0
sT d� k

sT d
+ q0;0�T+1(0; 0;FT ))d:

For sT large (k=sT � 0), one solution is: �T (0; Z;FT�1) = 1. But a

solution where

�T (0; Z;FT�1) < � < 1

is not infeasible. This is best seen by considering solutions where

�T (0; Z;FT�1) = �T+1(0; 1;FT ) = �:

For such solutions,

� =
q1;1u+ q1;0d

1� (q0;1u+ q0;0d)
;

which could very well be below some � < 1.6

Now consider the second case, where bt = 1. Investors will then

wait till the next calendar-time tick, no matter how far in the future.

Essentially, investors can a�ord to ignore the number of transactions

between two calendar-time ticks. As a result, the standard analysis will

obtain: P2 always pays at least as much as P1, and, hence,

cmt � st � kBm
t :

6The feasibility of (13) implies that it is not necessarily true that c1
T
=sT " 1 as

k=sT # 0.
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The �rst case, where bt < 1, is to be interpreted as one where there

is an opportunity cost to transacting. In the case of arbitrage positions,

such as a long position in P1 and a short position in P2, the investor

incurs costs as the number of transactions increase before the position is

unwound. This could be due, for instance, to increased margin require-

ment in the face of increases in volatility induced by the transactions.7

In other words, whenever there is an opportunity cost to not transact-

ing, the �rst analysis is the right one and the restriction in (11) does not

obtain. This seems particularly relevant for arbitrageurs who must tie

scarce capital when attempting to exploit a perceived arbitrage oppor-

tunity.

Virtually all of Merton's option pricing restrictions are invalid in our

economy when bt < 1. This includes well-known results such as put-call

parity, which obtains as a simple extension of (11). The relevance of our

theoretical analysis receives support from the empirical documentation

of frequent violations of European put-call parity in, e.g., Kamara and

Miller [1995].

Only the American feature of many exchange-traded options may

force their prices to always behave according to Merton's restrictions

(those, of course, that speci�cally pertain to American options). But

notice that most exchange-traded options cannot (or will not) be ex-

ercised at more than one point in, say, a calendar-time day, e.g., the

market's close. Interpreting our calendar-time ticks as the points in

transaction time that the market closes, it becomes clear that our anal-

ysis of arbitrage pricing restrictions on European options is relevant for

many exchange-traded American options as well.

7In practice, margin calls occur in calendar time. Nevertheless, they are triggered

by volatility, and, hence, if transactions and volatility are related (as in this paper), by

the (random) number of transactions between two calendar-time ticks. Of course, if

the option's calendar-time maturity is 1, there will not be any margin calls anymore.

If the maturity is more than 1 (m > 1), there may still be margin calls, and our

analysis becomes relevant.
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5 Necessary Conditions For Pricing By Ar-

bitrage

From the discussion in the previous section, one would conclude that

derivatives prices may hardly be restricted. Because of the simple tetra-

nomial stochastic structure of the economy, however, dynamic arbitrage

arguments may provide restrictions where static arguments as in Merton

[1973] do not.

In Section 2, we pointed out that market completeness, and, hence,

the possibility to dynamically hedge derivative payo�s and price deriva-

tives using arbitrage arguments, depend crucially on the dimension of

the payo� space generated by the calendar-time bonds.

Some notation. Let P
m

t be the vector of payo�s across states at t+1

for a bond with maturity m (as of time t).

P
m

t =

2
664

Bm�1
t+1 (1; 1;Ft)

Bm�1
t+1 (1; 0;Ft)

Bm
t+1(0; 1;Ft)

Bm
t+1(0; 0;Ft)

3
775 :

(The �rst two entries correspond to the states (Xt+1 = 1; Zt+1 = 1) and

(Xt+1 = 1; Zt+1 = 0), respectively; the last two entries correspond to

the states (Xt+1 = 0; Zt+1 = 1) and (Xt+1 = 0; Zt+1 = 0), respectively.)

So, to determine the completeness of the markets, the dimension of

the space spanned by fP
m

t gm=m1;m2;m3;m4
is critical. This dimension is

equal to the rank of the matrix P t, where

P t =
h
P
m1

t P
m2

t P
m3

t P
m4

t

i
:

Let r(A) denote the rank of a matrix A.

De�ne the m-period interest rate (yield on the m-period zero-coupon

bond):

ymt =
1

Bm
t

� 1:

Our �rst fundamental result:

Theorem 2 For derivatives to be priced by arbitrage, interest rates ymt

must be stochastic.
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Proof: Suppose the contrary. Then there are (deterministic) sequences

fB
o;m
t gt (all m) such that

P
m

t =

2
664

B
o;m�1
t+1

B
o;m�1
t+1

B
o;m
t+1

Bo;m
t+1

3
775 :

Notice:

P
m

t =

2
664

1
1
0
0

3
775Bo;m�1

t+1 +

2
664

0
0
1
1

3
775Bo;m

t+1 :

Hence, r(P t) � 2, i.e., the dimension of the payo� space generated by

P
m

t (m = m1;m2;m3;m4) is less than or equal to 2. This is insu�cient

to span all possible outcomes across states.

When interest rates are stochastic, they could still be deterministic

when recorded in calendar time. This means: the sequence

fymt(�)g�=0;1;2;:::

is deterministic (t(�) = minft : �t = �g). We now show that this sequence

must not be constant for markets to be complete.

Theorem 3 For derivatives to be priced by arbitrage, interest rates must

not be deterministic when recorded in calendar time.

Proof: Suppose the contrary. Then there are deterministic sequences

fBo;m�1
� g��0 (all m > 0) such that, if �t = �,

P
m

t =

2
664

B
o;m�1
�+1

B
o;m�1
�+1

Bm
t+1(0; 1;Ft)

Bm
t+1(0; 0;Ft)

3
775 :

This means:

P t =

2
664

B
o;m1�1

�+1 B
o;m2�1

�+1 B
o;m3�1

�+1 B
o;m4�1

�+1

Bo;m1�1

�+1 Bo;m2�1

�+1 Bo;m3�1

�+1 Bo;m4�1

�+1

Bm1

t+1(0; 1;Ft) Bm2

t+1(0; 1;Ft) Bm3

t+1(0; 1;Ft) Bm4

t+1(0; 1;Ft)
Bm1

t+1(0; 0;Ft) Bm2

t+1(0; 0;Ft) Bm3

t+1(0; 0;Ft) Bm4

t+1(0; 0;Ft)

3
775 :
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The �rst two rows are clearly colinear. Hence, r(P t) � 3 and markets

are incomplete. (In fact, it is possible to show: r(P t) = 1:)

Remark 1: Even if not all derivatives can be priced by arbitrage if the

conditions in Theorems 2 and 3 are violated, some may still be priced

as such, if their payo� vector lies in a lower-dimensional space (i.e., with

dimension strictly less than 4).

