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Résumé / Abstract

Nous considérons une économie de pur échange à agent représentatif
avec biens périssables et durables dans laquelle le bien durable procure du statut
ainsi que des services.  Nous examinons les effets de ces deux attributs du bien
durable sur les demandes et les prix d'équilibre.  Lorsque les attributs sont des
substituts parfaits l'irréversibilité des achats du durable peut créer des excès
temporaires de services courants par rapport à leur niveau désiré.  L'inflexibilité de
l'ajustement est asymmétrique puisqu'une augmentation du niveau de statut désiré
est réalisée par des achats immédiats.  Nous démontrons que le taux d'intérêt
d'équilibre dépend, en particulier, des taux de croissance des attributs du bien
durable et que les primes de risque vérifient un MÉDAF de consommation à deux
bétas.  Nous examinons les conditions sous lesquelles la durabilité augmente les
primes de risque des actifs financiers.

We consider a pure exchange representative agent
economy with perishable and durable commodities in which the durable good
provides status as well as services.  We examine the effects of the durable's
attributes on demands and equilibrium prices.  When the attributes are perfect
substitutes irreversibility of the durable's purchases may cause temporary
excesses of actual services over their desired level.  Stickiness in adjustment is
asymmetric since increases in desired status level are met by immediate
purchases.  We show that the equilibrium interest rate depends, in particular, on
the growth rates of the durable's attributes and that asset risk premia satisfy a
two-beta consumption CAPM.  Conditions under which durability increases asset
risk premia are provided.

Mots Clefs:  Biens durables, statut, services, prix des actifs et des biens, taux d'intérêt.
Keywords: Durables, status attribute, services, asset and commodity prices, interest

     rate.
JEL Classification: C60, D52, D91, G12.
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1.  Introduction.

In this paper we consider an economy with perishable and durable

commodities in which the durable commodity functions as a symbol of status in

addition to providing services.  We analyze the effects of these two attributes of

durable goods on the demand functions and equilibrium prices in a pure exchange

representative agent economy.  When the attributes of durables are perfect substitutes

irreversibility of durable purchases may cause temporary excesses of actual services

over their desired level.  Stickiness in adjustment is asymmetric since increases in

desired status level are met by instantaneous purchases.  The possibility of future

excesses affects both the current demands for durables and perishables.  Closed form

solutions for the price of the durable commodity, the interest rate and asset risk premia

are derived.  In equilibrium the interest rate depends on the moments of the rate of

growth in the consumption of the perishable good as well as on the rates of growth in

the attributes (status and services) of durables; asset risk premia satisfy a two-beta

consumption CAPM.  We provide conditions under which the multiattribute nature of

durable goods simultaneously increases asset risk premia and lowers the interest rate.

In the traditional intertemporal asset pricing model commodities provide

immediate gratification through consumption.  Indeed, in the standard setting, the

instantaneous utility function depends on contemporaneous consumption rates only.

It is clear though that this choice of structure fails to capture the diversity of functions

played by a large fraction of commodities in modern economies.  A wide array of

commodities manufactured and sold in markets, indeed, fulfil multiple needs.  Durable

goods, such as automobiles, furniture or clothing typically play two roles.  On the one

hand, they provide services and therefore utility over extended periods of time, i.e. they

have a usage function.   On the other hand they also play an important role of "status"

creation, i.e. they have a symbolic function.  This symbolic function is revealed in

feelings of proudness, worthiness or status which are often associated with ownership

of durable goods.  It is perhaps the dominant function of items such as luxury cars,

fashionable clothes or jewelry.  



       Lancaster (1991) discusses the 'fashion' or 'style' attributes as a relevant1

characteristic of durable commodities.  He also argues that "...In the decision to buy
a new automobile, for example, the characteristic related to 'fashion' or 'style' may be
present in relative strength in the first season, relatively less in later seasons, although
the characteristics related to 'transportation' (use) may remain with constant
coefficients over several seasons."

       Some of the shortcomings of the standard model based on time additive von2

Neumann-Morgenstern preferences are described in Grossman and Shiller (1981) and
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The role of status creation has been amply documented in sociological

studies (Baudrillard (1981)) and used as a motivation for the study of models

involving "Catching Up with the Joneses" or habit formation (Ryder and Heal (1973),

Abel (1990)).  The dual role of durables also been recognized in consumer theory

(Lancaster (1991)).  In their role of status creation durables provide immediate utility

as well as, possibly, future utility which reflect the symbolic value attached to the

ownership of the commodity.   Hence, a durable commodity is best described as a1

multiattribute commodity with two main attributes: status and services.  Each of these

attributes is valued by agents who purchase the commodity to fulfil their needs for

status and for services.

Expenditures on durables represent about 12.5% of consumer expenditures

on goods and services.  Durables expenditures, also, constitute the most volatile

component of consumer expenditures:  the standard deviation of the growth rate in

durables is about six times that of non-durables and services (Mankiw (1985)).  Since

the durability aspect of these goods and, more specifically, the multiattribute structure

of durables does not fit in the classic model, we propose a modification of the standard

preference structure to incorporate these considerations.  Additionally, implications

of a theory incorporating this dichotomy between goods (durables versus perishables)

can be tested since National Income Accounts provide a breakdown of consumption

between durables and nondurables.

It is well known that the standard asset pricing model with a single perishable

consumption good (Merton (1973), Breeden (1979), Cox, Ingersoll and Ross (1985))

fails to explain a number of observed regularities.   Attempts to reconciliate theoretical2



Mehra and Prescott (1985).

       See also Farmer (1990) and Weil (1990).3

       Durability may help to explain the varied shapes of the yield curve.4
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implications with observed empirical regularities have mainly focussed on the

structure of preferences.  To this end recursive preferences (Epstein and Zin (1989),

Duffie and Epstein (1992)), preferences embodying substitutability of consumptions

at different dates (Hindy and Huang (1992,1993)) and habit forming preferences (Abel

(1989), Sundaresan (1989), Constantinides (1990), Detemple and Zapatero (1991,

1992) and Heaton (1993)) have been investigated.   Models based on habit forming3

preferences, for instance, may produce low volatility of consumption since habits

increase the cost of current consumption; they may also increase the magnitude of

asset risk premia as a result of "increased risk aversion". 

One feature absent from the standard model is the dichotomy between

durable and nondurable commodities.  While the importance of this dichotomy has

already been demonstrated in the context of the term structure of interest rates  (Dunn4

and Singleton (1986)) current research has mostly centered on single good models

with durability in which the durable good has a single attribute.  Recent findings

suggest that nondurable consumptions at nearby points in time are substitutes and that

services from durable and nondurable goods may not be perfect substitutes

(Eichenbaum and Hansen (1990)).  In economies in which a single durable good, such

as housing, provides instantaneous services which are valued by households but is

costly to adjust, equilibrium asset prices satisfy the traditional CAPM while the

consumption CAPM fails (Grossman and Laroque (1990)).  Also, durability and habit

formation exert conflicting effects on asset risk premia: evaluation of a model

incorporating both aspects reveals an improvement in the fit of the model but also

suggests that habit persistence dominates durability (Ferson and Constantinides

(1991)).  Durable goods, additionally, can be valued as contingent claims: the price

of a durable good with single (service) attribute is the current market value of its future

service flows (Eichenbaum, Hansen and Richard (1987)).  Finally Hindy and Huang
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(1993) study a model in which a single durable good produces services from past

purchases.  They find that the agent consumes periodically and invests more in the

risky asset than the corresponding agent with standard time additive utility. 

Hence, the current literature clearly underscores the need for further analysis

of general models which involve multiattribute durable goods.  In this paper we

formulate a model of asset pricing in a class of stochastic exchange economies with

two types of commodities, durable and nondurable (or perishable) goods.  In our

model the durable commodity has two attributes.  It provides services from past

purchases and it creates status, immediately, at the time of purchase.  The agent's

preferences are defined over the perishable consumption good, status and services.

In a first step we assume (i) perfect substitutability between status and services, (ii)

linearity of the production function for status with respect to the contemporaneous

quantity of the durable commodity purchased and (iii) linearity and history dependence

in the technology for production of services which is a weighted average of past

durable purchases.  This basic model is later extended to more general preferences

defined over attributes.