Remark 2: In proving Theorem 3, we made use of our restriction

to consider only economies with non-explosive bond prices. For bubble

economies, where bond prices may explode between calendar-time ticks,

Theorem 3 does not obtain.

6 These Conditions Are Not Su�cient

We now consider an example that illustrates how the conditions in The-

orems 2 and 3 are not su�cient.

We start from the speci�cation of a process of Arrow-Debreu securi-

ties prices and will derive the corresponding bond price processes. Then

we show that the payo� space generated by a choice of four bonds is

lower-dimensional. Since the dimension is even less than or equal to

two, markets cannot be complete.

Since markets will be shown to be incomplete, our specifying a pro-

cess of Arrow-Debreu securities from which to derive bond price processes

essentially corresponds to picking an investor, observing her shadow

prices for the Arrow-Debreu securities, and deducing what bond price

processes must have looked like for them to be consistent with these

shadow prices.

Let

q
X;Z
t (Xt; Zt;Ft�1) = qX;Z(Xt; Zt);

i.e., the state prices are (stationary) functions of only Xt and Zt.

De�ne

Q =

2
664

q1;1(1; 1) q1;0(1; 1) q0;1(1; 1) q0;0(1; 1)
q1;1(1; 0) q1;0(1; 0) q0;1(1; 0) q0;0(1; 0)
q1;1(0; 1) q1;0(0; 1) q0;1(0; 1) q0;0(0; 1)
q1;1(0; 0) q1;0(0; 0) q0;1(0; 0) q0;0(0; 0)

3
775 :
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When normalized with the (shadow) prices of the transaction-time risk-

free bond, Q becomes a risk-neutral transition probability matrix from

states at time t to states at time t+ 1.

Assumption 6.1: Assume Q is of full rank. Assume also:

q0;1(1; 1) + q0;1(1; 0) + q0;1(0; 1) + q0;1(0; 0) < 1;

q0;0(1; 1) + q0;0(1; 0) + q0;0(0; 1) + q0;0(0; 0) < 1:

It should be noted that this, it is not su�cient that bt < 1, all t. We

shall consider only the stationary bond price processes consistent with

these state prices. Hence,

Bm
t (Xt; Zt;Ft�1) = Bm(Xt; Zt):

De�ne, for m � 0,

B
m
=

2
664

Bm(1; 1)
Bm(1; 0)
Bm(0; 1)
Bm(0; 0)

3
775 :

As in Section 5, de�ne, for m > 0,

P
m
=

2
664

Bm�1(1; 1)
Bm�1(1; 0)
Bm(0; 1)
Bm(0; 0)

3
775 :

P
m
is the vector of payo�s across states generated by a bond with ma-

turity m. It depends neither on t nor on Xt or Zt. De�ne:

P =
h
P
m1

P
m2

P
m3

P
m4
i
:

As before, the rank of P is crucial in determining market completeness.

We have a sequence of Lemmas which facilitate the proof of the main

result (Theorem 4).

Lemma 2 For m � 1,

B
m
= (I4 � �)�1�B

m�1
;
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where

� = [0 0 Q�;3 Q�;4]

(Q�;j denotes the jth column of Q), and

� = [Q�;1 Q�;2 0 0]:

(Proof: see Appendix.)

Let dim(F ) denote the dimension of the vector space F .

Corollary 1

dim(spanfB
m
;m = m1;m2;m3;m4g) � 2:

Proof: B
m
;m = m1;m2;m3;m4, are linear combinations of the columns

of (I4 � �)�1�. Since

r((I4 � �)�1�) � min(r((I4 � �)�1); r(�)) = 2;

the span generated by these vectors is at most of dimension 2.

The following is a result that we do not really need for Theorem 4,

but is nevertheless interesting on its own.

Lemma 3 (I4 � �)�1� is not idempotent.

(Proof: see Appendix.) If this Lemma had not obtained, we would have,

for any m > 1:

B
m�1

= (I4 � �)�1�B
m�2

;

B
m

= (I4 � �)�1�B
m�1

= (I4 � �)�1�(I4 � �)�1�B
m�2

= (I4 � �)�1�B
m�2

= B
m�1

:
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Lemma 4

P
m
= [
1 + 
0(I4 � �)�1�]B

m�1
;

where


1 =

�
I2 02�2
02�2 02�2

�
;


0 =

�
02�2 02�2
02�2 I2

�
:

(Il denotes the l�l identity matrix; 0k�l denotes a k�l matrix of zeros).

Proof: Using Lemma 2,

P
m

= 
1B
m�1

+ 
0B
m

= 
1B
m�1

+ 
0(I4 � �)�1�B
m�1

= [
1 + 
0(I4 � �)�1�]B
m�1

:

Theorem 4

r(P ) � 2:

Proof: r(P ) is the dimension of the space spanned by

P
m
;m = m1;m2;m3;m4.

The latter is obtained as a linear transformation of the space spanned by

B
m�1

;m = m1;m2;m3;m4. This transformation is characterized by the

matrix 
1+
0(I4��)�1�, which is at best of rank 2. And the dimension

of the space spanned by B
m�1

;m = m1;m2;m3;m4 is at most 2. Hence,

the dimension of the space spanned by P
m
;m = m1;m2;m3;m4 is at

most 2, i.e., r(P ) � 2.

Since the dimension of the payo� space generated by any four bonds

is at most 2, it is not generally possible to perfectly insure the risk of

a derivative even if the hedge portfolio is rebalanced at every point in

transaction time.
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Notice, however, that interest rates are stochastic. In particular, they

depend on Xt and Zt:

ymt (Xt; Zt;Ft�1) = ym(Xt; Zt) =
1

Bm(Xt; Zt)
� 1:

Consequently, we have here an example of a class of economies where: (i)

derivatives cannot be priced by arbitrage, (ii) interest rates are stochas-

tic.

7 Independence Under A Risk-Neutral Prob-

ability

We now consider the following case.

Assumption 7.1: There is a state price process for which bt = b < 1.

Assumption 7.2: Xt and Zt are independent under the corresponding

risk-neutral probability.

Assumption 7.3: the state variable is traded, and will be referred to

as the \stock price."

As in the previous section, we again pick an investor in the economy

and observe her risk-neutral probabilities (normalized shadow prices for

Arrow-Debreu securities). Subsequently, we characterize the bond price

processes which could have generated these. We then use this charac-

terization to say something about market completeness. If markets turn

out to be complete (which they do not), the economy only allows for the

one choice of risk-neutral probabilities we initially made.

To understand Assumption 7.2, let �X;Z
t denote the risk-neutral prob-

ability of Xt+1 = X and Zt+1 = Z. It can be obtained from the state

prices as follows:

�
X;Z
t =

q
X;Z
t

b
:

De�ne pt to be the marginal risk-neutral probability of Zt+1 = 1:

pt = �
1;1
t + �

0;1
t :

Let �t denote the marginal risk-neutral probability of Xt+1 = 1:

�t = �
1;1
t + �

1;0
t :
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We assume that the state variable is traded (Assumption 7.3). Hence,

Lemma 1 restricts its evolution (see (4)). In this case,

st = b(ptstu+ (1� pt)std);

and we conclude that pt is a constant, to be denoted p. The independence

assumption can now be stated as follows:8>><
>>:

�1;1t = p�t;

�
1;0
t = (1� p)�t;

�
0;1
t = p(1��t);

�
0;0
t = (1� p)(1��t):

(14)

We add the following to these assumptions.

Assumption 7.4: �t depends at most on fXt; Xt�1; Xt�2; :::g.

Assumptions 7.1{7.4 impose the following structure on bond prices.

Lemma 5 Under Assumptions 7.1{7.4,

Bm
t (Xt; 1;Ft�1) = Bm

t (Xt; 0;Ft�1):

(Proof: see Appendix.) Hence, bond price processes are binomial, driven

only by the calendar-time tick process.

An immediate consequence is: the market is incomplete. This follows

from Theorem 5.

Theorem 5 Under Assumptions 7.1{7.4,

r(P t) � 2:

Proof: Consider the columns of P t:

P
m

t =

2
664

Bm�1
t+1 (1; 1;Ft)

Bm�1
t+1 (1; 0;Ft)

Bm
t+1(0; 1;Ft)

Bm
t+1(0; 0;Ft)

3
775

=

2
664

1
1
0
0

3
775Bm�1

t+1 (1; 1;Ft) +

2
664

0
0
1
1

3
775Bm

t+1(0; 1;Ft);
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m = m1;m2;m3;m4. Hence, r(P t) � 2.

One may still be able to price certain derivatives using arbitrage

arguments. Here is an example. Consider a derivative with price cmt for

which the following is true.

Assumption 7.5:

cmt+1(0; 1;Ft)� cm�1t+1 (1; 1;Ft) = cmt+1(0; 0;Ft)� cm�1t+1 (1; 0;Ft).

This assumption does not state that the term premium (incremental

cost of longer-maturity derivatives) is constant across levels of the stock

price, because it compares values across states where Xt+1 = 1 and

where Xt+1 = 0. Apply, however, this assumption to a call option with

exercise price k. For such a derivative, we set:

c0t+1(1; 1;Ft) = max(0; stu� k);

c0t+1(1; 0;Ft) = max(0; std� k):

Setting: m = 1, Assumption 7.5 implies:

c1t+1(0; 1;Ft)�max(0; stu� k) = c1t+1(0; 0;Ft)�max(0; std� k);

implying that the call's value for Xt+1 = 0 is obtained by adding a

predetermined component to the immediate exercise value.

Assumption 7.5 causes redundancies in the system of equations (9)

that represents the hedging problem. When we subsitute the stock for

one of the bonds in the hedging portfolio, we obtain the following result.

Lemma 6 Under Assumptions 7.1{7.5, if B1
t+1(0; 1;Ft) is di�erent from

1, the derivative's one-period payo� can be hedged with only the stock and

a one-period bond.

Proof: see Appendix.

Solving (9) generates the following (recursive) formula.

Theorem 6 Under Assumptions 7.1{7.5, if B1
t+1(0; 1;Ft) is di�erent

from 1,

cmt (Xt; Zt;Ft�1)

= B1
t (Xt; Zt;Ft�1)c

m�1
t+1 (1; 0;Ft) + �(Xt; Zt;Ft�1)�

cmt+1(0; 1;Ft)�B1
t+1(0; 1;Ft)c

m�1
t+1 (1; 0;Ft)

�
;
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where

�(Xt; Zt;Ft�1) =
1� dB1

t (Xt; Zt;Ft�1)

u� dB1
t+1(0; 1;Ft)

:

(Proof: see Appendix.)

Reconsider Assumption 7.5. Could it hold for a whole class of deriva-

tives? Take, e.g., the class of call options generated by all possible exer-

cise prices. At this point, it seems possible that all of them may satisfy

Assumption 7.5 simultaneously. In particular, there do not even seem

to be contradictions with the restrictions on option prices Merton [1973]

derived on the basis of simple trading strategies executed in calendar

time. Of course, as mentioned in Section 4, these restrictions need not

hold in our context.

Theorem 6 therefore provides a reasonable option pricing formula one

could work with in practice. It certainly is much more tractable than

more general cases, to be discussed in the next section. It is attractive for

another reason: only a single bond and the stock are needed to perfectly

hedge the derivative's payo� (Lemma 6). In General, three bonds are

needed, in addition to the stock.

Finally, let us turn back to Lemma 5. It is easy to prove Assump-

tion 7.2 as a consequence of the claim in the Lemma. We state this as a

theorem.

Theorem 7 If

Bm
t (Xt; 1;Ft�1) = Bm

t (Xt; 0;Ft�1);

then there exists a risk-neutral probability for which Xt and Zt are inde-

pendent.

This result is important. It provides a su�cient condition for there to

exist a risk-neutral probability such that the calendar-time tick process

and the state variable process are independent. It is not di�cult to see

that the existence of a risk-neutral probability for which Xt and Zt are

independent is not guaranteed if bond prices can di�er across stock price

up-ticks and down-ticks.
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Hull and White [1987] have derived a stock option pricing formula

under a risk-neutral probability measure for which the state variable

(stock price) and its stochastic volatility were independent. Theorem 7

provides a su�cient condition on our bond price processes for the exis-

tence of a risk-neutral probability with the independence property. In

other words, it describes a class of economies in our context for which

the pricing technique popularized in Hull and White makes sense.