1.1.  Summary of results.

In the presence of multiattribute durability consumption choices are driven

by the following considerations.  The choice of consumption of the perishable

commodity involves the usual comparison between the current marginal utility of

consumption and the marginal (monetary) cost.  By way of contrast an increase in

current purchases of the durable good produces an immediate increase in status as well

as an increase in future services produced, i.e., it raises contemporaneous utility as

well as future utilities.  The optimal policy balances the marginal utility of status plus

the marginal utility attached to future services and the marginal cost of the durable's

purchases.  When the instantaneous utility function is not additively separable across

goods the demands for the durable and the perishable interact and depend both on the

stock of services provided by past purchases and on the status level achieved.
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Durability implies an effect of past purchases on current utility and choices.

If past acquisitions of the durable are irreversible and if status and services are perfect

substitutes nonnegativity consumption constraints may become binding even if the

marginal utility at zero is infinite.  Indeed, since past purchases provide current

services the economy may reach states in which a reduction in services is desired.  By

precluding an instantaneous reduction in services below these provided by past

durable's purchases irreversibility may force temporary excesses of current services

over their desired level.  Stickiness in adjustment, furthermore, is asymmetric:

increases in desired status level are met by instantaneous purchases.  The possibility

of future excesses affects both the current demands for the durable and the perishable.

When the endogenous constraint is currently active an excess or deficient demand for

the perishable good is recorded depending on whether the cross partial derivative of

the utility function is positive or negative.  

In equilibrium, Arrow-Debreu prices are proportional to the marginal utility

of perishable consumption evaluated at the aggregate consumption of the perishable,

the status level achieved and the aggregate flow of services produced from past

durable's purchases.  The (relative) price of the durable reflects the intertemporal

nonseparabilities inherent in durability: it depends on current marginal utility of status

as well as on the marginal utility of future services.  By way of contrast, the interest

rate and asset risk premia are not directly influenced by intertemporal

nonseparabilities induced by the service attribute of the durable good. 

The equilibrium interest rate is related to the moments of the growth rates in

perishable consumption, status and services produced from the durable.  In particular,

a negative relation to the expected growth in the services from the durable emerges if

and only if the cross partial of the instantaneous utility function is positive (u  > 0).12

Under appropriate conditions a negative relation to the quadratic variation of the

growth rate in status and to the covariation between the growth rates in status and in

the perishable's consumption is recorded.

The presence of a multiattribute durable good also changes the structural

form of asset risk premia (relative to a single attribute durable model): a two beta
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consumption CAPM holds where the factors are aggregate consumption of the

perishable good and aggregate status level associated with the durable respectively.

Durability also changes the weights of the respective factors.  If the (atemporal)

conditional relative risk aversion of the instantaneous utility function (-u /u ) is11 1

increasing with respect to the attributes of the durable the effect of the first factor is

magnified.  Under appropriate conditions durability also boosts the effect of the second

factor.  Hence, comparison of equilibria across economies reveals that asset risk

premia may be higher while the interest rate may be lower when one of the two

commodities is a multiattribute durable.  The source of this effect is the

nonseparability across the perishable and the  attributes of the durable and the

presence of the status attribute.  Thus, explicit modelling of multiattribute durability

in a two-good economy may help to resolve the equity premium puzzle.

Section 2 presents the structure of the economy and the assumptions.

Demands for consumptions of the durable and nondurable are derived in section 3;

equilibrium allocations and prices are solved for in section 4.  Section 5 focuses on the

behavior and properties of the interest rate and of asset risk premia and specializes the

results to a Cobb-Douglas economy.  An extension to a more general model of

preferences over attributes is presented in section 6.  All proofs are collected in

Appendix A;  Appendix B derives the equilibrium volatilities of the values of the firms

producing the two goods;  Appendix C contains an analysis of the demand functions

for the model of section 6; Appendix D provides a solution method for linear

backward equations.

2.  The economy.

We consider a pure exchange economy with a representative agent (Lucas

(1978)) and two types of commodities: durable and perishable.  The durable

commodity has two characteristics: it provides services and status.

The uncertainty is represented by a complete probability space (S,T,P)

where S is the set of states of nature, T is a F-algebra representing the collection of

observable events and P is a probability measure defined on (S,T).  On (S,T,P)



       A stochastic process X is square-integrable (X0� [0,T]) if E[I (X ) dt] < 4.5 2 T 2
0 t

A stochastic process X is T -progressively measurable (with respect to the filtration(.)

T ) if, for each t$0 and each A0�(U) the set {(v,T):v0[0,t], T0S, x (T)0A}( v.)

belongs to the product F-field �([0,t])xT .t
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define a Brownian Motion process W with values in U .  The economy has finite timed

[0,T].  Let T  / {T ;t0[0,T]} denote the augmented filtration generated by W and set( t.)

T = T .  Our model for information and beliefs is (S,T,T ,P).T (.)

There are two commodities in the economy.  The first commodity is a

standard perishable good which is physically destroyed in the process of consumption.

The consumption good has a unique attribute which can be interpreted as the health

benefits that it provides.  In the remainder of the paper we assimilate the consumption

of the perishable commodity with its unique characteristic: both are denoted by c.  The

second commodity is a durable good which has two distinct functions or attributes.

On the one hand the durable provides services, z, which are valued by the agent.  On

the other hand it functions as a symbol of value and provides status to its owner, s.

The durable commodity represents a common input in the production of these two

characteristics.  The structure of these production functions will be specified below.

Preferences are defined over (the triplet of) characteristics.  The consumption space

is the positive cone of the space of square-integrable and T -progressively measurable(.)

processes.5

Assumption 1:  Preferences have the von Neumann-Morgenstern representation,

U(c,s,z) / E[I (D ) u(c ,s +z )dt] (1)T -1
0 t t t t

where D  / exp[I $ dv], $ is a bounded, T -progressively measurable processt 0 v (
t

.)

representing the subjective discount rate, u( , ) is the instantaneous utility function,. .

c  represents the consumption of the perishable commodity at date t, s is thet t

consumption of the status attribute and z the consumption of services.  The utilityt

function, u( , ): [0,4)x[0,4)6(-4,4), is twice continuously differentiable, strictly. .

increasing, strictly concave with respect to each argument and concave in (c,s+z).
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Let u ( , ) and u ( , ) denote the derivatives of u( , ) with respect to the first and the1 2
. . . . . .

second argument respectively.  We assume that lim u (c,s+z) = 4, �s+z0U .  Alsoc90 1
+

define the functions I(y,s+z) and H(y,() representing the inverse of u (c,s+z) with1

respect to c for s+z given and the inverse of u (I(y,s+z),s+z) with respect to s+z for2

y fixed, i.e.,

u (I(y,s+z),s+z) = y (2)1

u (I(y,H(y,()),H(y,()) = (. (3)2

We assume that the functions I( , ) and H( , ) exist, are continuously differentiable. . . .

and have the limiting values:

(i)  I(0 ,s+z) = lim I(y,s+z) = +4, �s+z0U .+ +
y90

(ii)  H(+4,+4) = lim H(y,() = 0.y84,(84

(iii)  H(0 ,0 ) = lim H(y,() = 6; 0#6<4.+ +
y90,(90

(iv)  I(4,H(4,4)) = lim I(y,H(y,()) = 0.y84,(84

The utility specification (1) embodies an assumption of perfect

substitutability between status and services.  We focus on this simple case first to

provide elementary insights about the effects of durable goods with multiple attributes.

Many structural results are independent of this particular assumption.  An extension

to a general preference structure allowing for imperfect substitution between the

attributes of durability is studied in section 7. 

The assumptions on the utility function are standard.  Increases in status or

in services increase utility, but at a decreasing rate.  These assumptions are satisfied

by the Cobb-Douglas utility function which is studied in section 6.

To complete the description of the model we specify the relationship between

the attributes of the durable good and the amounts of the commodity bought.  We

suppose that services are derived from past purchases of the durable commodity only.