The latter also implies that Hull and White's technique could be used

to generate an alternative option pricing formula to the one featured in

Theorem 6. A derivation of this alternative formula would provide an

occasion to explicitly compare the empirical success of two incomplete-

markets option prices. There is one major di�erence between the two

approaches: in Hull and White's, perfect replication remains impossible;

in the approach that lead to Theorem 6, the option's payo� can be

replicated using a portfolio of the stock and a one-period bond.

The reference to Hull and White is not accidental. Hull and White

investigated stock option pricing under stochastic volatility. As discussed

in Section 2, our modeling procedure e�ectively introduces stochastic

volatility in the stock price process when recorded in calendar time.

8 A Class Of Stationary Economies With

Complete Markets

We now provide an example of a class of economies with complete mar-

kets, i.e., all derivatives can be priced by arbitrage. The economies

will be stationary, in the sense that Arrow-Debreu securities prices (now

unique) are time-invariant functions of stationary state variables that

summarize relevant information.

The latter was already the case in the example of Section 6. There:

q
X;Z
t (Xt; Zt;Ft�1) = qX;Z(Xt; Zt)

(in other words, the state variables were: Xt and Zt). We concluded that

the markets were incomplete. We now enrich the set of state variables
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in a minimal way:

q
X;Z
t (Xt; Zt;Ft�1) = qX;Z(Xt; Zt; Xt�1) (15)

The addition of Xt�1 as an argument of qX;Z introduces enough time-

dependence on the state prices for markets to become complete. We

shall need one important additional assumption, however. To under-

stand what assumption is still missing, let us �rst investigate the class

of economies where only (15) is imposed.

The discussion will clarify an important aspect of the notion of com-

plete markets, namely, the crucial nature of the information 
ow. When

Arrow-Debreu securities prices are only known to satisfy (15), the market

is complete only conditional on certain information, i.e., conditional on

certain histories of calendar-time ticks and stock price jumps. For other

realizations, the market turns out to be incomplete. We can remedy the

latter by introducing additional restrictions on the state prices.

We again follow the approach in Section 6: we pick an arbitrageur,

observe the values she assigns to Arrow-Debreu securities and assume

that they satisfy (15). We then investigate what class of bond prices

processes is consistent with these valuations. We subsequently show

that this class generates complete markets. A trivial consequence will

be that the restriction in (15) is shared by all risk-neutral probability

measures (it is trivial because there will be only one risk-neutral measure

for each parametrization).

De�ne the matrices Qi;j :

Qi;j =

2
664

qj;1(i; 1; 1) qj;0(i; 1; 1)
qj;1(i; 0; 1) qj;0(i; 0; 1)
qj;1(i; 1; 0) qj;0(i; 1; 0)
qj;1(i; 0; 0) qj;0(i; 0; 0)

3
775 ;

for i = 0; 1, j = 0; 1 (i indexes Xt; j indexes Xt+1). Assume: the Q
i;js

are all full-rank. Also: the columnsums of Q1;0 and Q0;0 are strictly less

than 1 (we could do without this assumption; it is made to facilitate

inversion of certain matrices).

As before, we want to consider only the stationary bond prices that
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are consistent with these state price processes. Hence,

Bm
t (Xt; Zt;Ft�1) = Bm(Xt; Zt; Xt�1):

De�ne, for m � 0,

B
m
=

2
66666666664

Bm(1; 1; 1)
Bm(1; 0; 1)
Bm(0; 1; 1)
Bm(0; 0; 1)
Bm(1; 1; 0)
Bm(1; 0; 0)
Bm(0; 1; 0)
Bm(0; 0; 0)

3
77777777775
:

De�ne the time-(t+1) payo� vector of a bond with maturity m (at time

t; m � 1) if the time-t state is (Xt; Zt; Xt�1):

P
m
(Xt; Zt; Xt�1) =

2
664

Bm�1(1; 1; Xt)
Bm�1(1; 0; Xt)
Bm(0; 1; Xt)
Bm(0; 0; Xt)

3
775 :

Notice:

P
m
(1; 1; 1) = P

m
(1; 0; 1) = P

m
(1; 1; 0) = P

m
(1; 0; 0); (16)

P
m
(0; 1; 1) = P

m
(0; 0; 1) = P

m
(0; 1; 0) = P

m
(0; 0; 0): (17)

For a choice of four maturities m1;m2;m3 and m4, de�ne:
P (Xt; Zt; Xt�1)

= [P
m1

(Xt; Zt;Xt�1) P
m2

(Xt; Zt;Xt�1) P
m3

(Xt; Zt; Xt�1) P
m4

(Xt; Zt; Xt�1)]:

As before, r(P (Xt; Zt; Xt�1)) (the rank of P (Xt; Zt; Xt�1)) is crucial
in determining completeness of the markets.

Lemma 7 For m � 1,

B
m
= (I8 � �)�1�B

m�1
;

where

� =

2
66666666664

0 0 q0;1(1; 1; 1) q0;0(1; 1; 1) 0 0 0 0
0 0 q0;1(1; 0; 1) q0;0(1; 0; 1) 0 0 0 0
0 0 0 0 0 0 q0;1(0; 1; 1) q0;0(0; 1; 1)
0 0 0 0 0 0 q0;1(0; 0; 1) q0;0(0; 0; 1)
0 0 q0;1(1; 1; 0) q0;0(1; 1; 0) 0 0 0 0
0 0 q0;1(1; 0; 0) q0;0(1; 0; 0) 0 0 0 0
0 0 0 0 0 0 q0;1(0; 1; 0) q0;0(0; 1; 0)
0 0 0 0 0 0 q0;1(0; 0; 0) q0;0(0; 0; 0)

3
77777777775
;
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and

� =

2
66666666664

q1;1(1; 1; 1) q1;0(1; 1; 1) 0 0 0 0 0 0
q1;1(1; 0; 1) q1;0(1; 0; 1) 0 0 0 0 0 0
0 0 0 0 q1;1(0; 1; 1) q1;0(0; 1; 1) 0 0
0 0 0 0 q1;1(0; 0; 1) q1;0(0; 0; 1) 0 0
q1;1(1; 1; 0) q1;0(1; 1; 0) 0 0 0 0 0 0
q1;1(1; 0; 0) q1;0(1; 0; 0) 0 0 0 0 0 0
0 0 0 0 q1;1(0; 1; 0) q1;0(0; 1; 0) 0 0
0 0 0 0 q1;1(0; 0; 0) q1;0(0; 0; 0) 0 0

3
77777777775
:

(Proof: see Appendix.)