This is consistent with previous continuous time models of durability such as Hindy

and Huang (1993).  Status, on the other hand, is related to contemporaneous purchases



       It can be argued that the status effect even precedes ownership or purchase6

of a commodity since it may be attached to the intent of purchase.  When planning
future acquisitions of certain luxury items consumers often experience a sense of
achievement associated with their anticipative identification to a higher social class.

       It is straightforward to model persistence in the "symbolic" function played7

by durables by adding another index x depending on historical purchases of durables
with a depreciation rate * (see section 7).
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since it is associated with ownership of the commodity.   Status also appears to be a6

more transitory property of durable commodities since the mere use of the commodity

makes it more common, thereby reducing its symbolic value for the owner (see

footnote 1).  Without loss of generality we suppose that status depreciates infinitely

fast so that only current purchases produce status.7

Assumption 2:  The technology for production of services is,

z  = z e  + "I e l ds, z$0; t0[0,T] (4)t 0 0 s 0
-"t t -"(t-s)

where " and z  are nonnegative constants and l $0, represents purchases of the0 s

durable commodity at time s, s0[0,t).  Initial services, z , are produced from a stock0

of durables inherited by the agent.  The coefficient " determines the relative weight

of past purchases in the production of current services.

Assumption 3:  Status is related to contemporaneous durable purchases by,

s  = l . (5)t t

The technology (4) for production of services is additive and linear with

respect to past purchases of the durable.  While more general, nonlinear or nonadditive

technologies may be of interest as well, the linear technology (4) is easier to handle

and leads to closed form solutions for demand functions when appropriate conditions

are satisfied.  It can therefore be used as a benchmark model for evaluating further

extensions to more general production technologies for services.
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Similarly, the relationship (5) between the status attribute and the amount

purchased is assumed to be linear.  Section 6 discusses an extension to intertemporal

dependencies and decreasing returns to scale in status creation.

Finally we note that the model with two perishable commodities can be

retrieved as a subcase of (1), (4) and (5) by setting "=0 and z =0.  This economy with0

two perishable commodities, constitutes the benchmark economy against which the

effects of durability can be evaluated.

Endowments of the perishable and durable commodity are respectively e and

f, (e,f)0� [0,T]x� [0,T].  Associated with the endowment process of durables f, is2+ 2+

the flow of services produced z (f) / z e  + "I e f ds, z$0.  In the remainder oft 0 0 s 0
-"t t -"(t-s)

the paper we will use both notations z  or z(f) when the context requires identificationt t

of the arguments of the production function for services.  The endowment processes

satisfy,

Assumption 4:  Aggregate endowments follow Ito processes,

de  = e [µ (t)dt + F (t)dW ], e >0,t t e e t 0

and df  = f [µ (t)dt + F (t)dW ], f >0,t t f f t 0

where the unidimensional drift coefficients µ  and µ , and the components of the 1xde f

vectors of volatility coefficients F  and F  are bounded, T -progressivelye f (.)

measurable processes.  We assume that the implied process,

8  / - u (e ,f +z (f)) [u (e ,f +z (f))eF ' + u (e ,f +z (f))fF ']t 1 t t t 11 t t t t e 12 t t t t f
-1

satisfies the (Novikov) condition, Eexp[(1/2)I 28 2 dt] < 4.T 2
0 t

Assumption 4 is standard: it ensures that the equivalent martingale measure

evaluated at equilibrium allocations is well defined.



       The equilibrium implications of the model are not affected by the number8

of contingent claims available since markets are effectively complete in single agent
economies.  Completeness of the asset market, however, is instrumental for our
existence results relating to the demand functions (section 3).
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Two types of investment opportunities are available: a (locally) riskless asset

and a set of d risky securities.   The riskless asset pays an interest rate r which is a8

square-integrable and T -progressively measurable process.  The risky assets are(.)

contingent claims with exogenously specified payoffs.  The vector of asset prices S =

{S ; t0[0,T]} satisfies,t

dS  = I [µ dt + FdW ], S  given; t0[0,T], (6)t S t t t 0

where I  is a dxd diagonal matrix with the vector of prices on its diagonal.  The d-S

dimensional process µ represents the vector of expected returns and F is a dxd-matrix

of volatility coefficients.  Components of µ and F are T -progressively measurable(.)

processes; F is invertible and the vector of unit risk premia, 2  / (F ) (µ -r1) satisfiest t t t
-1

the condition, Eexp[(1/2)I 22 2 dt] < 4.T 2
0 t

A portfolio process B is T -progressively measurable, U -valued and(.)
d

square-integrable (EI 2B 2 dt < 4).  Here B represents the vector of dollar amountsT 2
0 t

invested in the risky assets; if X denotes the wealth process, X-B1 is the investment

in the riskless asset.

We also recall that a process of consumption of the perishable good c is an

T -progressively measurable and square-integrable process with values in [0,4).  A(.)

process of durable good purchases l is an T -progressively measurable, square-(.)

integrable process with values in [0,4).  A process of relative price of the durable

good p is a square-integrable, T -progressively measurable process.  (.)

A triplet (B,c,l) of investment, consumption of perishable and purchases of

durables is admissible if and only if the wealth process X satisfies the no-bankruptcy

condition X$0, t0[0,T] (P-a.s.) where X solves the stochastic differential equation,t

dX  = (r X  + e  + p f  - c  - p l )dt + B [(µ -r 1)dt + FdW ]; X  = 0. (7)t t t t t t t t t t t t t t 0



       The controls c and l in (9) represent respectively consumption of the perishable9

good and purchase of the durable good.  By definition these processes are T -(.)

progressively measurable and square-integrable with values in [0,4).  Also, note
that pl0� [0,T] and pf0� [0,T].+ +
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An admissible policy (B,c,l) is optimal for the agent if it cannot be dominated

by another admissible policy, i.e. if there is no other admissible (B ,c ,l ) such thato o o

U(c ,s(l ),z(l )) > U(c,s(l),z(l)).o o o

An equilibrium is a collection of processes ((S ,r ,p ),(B ,c ,l )) such that the* * * * * *

strategy (B ,c ,l ) is optimal for the representative agent and markets clear:  c -e  = 0,* * * * *

l -f  = 0 and B =0.* * *

3.  Optimal demands.

Consider the progressively measurable process 2 = {2 ; t0[0,T]}, 2  / (F )t t t
-

(µ -r1), which represents the vector of market prices of risk and define the associated1
t t

exponential martingale 0 = {0 ; t0[0,T]},t

0  = exp[-I 2 dW -½I 22 2 ds]. (8)t 0 s s 0 s
t t 2

The equivalent martingale measure is Q(A) = E[0 1 ]; A0T .  Under this measureT A T

asset prices discounted at the riskfree rate are martingales.  The measure is equivalent

to P since 2 is bounded.  It is also unique by completeness of the asset market.  Also,

the process W / W  + I 2 ds, t0[0,T], is a standard, d-dimensional Brownian Motion
~

t t 0 s
t

relative to Q.

Let us define the discount factor, b  / exp[-I r dv] and the ratio b  / b /b .t 0 v t,s s t
t

The static optimization problem associated with the dynamic optimization problem of

the agent is (Cox and Huang (1989, 1991), Karatzas, Lehoczky and Shreve (1987)),

max U(c,s,z) s.t. E [I b (c +l p )dt] # E [I b (e +f p )dt] (9)(c,l) 0 t t t t 0 t t t t
* T * T

where E  represents the expectation under the equivalent martingale measure Q.   Let* 9

(c ,l ) denote the solution to (9).  Then (c ,l ) is optimal for the dynamic problem and* * * *

is supported by a unique portfolio strategy B .  Specifically B  = (b ) (F ) N  where* * -1 ' -1
t t t t



14

N is the unique predictable and square integrable process in the representation of the

Q-martingale,

E [I b (c -e +(l -f )p )dt] - E [I b (c -e +(l -f )p )dt] = I N dW (10)* T * * * T * * t
t 0 t t t t t t 0 t t t t t t 0 v v

~

~
where Wt t 0 s t / W + It *2 ds is the Q-Brownian Motion process defined above and E [.] /

E [ *T ] represents the conditional expectation operator.* .
t

The static budget constraint in (9) states that the present value at date zero

of expenditures (EI b (c +l p )dt) cannot exceed the value of resources* T
0 t t t t

(E I b(e +f p )dt).  Since the asset market is complete any given consumption profile* T
0 t t t t

can be attained by an appropriate (and unique) trading strategy.  The optimal portfolio

is simply proportional to the process N which arises in the representation of the value

of the net expenditures stream (10).