Lemma 8 For m � 1,

P
m
(1; Zt; Xt�1) = 
1B

m�1
;

where


1 = 
11 + 
10(I8 � �)�1�;


11 =

�
I2 02�6
02�2 02�6

�
;


10 =

�
02�2 02�2 02�4
02�2 I2 02�4

�
;

P
m
(0; Zt; Xt�1) = 
0B

m�1
;

where


0 = 
01 + 
00(I8 � �)�1�;


01 =

�
02�4 I2 02�2
02�4 02�2 02�2

�
;


00 =

�
02�6 02�2
02�6 I2

�

(Il denotes the l�l identity matrix; 0k�l denotes a k�l matrix of zeros).

Proof: Follows immediately from the de�nitions and Lemma 7.
Since P

m
, the payo� vector generated by a bond of maturity m, is a

transformation of B
m�1

, we would need to show that this transformation
is full rank. The dimension of the space spanned by a particular choice of

four vectors B
m�1

(we choose: m = 1; 2; 3; 4) will then be carried over
to that spanned by the corresponding P

m
s. Unfortunately, whenever

Xt = 0, this transformation has only rank 2. Whence the following
Theorem.
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Theorem 8

dim(spanfP
m
(0; Zt; Xt�1);m = 1; 2; 3; 4g) � 2:

Proof: Inspect 
0 (see Lemma 8): the bottom two rows of

(I8 � �)�1� = (

1X
l=0

�l)�

(where �0 � I8) have zeros except in positions (7,5), (7,6), (8,5) and
(8,6). When multiplied by 
00, the resulting matrix only has nonzero el-
ements in those columns where 
01 does. This reveals that the rank of 
0
is only two. Hence, whatever the dimension of span fB

m
;m = 0; 1; 2; 3g,

P
m
(0; Xt; Zt), m = 1; 2; 3; 4, forms at most a span of dimension 2.
Conclusion: markets are incomplete whenever Xt = 0. It can be

shown, however, that, generically,

dim(spanfP
m
(1; Zt; Xt�1);m = 1; 2; 3; 4g) = 4:

In other words, markets are complete, only conditional on being in a
state where Xt = 1. Because they are incomplete otherwise, markets
can only be called partially dynamically complete.

This illustrates that market completeness depends critically on the
information �ltration (we already pointed this out when discussing the
e�ect on information �ltrations of translations from transaction time
to calendar time in Section 2). Conditional on certain information or
histories, the markets may be revealed to be complete; conditioned on
other information or histories, markets may be incomplete.

As a matter of fact, this partial incompleteness seems to be a general
result. One can extend the state vector to include Xt�2, Xt�3, ..., Xt�T ,
i.e.,

q
X;Z
t (Xt; Zt;Ft�1) = qX;Z(Xt; Zt; fXt�1; Xt�2; Xt�3; :::; Xt�T g); (18)

and still �nd that the markets are incomplete conditional on certain
paths or histories. The paths where incompleteness obtains are those
where Xt�T+1 = 0.

The incompleteness is caused by the fact that the future payo� of a
bond with maturity m depends only on Bm�1(1; 1; 0) and Bm�1(1; 0; 0)
if Xt = 0. In contrast, when Xt = 1, this bond's future payo� depends
on Bm�1(1; 1; 1) and Bm�1(1; 0; 1) as well.
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To restore market completeness without adding any complexity or
destroying the stationarity of the economies, we could add the following
assumption.

Assumption 8.1:

PfXt+1 = 1jXt = 0g = 1:

Hence, q0;1(0; Zt; Xt�1) = q0;0(0; Zt; Xt�1) = 0. This assumption does
not overturn the property that the future payo� of a bond with maturity
m depends only on Bm�1(1; 1; 0) and Bm�1(1; 0; 0) if Xt = 0; it does,
however, reduce the number of future states from four to two (Zt+1 is
either 0 or 1). Because of this, just two bonds su�ce to span all possible
payo�s.

Rede�ne B
m
, P

m
and P to re
ect Assumption 8.1.

B
m
=

2
6666664

Bm(1; 1; 1)
Bm(1; 0; 1)
Bm(0; 1; 1)
Bm(0; 0; 1)
Bm(1; 1; 0)
Bm(1; 0; 0)

3
7777775
;

P
m
(1; Zt; Xt�1) =

2
664

Bm�1(1; 1; 1)
Bm�1(1; 0; 1)
Bm(0; 1; 1)
Bm(0; 0; 1)

3
775 ;

P
m
(0; Zt; Xt�1) =

�
Bm�1(1; 1; 0)
Bm�1(1; 0; 0)

�
:

(Notice that there are only two possible future states if Xt = 0.) For a
choice of four maturities m1;m2;m3 and m4, de�ne:
P (Xt; Zt; Xt�1) = [P

m1
(Xt; Zt; Xt�1)P

m2
(Xt; Zt; Xt�1)

P
m3

(Xt; Zt; Xt�1)P
m4

(Xt; Zt; Xt�1)]:

Also, change the de�nitions of Q0;1 and Q0;0:

Q0;1 =

�
q1;1(0; 1; 1) q1;0(0; 1; 1)
q1;1(0; 0; 1) q1;0(0; 0; 1)

�
;

Q0;0 = 0:

Q0;1 remains a full-rank matrix; Q0;0, of course, now has zero rank.
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Lemma 9 For m � 1,

B
m
= (I6 + �)�B

m�1
;

where

� =

2
6666664

0 0 q0;1(1; 1; 1) q0;0(1; 1; 1) 0 0
0 0 q0;1(1; 0; 1) q0;0(1; 0; 1) 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 q0;1(1; 1; 0) q0;0(1; 1; 0) 0 0
0 0 q0;1(1; 0; 0) q0;0(1; 0; 0) 0 0

3
7777775
;

and

� =

2
6666664

q1;1(1; 1; 1) q1;0(1; 1; 1) 0 0 0 0
q1;1(1; 0; 1) q1;0(1; 0; 1) 0 0 0 0
0 0 0 0 q1;1(0; 1; 1) q1;0(0; 1; 1)
0 0 0 0 q1;1(0; 0; 1) q1;0(0; 0; 1)
q1;1(1; 1; 0) q1;0(1; 1; 0) 0 0 0 0
q1;1(1; 0; 0) q1;0(1; 0; 0) 0 0 0 0

3
7777775
:

(Proof: see Appendix.)
Direct calculation reveals:

(I6 + �)� (19)

=

2
666664

q
1;1(1; 1; 1) q

1;0(1; 1; 1) 0 0 q
0;1(1; 1; 1)q1;1(0; 1; 1) q

0;1(1; 1; 1)q1;0(0; 1; 1)

+q
0;0(1; 1; 1)q1;1(0; 0; 1) +q

0;0(1; 1; 1)q1;0(0; 0; 1)

q
1;1(1; 0; 1) q

1;0(1; 0; 1) 0 0 q
0;1(1; 0; 1)q1;1(0; 1; 1) q

0;1(1; 0; 1)q1;0(0; 1; 1)

+q
0;0(1; 0; 1)q1;1(0; 0; 1) +q

0;0(1; 0; 1)q1;0(0; 0; 1)

0 0 0 0 q
1;1(0; 1; 1) q

1;0(0; 1; 1)

0 0 0 0 q
1;1(0; 0; 1) q

1;0(0; 0; 1)

q
1;1(1; 1; 0) q

1;0(1; 1; 0) 0 0 q
0;1(1; 1; 0)q1;1(0; 1; 1) q

0;1(1; 1; 0)q1;0(0; 1; 1)

+q
0;0(1; 1; 0)q1;1(0; 0; 1) +q

0;0(1; 1; 0)q1;0(0; 0; 1)

q
1;1(1; 0; 0) q

1;0(1; 0; 0) 0 0 q
0;1(1; 0; 0)q1;1(0; 1; 1) q

0;1(1; 0; 0)q1;0(0; 1; 1)

+q
0;0(1; 0; 0)q1;1(0; 0; 1) +q

0;0(1; 0; 0)q1;0(0; 0; 1)

3
777775

:

(I6+�)� transformsB
m�1

into B
m
. Hence, for span fB

m
;m = 0; 1; 2; 3g

to have dimension four, it is necessary that (I6 + �)� be of rank 4.
Inspection of (19) reveals that it will be, because of the assumptions on
the matrices Qi;j (i = 0; 1; j = 0; 1). Conditions on the rank of (I6+�)�
alone are, however, not su�cient: for m > 0, the B

m
s do not obtain as

rank-4 transformations of arbitrary vectors, but of the corresponding

vectors B
m�1

s. Nevertheless, we can prove the following.

Lemma 10 Generically,

dim(spanfB
m
;m = 0; 1; 2; 3g) = 4:
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(Proof: see Appendix.)

Now transform B
m�1

into the payo� vectors, P
m
(Xt; Zt; Xt�1).

Lemma 11 For m � 1,

P
m
(1; Zt; Xt�1) = 
1B

m�1
;

where


1 = 
11 + 
10(I6 + �)�;


11 =

�
I2 02�4
02�2 02�4

�
;


10 =

�
02�2 02�2 02�2
02�2 I2 02�2

�
;

P
m
(0; Zt; Xt�1) = 
0B

m�1
;

where


0 =
�
02�4 I2

�
(Il denotes the l�l identity matrix; 0k�l denotes a k�l matrix of zeros).

Proof: Follows immediately from the de�nitions and Lemma 9.
Inspection of 
0 and 
1 reveal that these matrices (transformations)

are always full-rank. Hence, we conclude:

Theorem 9

r(P (1; Zt; Xt�1)) = 4;

r(P (0; Zt; Xt�1)) = 2:

Since r(P ) need only be 2 when Xt = 0 (there are only two possible
future outcomes in that state), we now do obtain a dynamically complete
market.

Summarizing: a stationary economy where state prices satisfy (15) is
only partially complete. By introducing the assumption that PfXt+1 =
1jXt = 0g= 1, we make the economy fully complete. In the more general
case, where qX;Z depends on the history of calendar-time ticks up to lag
T (see (18)), we would merely need:

PfXt+1 = 1jXt = Xt�1 = ::: = Xt�T+1 = Xt�T = 0g = 1:
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T can be arbitrarily large, so we can still accomodate a rich set of sta-
tionary calendar-time tick processes.

The proof that such economies have complete markets has been te-
dious. At the heart of it, however, is the question of the dimension of the
space spanned by the bond payo� vectors B (all m). Since B(m > 0)

is obtained from B
m�1

through a linear operation (see, e.g., Lemma 9),
proof of market completeness maps into the following general mathemat-
ical question. Let T be a linear operator on a vector space F . De�ne a
sequence fB

m
gm�0 in F , as follows:

B
m
= TB

m�1
:

The central issue is: when is the dimension of the span of the vectors in
this sequence equal to the dimension of the image of T ?

We now rejoin an issue raised in Section 2: if markets are complete,
one must be able to infer unique state prices from the prices of traded
assets (in the present case, calendar-time bonds). How would one go
about extracting such prices here?

In total, there are 20 state prices to be solved for. Using the prices
of bonds with maturities 1, 2, 3 and 4, the state prices can be obtained
from the following equations:

B
m
= �B

m
+ �B

m�1
;

for m = 1; 2; 3; 4. In total, there are 24 equations, of which four will be
redundant. One can collect nonredundant equations into one system:

B = �Q; (20)

where:

Q
0

=

2
66664

q1;1(1; 1; 1) q1;0(1; 1; 1) q0;1(1; 1; 1) q0;0(1; 1; 1)
q1;1(1; 0; 1) q1;0(1; 0; 1) q0;1(1; 0; 1) q0;0(1; 0; 1)
q1;1(1; 1; 0) q1;0(1; 1; 0) q0;1(1; 1; 0) q0;0(1; 1; 0)
q1;1(1; 0; 0) q1;0(1; 0; 0) q0;1(1; 0; 0) q0;0(1; 0; 0)
q1;1(0; 1; 1) q1;0(0; 1; 1) q1;1(0; 0; 1) q1;0(0; 0; 1)

3
77775 ;

B
0

=

2
66664

B1(1; 1; 1) B2(1; 1; 1) B3(1; 1; 1) B4(1; 1; 1)
B1(1; 0; 1) B2(1; 0; 1) B3(1; 0; 1) B4(1; 0; 1)
B1(1; 1; 0) B2(1; 1; 0) B3(1; 1; 0) B4(1; 1; 0)
B1(1; 0; 0) B2(1; 0; 0) B3(1; 0; 0) B4(1; 0; 0)
B1(0; 1; 1) B2(0; 1; 1) B1(0; 0; 1) B2(0; 0; 1)