Let y denote the Lagrange multiplier associated with the static problem and

consider the process > equal to the discounted value of the martingale density,

>  / b0 , where the instantaneous discount rate is the riskless rate.  The process >t t t

represents the state price density; Arrow-Debreu prices are given by >dP.  Also definet

D /D /D .s,t t s

The policy (c,l) is optimal if and only if (c,l,y) solves (see Theorem 6 in the

Appendix),

u (c ,s +z ) = yD> (11)1 t t t t t

u (c ,s +z ) + "E [I D e u (c ,s +z )ds] # yD>p ; = if l >0 (12)2 t t t t t s,t 2 s s s t t t t
T -"(s-t)

c$0, l$0, t0[0,T]; y>0, (13)t t

E [I b (c +l p )dt] # E [I b (e +f p )dt]. (14)* T * T
0 t t t t 0 t t t t

where c and l are progressively measurable and square-integrable processes.

Equation (11) is the standard optimality condition for consumption in a

complete market: the marginal utility of consumption in a given state equals the

marginal cost of consumption associated with that state.  Note that the choice of

perishable consumption depends on the choice of status and services if the utility

function is not additively separable.  Equation (12) characterizing the optimal choice

of the durable is more complex due to the multiple attributes of the good and to the



       When status involves persistence we obtain a second recursive component on10

the left hand side of (12) which captures the effect of current purchases on the future
status of the owner of the commodity.
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structure of services involving intertemporal dependencies.  The marginal benefit in

this case consists of the immediate marginal utility (u (c ,s +z )) associated with status2 t t t

creation as well as of the utility benefits associated with future services provided by

a current incremental purchase ("E [I D e  u (c ,s +z )ds]).   In this secondt t s,t 2 s s s
T -"(s-t) 10

component the increase in the flow of services at date s following an incremental

purchase at date t is given by "e .  The marginal cost is the Arrow-Debreu price-"(s-t)

multiplied by the (relative) price of the durable commodity.  The equation holds as an

equality when purchases of the durable are positive.  Perfect substitutability between

status and services and the history dependent structure of services imply the possibility

of a binding nonnegativity constraint on purchases.  At such a corner the marginal cost

exceeds the marginal benefit.  Lastly equation (14) is the static budget constraint.

To understand the structure of the demand functions it is useful to perform

a transformation of (11)-(12).  First recall the definitions of the functions I(y,s+z) and

H(y,() representing, respectively the inverse of u (c,s+z) with respect to c for s+z1

given and the inverse of u (I(y,s+z),s+z) with respect to s+z for y fixed (equations (2)-2

(3)).  Second, introduce the auxiliary process ( representing the marginal monetary

cost of durable purchases net of the marginal benefits attached to the provision of

future services.  Let us, in a first step, ignore the nonnegativity constraint on l.  In this

case ( satisfies the recursive linear equation,

y(  = yD>p  - "E [I D e y( ds], t0[0,T]. (15)t t t t t t s,t s
T -"(s-t)

Since optimal date t policies satisfy u (c ,s +z ) = y(  and u (c ,s +z ) = yD>  they are2 t t t t 1 t t t t t

respectively given by l  = H(yD>,y() - z  and c  = I(yD> ,s +z ) where H(yD> ,y( ) - zt t t t t t t t t t t t t t

may take a negative value, but I(yD> ,s +z ) is always nonnegative due to ourt t t t

assumptions on the utility function.  The negative value for current purchases of the

durable arises when past purchases provide services in excess of the currently desired

level of status and services.
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Since purchases are irreversible the nonnegativity constraint l$0 may become

binding.  It follows that purchases of the durable good at date t are the positive part of

the unconstrained policy: l  = [H(yD> ,y( ) - z ] .  Along the optimal trajectory thet t t t t
+

marginal cost net of future benefits, (, takes into account the possibility of binding

constraints at future times.  The process ( then satisfies the nonlinear recursive

equation, 

y(  = yD>p  - "E [I D e u (I(yD > ,[H(yD > ,y( )-z ] +z ),t t t t t t s,t 2 s s s s s s s
T -"(s-t) +

[H(yD > ,y( )-z ] +z )ds].    (16)s s s s s
+

for all t0[0,T].

Our next Theorems characterize the demand functions satisfying conditions

(11)-(14).  Before stating the results we introduce the cost function P(y) associated

with a specific family of policies.  Specifically, consider the policies,

c (y) = I(yD> ,[H(yD> ,y( )-z ] +z ) (17)t t t t t t t t
+

l (y) = [H(yD> ,y( ) - z ]  (18)t t t t t
+

parametrized by the constant y0[0,+4) and where z  solves, t

dz  = "{[H(yD> ,y( )-z ]  - z }dtt t t t t t
+

The associated cost function is given by,

  P(y) / E I b  {I(yD> ,[H(yD> ,y( )-z ] +z ) + p  [H(yD> ,y( ) - z ] }dt. (19)* T + +
0 t t t t t t t t t t t t t

In particular for the cases in which H(yD> ,y( ) $ z  at all times we have, t t t t

l (y) = H(yD> ,y( ) - z e  - "I e H(yD > ,y( )dst t t t 0 0 s s s
-2"t t -2"(t-s)

and the cost function takes the simpler form,

P(y) / E I b [I(yD> ,H(yD> ,y( )) + p H(yD> ,y( ) - p z e* T -2"t
0 t t t t t t t t t t t 0

 - "pI e H(yD > ,y( )ds]dt.t 0 s s s
t -2"(t-s)

With this notation we have,
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Theorem 1:  Consider the economy of section 2 and suppose that assumptions 1 and

2 hold.  Suppose that equation (16) admits a solution, ( (y)>0, t0[0,T] and considert

the map P(y) defined in (19) evaluated at ((y).  Suppose also that the equation P(y)

= E [I b (e +f p )dt] has a solution y >0.  Then optimal policies (c ,l ,B ) are,* T * * * *
0 t t t t

c  = c (y )= I(yD> ,[H(y D> ,y ( (y ))-z ] +z ) (20)* * * * * * +
t t t t t t t t t

l  = l (y ) = [H(y D> ,y ( (y ))-z ] (21)* * * * * +
t t t t t t

B  = (b ) (F ) N , (22)* -1 ' -1
t t t t

where N = {N ; t0[0,T]}  is the d-dimensional, square integrable, progressivelyt

measurable process that uniquely represents the martingale, E [I b (c -e +p (l -* T * *
0 t t t t t

f))dt*T ] - E [I b (c -e +p (l -f ))dt].  The production of services from durables z(l )t t 0 t t t t t t
* T * * *

solves,

z (l ) = z e  + "I e [H(y D > ,y ( (y ))-z (l )] ds. (23)t 0 0 s s s s
* -"t t -"(t-s) * * * * +

Optimal wealth is X  = (b )  [I b (e +p f )ds - I b (c +p l )ds + I N dW ].* -1 t * * t * * t
t t 0 s s s s 0 s s s s 0 s s

~

Services produced from durables imply an effect of past purchases on current

utility and choices.  If, in addition, past acquisitions of durables are irreversible

nonnegativity consumption constraints may become binding since marginal utility is

locally bounded above as a result of past decisions.  Since past purchases provide

current services the economy may reach states in which a reduction in the flow of

services is desired.  By making instantaneous adjustment infinitely costly irreversibility

may force temporary excesses of actual status and service levels ((H-z) +z) over their+

desired level (H).  Stickiness in adjustment, furthermore, is asymmetric: increases in

desired status and services levels are met by instantaneous purchases.  The possibility

of future excesses affects both the current demand for durables and perishables.  When

the nonnegativity constraint is currently active an excess or deficient demand for the

perishable good is recorded depending on whether the cross partial derivative of the

utility function is positive or negative (since I =-u /u ).2 12 11

For economies in which the constraint on durable purchases is not operative

we obtain an explicit solution:



       A necessary and sufficient condition for the purchases of durables to be11

interior at all times is, H(yD> ,y ( ) - z e  - "I e H(yD > ,y ( )ds > 0, for all* * -2"t t -2"(t-s) * *
t t t 0 0 s s s

t0[0,T].
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Theorem 2:  Consider the economy of section 2 and suppose that assumptions 1 and

2 hold.  Define the cost of the status attribute embedded in durables, N, by,

N  / p  - "E [I e b p ds] (24)t t t t t,s s
* T -2"(s-t)

and suppose that N  > 0 for all t0[0,T].  Also suppose that the parameters of thet

economy take values such that purchases of the durable are interior at all times.11

Then, the marginal cost net of future benefits is given in closed form by,

(  = D>N . (25)t t t t

Optimal policies (c ,l ,B ) are,* * *

c  = I(y D> ,H(y D> ,y ( )) (26)* * * *
t t t t t t

l  = H(y D> ,y ( ) - z e  - "I e H(yD > ,y ( )ds (27)* * * -2 "t t -2"(t-s) * *
t t t t 0 0 s s s

B  = (b ) (F ) N , (28)* -1 -1
t t t t

where y  is a multiplier that saturates the budget constraint (solution to the equation*

P(y) = E [I b (e +f p )dt]) and N = {N ; t0[0,T]}  is the d-dimensional, square* T
0 t t t t t

integrable, adapted process that uniquely represents the martingale, E [I  b (c -* T *
t 0 t t

e +p (l -f ))dt] - E [I  b (c -e +p (l -f ))dt].  Under the additional condition,t t t t 0 t t t t t t
* * T * *

u  $ 0,12

the multiplier y  and the optimal policies (c ,l ) are unique.  The associated* * *

production of services from durables and wealth (z(l ),X ) are respectively given by,* *

z (l ) = z e  + "I e H(yD > ,y ( )ds (29)t 0 0 s s s
* -2"t t -2"(t-s) * *

X  = (b )  [I b (e +p f )ds - I b (c +p l )ds + I N dW ]. (30)* -1 t * * t * * t
t t 0 s s s s 0 s s s s 0 s s

~

The solution (25) for the process ( is computed using the procedure

described in Appendix D.  The interpretation of ( is intuitive.  It represents the

Arrow-Debreu prices adjusted by the marginal cost of status: N  = p  - "E [I et t t t
* T -2"(s-t)
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b p ds].  Indeed, purchase of one unit of the durable at date t costs p  but providest,s s t

future services valued at "E [I e  b p ds].  The difference then captures the cost* T -2"(s-t)
t t t,s s

of the symbolic function of durables.  The economic interpretation of N  also explainst

the need for the assumption N  > 0 for all t0[0,T]. Indeed, if this cost becomes nullt

purchases of durables (i.e. purchases of status) are effectively subsidized so that

demands explode.  Hence, this condition ensures well-behaved demand functions.  The

demand functions (26)-(27) depend on Arrow-Debreu prices >, the cost of status (

and finally the current level of services resulting from past purchases of the durable.

When the nonnegativity constraint is inactive the demand for the perishable

good is decreasing in y>, decreasing (increasing) in y( if u  > 0 (u  < 0) and does not12 12

depend on the level of services z.  The demand for durables, on the other hand is

decreasing in y( and decreasing (increasing) in y> if u  is positive (negative).  It is12

also decreasing in the level of services from past purchases z: a unit increase in z

causes the current demand for the durable to decrease by one unit (Corollary 1 in the

Appendix).

By way of contrast when the nonnegativity constraint is active the demand

for the perishable is still decreasing in y> (but at a lower rate than in the reversibility

case), independent of y( and increasing (decreasing) in z when u  is positive12

(negative).  Of course, the demand for the durable is null when the constraint is active.

To conclude this section we assess the effect of durability on the demand

functions.  Set z =0 and consider a class of economies parametrized by the0

depreciation rate " and identical in all other respects.  Note that the economy with two

perishable commodities is obtained for "=0.  Fix Arrow-Debreu and commodity

prices.  Restricted to an appropriate range of the parameter " the demand functions

are well defined, continuous with respect to ", with limits the demand functions for

the perishable commodities.  If the two commodities are substitutes (complements) in

the limit economy the demands for the perishable commodity in the neighboring

durable economies, c , are lower (higher) than in the limit economy.  Also, if the*

second commodity is a normal good in the limit economy the demands l  in the*

neighboring durable economies will be higher.  Hence, small amounts of durability
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may reduce or increase demand functions depending on the nature of the goods under

consideration (Corollary 2 in the Appendix).

4.  Equilibrium .

In this section we study equilibrium prices and allocations in a pure exchange

economy satisfying the assumptions of section 2.  Our next theorem provides explicit

solutions for equilibrium Arrow-Debreu prices >, the price of the durable good p, the

rate of interest r and the premium on risky securities µ-r1.

Theorem 3:  Consider the economy described in section 2 and suppose that

assumptions 1, 2 and 4 hold.  In equilibrium aggregate consumption of perishables

and purchases of durable goods are, respectively, c  = e and l  = f .  The services* *
t t t t

provided by past purchases of the durable commodity are,

z (f) = z e  + "I e f ds, t0[0,T], (31)t 0 0 s
-"t t -"(t-s)

and the status achieved is s / f .  Equilibrium Arrow-Debreu (>) and commodity (p)t t

prices are, 

>  = D u (e ,s +z (f))/u (e ,s +z ) (32)* -1
t t 1 t t t 1 0 0 0

p  = u (e ,s +z (f))  {u (e ,s +z (f)) + "E [I e uu (e ,s +z (f))ds]}. (33)t 1 t t t 2 t t t t t 2 s s s
-1 T -Is

t($u+")d

Finally, the equilibrium rate of interest and asset premia are respectively given by,

r  = $  - u (e ,s +z (f))  {u (e ,s +z (f))e µ (t) + u (e ,s +z (f))[f µ (t) + "(f  - z (f))]* -1
t t 1 t t t 11 t t t t e 12 t t t t f t t

+ ½u (e ,s +z (f))eF F 'e  + u (e ,s +z (f))eF F 'f  + ½u (e ,s +z (f))fFF 'f }, (34)111 t t t t e e t 112 t t t t e f t 122 t t t t f f t

µ -r1 = - u (e ,s +z (f)) [u (e ,s +z (f))FF 'e  + u (e ,s +z (f))FF 'f ] (35)t t 1 t t t 11 t t t t e t 12 t t t t f t
-1

Equilibrium allocations are supported by the no-trade strategy B =0; equilibrium*
t

wealth is X  = 0. *
t

Since the perishable commodity serves as the numeraire state prices are

equal to the marginal utility of the perishable evaluated at the equilibrium allocation.

Absent habit formation this marginal utility depends only on current aggregates and



       Let X and Y denote two semimartingales.  The (quadratic) covariation12

of X and Y is defined by, [X,Y]  / X Y  - I X dY  -I Y dX .  The quadratict t t 0 s- s 0 s- s
t t

variation is, [X]  / X  - 2I X dX .t t 0 s- s
2 t
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not on future allocations.  By way of contrast the relative price of the durable

commodity reflects both the symbolic value and the usage value of the durable

commodity.  In particular it reflects the intertemporal nonseparabilities implied by the

technology for production of services.                                  

        The equilibrium rate of interest is the negative of the expected rate of growth

of the state price density (r  = - E [d> /> ]).  Asset risk premia are related to thet t t t

covariation between the rate of growth of the state price density and asset rates of

returns (µ  - r1= - (S> ) d[S,>]).   Implications of formulas (34)-(35) pertaining tot t t t
-1 12

the dynamic behavior of asset risk premia and of the interest rate are pursued in

section 5.  To complete this section we state a representation formula for the

equilibrium price of a contingent claim in this economy.