3
77775 ;
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� =

2
66664

P (1; 1; 1)0 0 0 0 0 0

0 P (1; 0; 1)0 0 0 0 0

0 0 P (1; 1; 0)0 0 0 0

0 0 0 P (1; 0; 0)0 0 0

0 0 0 0 P (0; 1; 1)0 0

0 0 0 0 0 P (0; 0; 1)0

3
77775 ;

where we restrict P (0; 1; 1) and P (0; 0; 1) to include only the payo� vec-
tors for bonds with maturities 1 and 2 (hence, they are 2 by 2 matrices,
instead of 2 by 4). Because of Theorem 9, � is a full-rank matrix. The
(unique) state prices are obtained by inversion:

Q = ��1B:

Until now, we have followed a route where we �rst picked state price
processes, determined consistent bond price processes, and then veri�ed
whether markets were complete. Using (20), we can now sketch the al-
ternative, traditional route, where one posits, say, stationary bond price
processes of the form Bm(Xt; Zt; Xt�1) , and one veri�es whether they:
(i) are free of arbitrage opportunities, (ii) give rise to complete markets.
If one excludes the states (0; Zt; 0) a priori, state prices must solve (20).
If no strictly positive solution exists, the given bond price processes are
inconsistent with (i), i.e., with absence of arbitrage opportunities. If
such solutions do exist, there are no arbitrage opportunities. If the solu-
tion is unique, markets are complete, i.e., (ii) obtains. Our approach had
the advantage that it generated bond price processes that automatically
satis�ed (i), so that we could focus on (ii).

9 Conclusion

This paper has begun to analyze the restrictions imposed by absence
of arbitrage in an economy where arbitrageurs take decisions in trans-
action time but �nite-maturity contracts bear (random) calendar-time
expiration dates. Since portfolio rebalancing is possible but in transac-
tion time, our approach is only natural. Yet the implications of it are
profound: some of the simple arbitrage restrictions that obtain when
decisions are taken in calendar time may fail in our world; simultane-
ously, new opportunities for dynamic hedging, and, hence, pricing by
arbitrage, are o�ered. Among other things, arbitrage-based solutions
become possible for the pricing of options written on stock whose price
exhibits stochastic volatility when recorded in calendar time. Whence
the title of this paper.

We mentioned that it was not innocuous to assume that there exists
a transaction time (count of occasions) when it is possible to rebalance a
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hedge portfolio potentially consisting of multiple securities, and for which
the state variable process is binomial. Realistically, this would require
continuous trading in the hedge securities. In the present case, these were
riskfree bonds with calendar-time maturities. It would be interesting
to study an economy where bond trading is noncontinuous, and even
asynchronous, so that not all the components of the hedge portfolio can
be adjusted simultaneously. A continuously traded security (money?)
will still be necessary, because it is di�cult to see how transactions would
technically be possible. After all, transactions are exchanges of one asset
for another.
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Appendix

Proof of Theorem 1

Under the maintained assumptions,

E[(U�� )
2
jG��1]

= V [(U�� )
2
jG��1] + (E[U�� jG��1])

2:

But,

E[U�� jG��1]

= E[E[

t(�)�1X
�=t(��1)

�
Z�+1(~u� ~d) + ~d

�
jXt(�); Xt(�)�1; :::; X0;

Zt(��1); Zt(��1)�1; :::; Z0]jG��1]

= 0;

V [U�� jG��1]

= V [E[U�� jXt(�); Xt(�)�1; :::; X0;Zt(��1); Zt(��1)�1; :::; Z0]jG��1]

+E[V [U�� jXt(�); Xt(�)�1; :::; X0;Zt(��1); Zt(��1)�1; :::; Z0]jG��1]

= E[V [U�� jXt(�); Xt(�)�1; :::; X0;Zt(��1); Zt(��1)�1; :::; Z0]jG��1]

= E[V [

t(�)�1X
�=t(��1)

�
Z�+1(~u� ~d) + ~d

�
jXt(�); Xt(�)�1; :::; X0;

Zt(��1); Zt(��1)�1; :::; Z0]jG��1]

= �2E[t(�)� t(� � 1)jG��1];

where �2 is the variance of Z�+1(~u� ~d) + ~d.

Proof of Lemma 1

The existence of the qX;Z
t follows from Harrison and Kreps [1979]. The

restriction that 0 < q
X;Z
t < 1 follows from our assumptions that: (i)

0 < PfXt = 1g < 1, 0 < PfZt = 1g < 1, and (ii) bt = q
1;1
t +q

1;0
t +q

0;1
t +

q
0;0
t � 1.

Proof of Lemma 2

The following obtains after writing out explicitly the result of Lemma 1:

B
m
= �B

m
+ �B

m�1
:
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Hence,

(I4 � �)B
m
= �B

m�1
:

Because of the assumed restriction in Assumption 6.1 , (I4 � �) is in-
vertible and its inverse equals

P
l�0 �

l, where �0 � I4. Hence,

B
m
= (I4 � �)�1�B

m�1
:

Proof of Lemma 3

Because Q is full rank, any matrix A which satis�es:

�A = �

must have the identity 2 by 2 matrix in its Northwest corner. For (I4 �
�)�1� to be idempotent, it must be that:

(I4 � �)�1�(I4 � �)�1� = (I4 � �)�1�:

Rewriting, one obtains:

�(I4 � �)�1� = �:

For this to be possible, (I4 � �)�1� must satisfy the restrictions on A

above. But, because of the assumed restriction on the columnsums of
Q,

(I4 � �)�1� =

1X
l=0

�l�

� �

(�0 � I4). Since element (1; 2) of � is strictly positive, whereas the same
element of A must be zero, a contradiction is obtained.

Proof of Lemma 5

We make explicit the assumption that �t depends only on the history
of calendar-time ticks by writing:

�t = �t(Xt; Xt�1; :::):
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Taking �rst m = 1, appealing to Lemma 1, and focusing on the station-
ary solution,

B1
t (Xt; Zt;Ft�1)

= b�(Xt; Xt�1; :::)

+b2(1��(Xt; Xt�1; :::))�(Xt+1; Xt; :::)

+b3(1��(Xt; Xt�1; :::))(1��(Xt+1; Xt; :::))�(Xt+2; Xt+2; :::)

.::

Clearly, B1
t (Xt; 1;Ft�1) = B1

t (Xt; 0;Ft�1). Since B2
t (Xt; Zt;Ft�1) de-

pends on the evolution of future one-period bond prices, and the latter
are the same across Zt = 0; 1, the same conclusion obtains for m = 2.
Iterating, one can prove the result for all m.