Theorem 4:  Consider a contingent claim with payoff B0� (S,T,P) at a (sure) time2

J, where B is T -measurable.  The price q of the claim is given by q  = E [e v B],J t t
* -IJtr

*
vd

where E  is the expectation relative to the measure dQ / e v>dP and > and r  are* I * * *J
0r*vd

J J t

respectively given by (32) and (34).

5.  Asset risk premia and interest rate.

The characterization of equilibrium in section 4 provides an explicit link

between the endogenous prices and the interest rate on the one hand and the primitives

of the economy on the other hand.  In this section we examine the relationship between

endogenous variables and aggregate consumption (subsection 5.1) and compare

equilibria across economies with and without durability (subsections 5.2 and 5.3).

5.1  Asset Prices, Interest Rate and Aggregate Consumption.

First we note that relationship (34) of Theorem 3 can be written as,
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r  = $  + 8 µ  + 8 µ  + 8 [µ /z (f)] - ½8 F F ' - 8 F F ' - ½8 FF ', (36)*
t t 1t e 2t s 3t z(f) t 4t e e 5t e f 6t f f

where the coefficients 8 , i = 1,..,6, are appropriately defined, µ  / "(l-z) and µ  / µ .it z(f) s f

Equation (36) reveals a relationship between the interest rate and the

(instantaneous) moments of the growth rates of perishable consumption and of the

attributes embedded in the durable.  The durable goods affect the interest rate through

the growth rate in status and in the flow of services that it provides.  Specifically, the

model predicts that the interest rate is positively related to the expected growth in

status and to the growth rate in the services provided by past purchases when u <0.12

Under this condition and ceteris paribus, economic periods experiencing positive

growth in the flow of services are associated with a higher equilibrium rate of interest.

Durability, therefore, introduces a dependence on the history of purchases, but no

effect on future consumption plans.  This stands in contrast with models of habit

formation or models with a single durable commodity in which the interest rate also

depends on possible future consumption plans (Detemple and Zapatero (1991)).

Summarizing the relationship between consumption and the interest rate,

Proposition 1: The interest rate is:

(i)  positively related to the expected growth rate of aggregate consumption of the

perishable good.  It is also negatively (positively) related to the expected growth rate

in status and in the services provided by purchases of the durable if the cross partial

u  is positive (negative),  12

(ii)  negatively (positively) related to the variation of the consumption growth rate

of the perishable good if u  is positive (negative), negatively (positively) related to111

the covariation between growth rates of consumption of the perishable good and of

the status associated with purchases of the durable if u  is positive (negative) and,112

negatively (positively) related to the quadratic variation of the growth rate in status

if u  is positive (negative).122



       When preferences are defined over multiple risky commodities the Kihlstrom13

and Mirman (1981) measure of risk aversion properly captures attitudes toward
multivariate risks.  By restricting preferences to (timeless) uncertain x certain
pairs conditional risk preferences can be defined.  The implied atemporal measure of
conditional risk aversion is the standard Arrow-Pratt measure of risk aversion.    
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To understand the structure of asset risk premia, combine equations (6) and

(35) as,

(µ  - r 1)dt = 8  (S e ) d[S,e]  + 8  (S f ) d[S,f] . (37)* * -1 -1
t t 1t t t t 2t t t t

This relationship is in the form of a two-beta CAPM where the first factor is aggregate

consumption of the perishable commodity and the second factor status associated with

current purchases of the durable.  The weights assigned to each factor are respectively

8  / -e [u /u ] the (atemporal) measure of conditional relative risk aversion with1t t 11 1

respect to the perishable commodity and 8  / -f [u /u ] which is a mixture of the2t t 12 1

elasticity of substitution and of the conditional relative risk aversion with respect to the

attributes of the durable commodity.   Both coefficients are evaluated at aggregate13

consumption levels, (e ,s +z (f)).  The single beta consumption CAPM of Breedent t t

(1979) is retrieved if either (i) the utility function is additively separable, or (ii) the

asset under consideration is uncorrelated with stochastic fluctuations in status, or (iii)

the endowment of the durable follows a locally deterministic process, or (iv) the

durable is a single attribute commodity providing services only.  Also, a single beta

CAPM relative to a basket of (two) goods can be constructed.

Formula (37) reveals the link between the asset market and economic forces

in the goods market.  Under decreasing conditional relative risk aversion, periods of

high consumption of the perishable commodity are associated with lower sensitivity

with respect to the first factor.  Ceteris paribus the sensitivity with respect to the

second factor depends on the behavior of the coefficient 8 .  Note that when 8  is2t 2t

positive (i.e. when u  < 0) and (f S ) d[S,f]  is positive the premium induced by the12 t t t
-1

status effect associated with purchases of durables is positive.  Durability may increase

asset risk premia even when the contribution of the second factor is negative (u >0)12

since its attributes have an indirect effect on conditional relative risk aversion (and



   It is important to note that we examine the effects of durability on the risk premium corresponding14

to a fixed volatility structure.  This approach parrallels the procedure followed in calibration exercises
which typically fix the volatilities at observed levels and attempt to match the risk premia implied by
the model with their empirical values.  In appendix B we provide explicit solutions for the endogenous
volatilities of the values of the firms producing the endowments e and f.  These results show that the
volatility of a given asset (with fixed payoff) changes as the structure of the economy changes.  The
impact of durability on equilibrium volatilities could, in principle, be assessed from these formulas.
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hence on the sensitivity to the first factor).  Thus, consideration of the status attribute

of durables in a two good economy may actually help to explain the equity premium

puzzle.  The main properties of asset risk premia are summarized in the next

proposition.

Proposition 2:  Asset risk premia are positively related to the covariation between

asset rates of returns and the rate of growth of aggregate perishable consumption.

They are negatively (positively) related to the covariation between the asset rates of

returns and the rate of growth of status associated with aggregate purchases of the

durable if the cross partial u  is positive (negative).12

5.2  Asset Premia, Interest Rate and Durability. 

In this subsection we demonstrate that the presence of a multiattribute

durable good may simultaneously increase the size of asset risk premia (for a given

volatility structure) and decrease the level of the interest rate.   The source of this14

result is the combination of the status attribute of the durable and the possibility of

spillover effects across goods.  We also derive conditions under which the same

conclusions are achieved in economies with a single multiattribute durable commodity.

Consider two economies.  The first one, E(",e,f), is the general economy of

section 2 with both a multiattribute durable good and a perishable good and respective

endowment processes e and f.  The second one, E(0,e,f) is the (nested) economy with

two perishable goods obtained by setting " = 0.  To simplify the comparison between

the two economies we assume that the inherited stock of services is null (z =0).  In the0

economy E(0,e,f) the second commodity only procures transitory felicity.  Comparison
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of E(",e,f) and E(0,e,f) is made for a given endowment process (e,f) and for a given

volatility process of the asset under consideration: we are comparing an asset with a

given volatility profile in an economy with a (multiattribute) durable good to an asset

with the same volatility profile in an economy in which the durable has been replaced

by a perishable commodity, but otherwise identical.

Before stating the main result of the section we define the measures of

(atemporal) conditional risk aversion associated with the two economies, 

8 (0,e,f) / -e u (e ,f )/u (e ,f ),1t t 11 t t 1 t t

8 (",e,f) / -e u (e ,s +z (f))/u (e ,s +z (f)).1t t 11 t t t 1 t t t

Similarly, other preference coefficients are indexed by the coefficient of durability and

the endowment processes corresponding to the economy under consideration,

8 (",e,f) and 8 (0,e,f), i = 1,...,6.  Sufficient conditions for increased risk premia andit it

lower interest rate in the economy with durability relative to the same economy with

two perishable commodities are,

Proposition 3:  Consider the two economies E(",e,f) and E(0,e,f).  The risk premium

corresponding to a given volatility profile is higher in the economy E(",e,f) with a

multiattribute durable and a perishable commodity if and only if,

[8 (",e,f) - 8 (0,e,f)] (S e ) d[S,e]  + [8 (",e,f) - 8 (0,e,f)](S f ) d[S,f]  > 0. (38)1t 1t t t t 2t 2t t t t
-1 -1

The interest rate is lower in E(",e,f) if and only if,

[8 (",e,f) - 8 (0,e,f)]µ  + [8 (",e,f) - 8 (0,e,f)]µ1t 1t e 2t 2t s

+ 8 (",e,f)(µ /z ) - ½[8 (",e,f) - 8 (0,e,f)]e d[e]  3t z(f) (f) 4t 4t t t
-2

- [8 (",e,f) - 8 (0,e,f)](e f ) d[e,f]  - ½[8 (",e,f) - 8 (0,e,f)]f d[f]  < 0. (39)5t 5t t t t 6t 6t t t
-1 -2

The interplay among the different factors affecting asset risk premia and the

interest rate is complex.  For instance, increasing conditional relative risk aversion

8 (",e,f) and increasing coefficient 8 (",e,s) with respect to attributes are sufficient1t 2t

conditions for (38) to hold.  The same conditions, though, have the opposite effect on

condition (39).  However, other components of (39) such as third order derivatives or
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growth of the attributes provided by the durable complement the risk aversion and

elasticity effects and may produce a lower interest rate as well as increased asset risk

premia.  The Cobb-Douglas economy of section 5.3 provides an example in which this

is the case under a simple condition.