Proof of Lemma 6

Consider the system in (9). Subsitute the stock for the fourth bond. The
system becomes:

cm�1t+1 (1; 1;Ft) = ws
t stu+ w1

tB
m1�1
t+1 (1; 1;Ft)

+ w2
tB

m2�1
t+1 (1; 1;Ft) + w3

tB
m3�1
t+1 (1; 1;Ft)

cm�1t+1 (1; 0;Ft) = ws
t std+ w1

tB
m1�1
t+1 (1; 0;Ft)

+ w2
tB

m2�1
t+1 (1; 0;Ft) + w3

tB
m3�1
t+1 (1; 0;Ft)

(21)

cmt+1(0; 1;Ft) = ws
t stu+ w1

tB
m1

t+1(0; 1;Ft)

+ w2
tB

m2

t+1(0; 1;Ft) + w3
tB

m3

t+1(0; 1;Ft)

cmt+1(0; 0;Ft) = ws
t std+ w1

tB
m1

t+1(0; 0;Ft)

+ w2
tB

m2

t+1(0; 0;Ft) + w3
tB

m3

t+1(0; 0;Ft)

Now impose the result of Lemma 5 and observe that the second and
third bonds are redundant. Assumption 7.5 will guarantee that there is
no inconsistency, despite the redundancies. Hence, the system can be
solved using just the stock and a one-period bond.

Proof of Theorem 6

Use the second and third equations in (21), takem1 = 1 (allowed because
of the assumption on B1

t ), and set the weights to the second and third
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bonds equal to zero. The solution is:

ws
t =

cmt+1(0; 1;Ft)� cm�1t+1 (1; 0;Ft)B
1
t+1(0; 1;Ft)

stu� stdB
1
t+1(0; 1;Ft)

w1
t = cm�1t+1 (1; 0;Ft)� ws

t std:

The result then obtains by setting:

cmt (Xt; Zt;Ft�1) = ws
t st + w1

tB
1
t (Xt; Zt;Ft�1):

Proof of Theorem 7

According to (3), bond prices satisfy:

Bm
t (Xt; Zt;Ft�1)

= q
1;1
t (Xt; Zt;Ft�1)B

m�1
t+1 (1; 1;Ft) + q

1;0
t (Xt; Zt;Ft�1)B

m�1
t+1 (1; 0;Ft)

+ q
0;1
t (Xt; Zt;Ft�1)B

m
t+1(0; 1;Ft) + q

0;0
t (Xt; Zt;Ft�1)B

m
t+1(0; 0;Ft):

De�ning the risk-neutral probabilities as

�
X;Z
t =

q
X;Z
t

bt

and using the assumption that

Bm
t+1(Xt+1; 1;Ft) = Bm

t+1(Xt+1; 0;Ft);

we rewrite this as follows:

Bm
t (Xt; Zt;Ft�1)

= bt

�
[�1;1t (Xt; Zt;Ft�1) + �

1;0
t (Xt; Zt;Ft�1)]B

m�1
t+1 (1; 1;Ft)

+ [�0;1t (Xt; Zt;Ft�1) + �
0;0
t (Xt; Zt;Ft�1)]B

m
t+1(0; 1;Ft)

�
:

Retaining this equation for two bonds with di�ering maturities, and
adding the requirement that

�
1;1
t + �

1;0
t + �

0;1
t + �

0;0
t = 1;

one can rewrite these to become three linear, independent equations in
the �ve unknowns bt�

1;1
t , bt�

1;0
t , bt�

0;1
t , bt�

0;0
t and bt. The solution set
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is nonempty and at least two-dimensional. We choose a solution so that
the corresponding marginal risk-neutral probabilities pt and �t satisfy
the independence requirement:

8>><
>>:

�
1;1
t = pt�t;

�
1;0
t = (1� pt)�t;

�
0;1
t = pt(1��t);

�
0;0
t = (1� pt)(1��t)

(see (14)). The latter constitute four linear, independent equations if we

take the unknowns to be the �X;Z
t s and pt�t and �t. When these equa-

tions are added, we obtain in total seven equations in seven unknowns.
A solution exists and will generally be unique.

Proof of Lemma 7

Analogous to the proof of Lemma 2.

Proof of Lemma 9

Analogous to the proof of Lemma 2. Also notice that in this case,

(I6 � �)�1 =

1X
l=0

�l

= �0 + �1

= I6 + �

(where we again use: �0 � I6).

Proof of Lemma 10

First notice that, generically, there does not exist a scalar g0 such that

B
1
(= (I6 + �)�B

0
) = g0B

0
:

This can best be seen by remembering that B
0
is a vector with 1 in all

positions, and, from (19), that the third and fourth elements of B
1
will

therefore be:
q1;1(0; 1; 1) + q1;0(0; 1; 1);

q1;1(0; 0; 1) + q1;0(0; 0; 1);
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respectively, i.e., the rowsums of Q0;1. Generically, these rowsums will

di�er, and, hence, B
1
cannot be written as g0B

0
. Therefore,

dim(spanfB
m
;m = 0; 1g) = 2.

We now prove that dim(spanfB
m
;m = 0; 1; 2; 3g) = 4. De�ne:

T = (I6 + �)�:

First, notice that, because B
0
and B

1
are linearly independent and T

has rank 4, B
1
(= TB

0
) and B

2
(= TB

1
) are linearly independent

as well. Similarly, because they are rank-4 transformations of linearly

independent vectors, B
2
and B

3
will also be linearly independent. But

that is not enough. We need to show that B
3
is linearly independent of

B
0
, B

1
and B

2
, i.e., there do not exist scalars g0, g1, g2 and g3, such

that:
g0B

0
+ g1B

1
+ g2B

2
+ g3B

3
= 0:

Rewrite the latter:

g0B
0
+ g1B

1
+ g2B

2
+ g3B

3

= g0B
0
+ g1TB

0
+ g2T

2B
0
+ g3T

3B
0

= g01 + g1A1 + g2A2 + g3A3;

where 1 denotes the unit vector, and A1, A2 and A3 are vectors obtained
by summing the columns of T , T 2 and T 3, respectively. Generically, 1,
A1, A2 and A3 are linearly independent, and, hence, there do not exist
linear combinations which equal zero.
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