The ability to obtain a reduction in the interest rate and an increase in asset

risk premia with durability is tied to the structure of the utility function.  Indeed, for the

additive separable model u(c,s) / u(c) + v(s) we find that  8 (0,e,f) = 8 (",e,f)1t 1t

whereas 8 (0,e,f) = 8 (",e,f) = 8 (0,e,f) = 8 (",e,f) = 0.  Hence the single beta2t 2t 3t 3t

CCAPM holds and asset risk premia are immune to both attributes of durability.

Inspection of (34) also reveals that the interest rate does not depend on " in the

additively separable model.  Only the price of the durable commodity (equation (33))

depends on the service technology parameter, ".

For purposes of comparison consider now an economy with a single durable

commodity (with two attributes) and suppose that the subjective discount rate is

deterministic (to simplify equilibrium formulas).  The optimality condition is (setting

p=1), 

u (s +z (l)) + "E [I D e u (s +z (l))ds] # yD> ; = if l >01 t t t t s,t 1 s s t t t
T -"(s-t)

so that equilibrium Arrow-Debreu prices implied by the output process {f : t0[0,T]}t

become,

u (s +z (f)) + "E [I D e u (s +z (f))ds] = yD> . (40)1 t t t t s,t 1 s s t t
T -"(s-t) *

Hence, asset risk premia satisfy the two beta CAPM,

(µ  - r 1)dt = N (",f) (S f ) d[S,f]  - "S d[S,M ] . (41)* * -1 -1 Y
t t 1t t t t t t

where M  / I Y dW  and the coefficient of the consumption factor,Y t
t 0 v v

N (",f) / - (y D> )  {u (s +z (f))f  1t t t 11 t t t
* -1

+ "E [I D e u (s +z (f))(f +"I e f du)ds]},t t s,t 11 s s s t u
T -"(s-t) s -"(s-u)

depends on contemporaneous, historical and future consumption trajectories.  The

second factor represents a hedging premium due to stochastic shifts in the drift and the

volatility of the output process.  The d-dimensional vector process Y is defined by,



       We suppose that the processes µ  and F  are sufficiently smooth for their15
f f

Malliavin derivatives to exist (Ocone and Karatzas (1991)).  The Malliavin derivative
Dµ (s) captures the effect of a perturbation in the realization of the Brownian Motiont f

W at time t on the coefficient µ (s) at time s.  Note that for deterministic coefficientsf

D µ (s) = 0 since new information at date t (realization of W) does not affect ourt f

(perfect) knowledge of µ (s).f
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Y  / (y D> )  E [I D e  u (s +z (f)) {f [I D (µ (v)-½F (v)F (v)')dv +t t t t t s,t 11 s s s t t f f f
* -1 T -"(s-t) s

I DF (v)dW ] + "I e f [I D (µ (v)-½F (v)F (v)')dv + I DF (v)dW ]du} ds],s s -"(s-u) u u
t t f v t u t t f f f t t f v

where Dµ (v) and DF (v) represent the (d-dimensional) Malliavin derivatives of thet f t f

coefficients µ  and F  (see, for instance, Detemple and Zapatero (1991, Appendix)).f f
15

The equilibrium rate of interest on the other hand is given by,

r dt = $dt + N (",f)(s µ +µ )(s +z (f)) dt - ½N (",f)f d[f]  - "Z dt. * -1 -2
t t 2t t s z(f) t t 3t t t t

where N (",f) / -(y D> )  (s +z (f))u (s +z (f)), 2t t t t t 11 t t
* -1

N (",f) / (y D> )  (f ) u (s +z (f)) 3t t t t 111 t t
* -1 2

Z  / (y D> )  {("+$ ) E [I D e  u (s +z (f))ds] - u (s +z (f))},t t t t t t s,t 1 s s 1 t t
* -1 T -"(s-t)

First we note that asset risk premia and the rate of interest inherit a

dependence on future consumption trajectories.  This follows since the single good

model fails to endogeneize the price of the durable commodity.  Second, when the

second commodity fails to provide services (or other types of intertemporal benefits),

i.e. when " = 0, z  = 0, we retrieve the standard, single beta CCAPM and interest rate0

formulas,

(µ  - r 1)dt = N (0,f) (S f ) d[S,f]  * * -1
t t 1t t t t

and, r dt = $dt + N (0,f)µ dt - ½N (0,f) f d[f] , * -2
t t 1t f 3t t t

where N (0,f) / -f u (f )/u (f ) and N (0,f) / (f ) u (f )/u (f ).  Hence, multiattribute1t t 11 t 1 t 3t t 111 t 1 t
2

durability increases asset risk premia and reduces the rate of interest if and only if the

conditions,

[N (",f) - N (0,f)](S f ) d[S,f]  - "S d[S,M ]  > 0,1t 1t t t t t t
-1 -1 Y

[N (",f)(s µ +µ )(s +z (f))  - N (0,f)µ]dt - ½[N (",f) - N (0,f)]f d[f]  - "Z dt < 0.2t t s z(f) t t 1t f 3t 3t t t t
-1 -2



   In production economies with endogenous consumption asset prices and the interest rate16

generally inherit the singular components of the optimal consumption policy (see Hindy and Huang
(1993)).
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are simultaneously satisfied.  These conditions are the counterpart of (38)-(39) in the

two good model.

To conclude the analysis in this section consider the single good (nested)

model in which the durable commodity has only one attribute, services.  In this case

durable purchases affect only future utilities, u(s +z (f)) = u(z (f)) (Hindy-Huangt t t

utilities).  Equilibrium Arrow-Debreu prices are,16

"E [I D e u (z (f))ds] = yD> ,t t s,t 1 s t t
T -"(s-t) *

so that asset risk premia become,

(µ  - r 1)dt = R (",f) (S f ) d[S,f]  - "S d[S,M ] .* * -1 -1 V
t t 1t t t t t t

where,

M  / I V dWV t
t 0 v v

R (",f) / - (y D> )  "E [I D e  u (z (f)) "(I e f du)ds]},1t t t t t s,t 11 s t u
* -1 T -"(s-t) s -"(s-u)

V  / (y D> )  E [I D e  u (z (f))("I e f [I D (µ (v)-½F (v)F (v)')dv t t t t t s,t 11 s t u t t f f f
* -1 T -"(s-t) s -"(s-u) u

+ I DF (v)dW ]du)ds],u
t t f v

and the interest rate equals,

r  = $  - "H . t t t

with, H  /  ("+$ )/" - (y D> )  u (z (f)).t t t t 1 t
* -1

For this specification of preferences note that the coefficients of the CCAPM and of

the interest rate process depend exclusively on the trajectories of future services,

{z (f): s>t}.  In particular, the interest rate does not depend directly on the momentss

of consumption growth.  For this model it is difficult to compare the economies with

and without the durable since the models are not nested.  The effect of a change in the

technology for production of services (parameter "), however, can be assessed.
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5.3  The Cobb-Douglas Economy.

We now provide more explicit results for the economy with Cobb-Douglas

utility function, i.e. u(c ,s +z ) = c (s +z ) ; A0(0,1), B0(0,1) and 1-A-B>0.  For thist t t t t t
A B

preference specification demand functions become,

Proposition 4:  Consider the Cobb-Douglas economy.  Under the assumptions of

Theorem 2 the demand functions are given by,

c  = [(D> ) A N B (1/y )] (42)t t t t
-1 1-B -B B * 1/(1-A-B)

l  = [(D> ) A N B (1/y )]  - z . (43)t t t t t
-1 A A-1 1-A * 1/(1-A-B)

The associated services from past purchases of the durable are,

z  = z e  + "(y )  I e [(D > ) A N B ] dst 0 0 s s s
-2"t * -1/(1-A-B) t -2"(t-s) -1 A A-1 1-A 1/(1-A-B)

where y  is the Lagrange multiplier solving the budget constraint (14),*

y  = x  {E [I b (D> ) A (N /B) (A+B))dt]} .* -(1-A-B) * T -1/(1-A-B) A/(1-A-B) -B/(1-A-B) 1-A-B
0 t t t t

Here x / E [I b(e +f p )dt] + E [I b p z e dt] represents the date 0 market value of* T * T -2"t
0 t t t t 0 t t 0

all the resources of the consumer including the value of the initial stock of the

durable good; N  / p  - "E [I e  (b /b )p ds] is the cost of status.t t t t s t s
* T -2"(s-t)

As in Theorem 2 we assume that the parameters of the economy are

restricted so that purchases of the durable good are interior at all times.  A necessary

and sufficient condition for this is,

[(D> ) (N ) ]  >t t t
-1 A-1 1/(1-A-B)

 z e (y ) [A B ]  + "I e [(D > ) (N ) ] ds0 0 s s s
-2"t * 1/(1-A-B) -A A-1 1/(1-A-B) t -2"(t-s) -1 A-1 1/(1-A-B)

This condition imposes restrictions on the structure of the economy, in particular on

the commodity price process.  

For Cobb-Douglas utility we also remark that the cross-partial derivative u12

is positive.  It follows that the demand functions are decreasing in both y> and y(.
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Comparison of equilibrium prices across economies yields in this case,

Proposition 5:  Introduction of a multiattribute durable good in the Cobb-Douglas

economy increases asset risk premia.  The interest rate at date t also decreases

(relative to the economy with perishable commodities) if and only if the rate of

growth of the services provided by past durable purchases (dz (f)/z (f)) exceeds thet t

expected rate of growth of the status attribute associated with current durable

purchases µ .  f

With Cobb-Douglas utility, 8 (",e,f) = 8 (0,e,f) = 1-A and 8 (",e,f) =1t 1t 2t

-B(f/(s+z(f))) > -B = 8 (0,e,f).  It follows that assets which are positively correlatedt t t 2t

with aggregate purchases of the durable have higher risk premium when durability is

present with a status component (see equation (38)).

At times when the rate of growth of services from past durable purchases

exceeds the expected rate of growth of status production from current purchases,

"(f -z )/z  > µ (44)t t t f

condition (39) is also satisfied ensuring a lower interest rate for the economy with the

durable commodity.

This example shows that multiattribute durability may produce higher risk

premia combined with lower rate of interest in economic periods in which conditions

such as (44) hold.  These implications are desirable since they may help to resolve

discrepancies between theoretical models and empirical regularities.  We reemphasize

the fact that a key element behind these results is the possibility of spillover effects

between the durable and perishable commodities (nonseparability of the utility

function).

6.  An extension of the model.

The model can be extended to more general preferences defined over

attributes.  Consider the following preference-attributes structure,
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Assumption 5:  Preferences have the representation,

U(c,s,z) / E[I (D ) u(c ,s ,z )]dt (45)T -1
0 t t t t

where D/exp[I$ dv], $ is a bounded, T -progressively measurable process, u( , , )t 0 v (
t

.)
. . .

is the instantaneous utility function, s is the status level and z  represents services.t t

The utility function, u( , ): [0,4) 6(-4, 4), is twice continuously differentiable, strictly. . 3

increasing, strictly concave with respect to each argument and concave in (c,s,z).

It has the limiting values lim u (c,s,z) = 4, lim u (c,s,z) = 4, lim u (c,s,z) = 4,c90 1 s90 2 z90 3

lim u (c,s,z) = 0, lim u (c,s,z) = 0, lim u (c,s,z) = 0. c84 1 s84 2 z84 3

The utility functional (45) allows for imperfect substitutability between status

and services. Attributes are related to purchases of the durable as follows,

Assumption 6:  The technology for production of services is,

z  = z e  + "I e l ds, z$0; t0[0,T] (46)t 0 0 s 0
-"t t -"(t-s)

where " and z  are nonnegative constants and l $0, represents purchases of the0 s

durable commodity at time s, s0[0,t).  Initial services, z , are produced from an0

inherited stock of the durable; " captures the relative weight of past durable

purchases in the production of current services.

Assumption 7:  Status is given by,

s  = g(l ,x ), (47)t t t

where x captures intertemporal effects in status creation.  The variable x satisfies,

x  = x e  + *I e l ds, x$0; t0[0,T] (48)t 0 0 s 0
-*t t -*(t-s)

where * is a depreciation factor and x  represents the contribution of the inherited0

stock of the durable.  The status production function g( , ): [0,4) 6(-4,4), is twice. . 2

continuously differentiable, strictly increasing in each argument, strictly concave
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with respect to each argument and concave in (l,x).  Denoting the partial derivatives

of g(l,x) by g (l,x), i=1,2, we assume lim g (l,x) = 4. i l90 1

The status production function (47)-(48) is quite general.  This formulation

allows for persistence in the symbolic function performed by the durable.  The

marginal product at date v of a purchase of the durable at date t, v>t, equals

g (l ,x )*e .  The strength of this effect is controlled by the weighing parameter *2 v v
-*(v-t)

and by the size of the derivative g .  The model of sections 2-5 with transitory and2

linear status effects is obtained by setting g =1 and g =0.  The formulation (47) also1 2

enables us to model decreasing returns to scale in status.

Suppose that the other components of the economy (endowments, asset

structure, etc,...) are as in section 2.  

The demand functions corresponding to this preference structure are

analyzed in Appendix C.  In particular we show that conditions on the exogenous

parameters and processes of the economy which are similar to the condition N >0 int

Theorem 2 ensure that the demands are well behaved (see Theorems 9 and 10).  For

this model of preferences and attributes equilibrium is,

Theorem 5:  Consider the economy described in section 2 with Assumptions 5, 6 and

7.  Also suppose that,

8  / -u (e ,s ,z (f)) [u (e ,s ,z (f))eF ' + u (e ,s ,z (f))g (f ,x )fF '], (49)t 1 t t t 11 t t t t e 12 t t t 1 t t t f
-1

satisfies the condition,

Eexp[(1/2)I 28 2 dt] < 4. (50)T 2
0 t

In equilibrium aggregate consumption of perishable and purchases of durable

goods are, respectively, c  = e and l  = f .  The status achieved is,* *
t t t t

 s  = g(f ,x (f)), (51)t t t

where,

x (f) = x e  + *I e f ds, t0[0,T]. (52)t 0 0 s
-*t t -*(t-s)
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Services provided by past purchases of the durable commodity are,

z (f) = z e  + "I e f ds, t0[0,T], (53)t 0 0 s
-"t t -"(t-s)

Equilibrium Arrow-Debreu (>) and commodity (p) prices are equal to,

>  = D u (e ,s ,z (f))/u (e ,s ,z ) (54)* -1
t t 1 t t t 1 0 0 0

p  = u (e,s ,z (f))  {u (e ,s ,z (f))g (f ,x (f)) + "E [I  D e u (e ,s ,z (f))g (f ,x (f))ds]t 1 t t t 2 t t t 1 t t t t s,t 2 s s s 2 s s
-1 T -"(s-t)

+ *E [I  D e u (e ,s ,z (f))ds]}. (55)t t s,t 3 s s s
T -"(s-t)

Finally, the equilibrium rate of interest and asset premia are respectively given by,

 r  = $  - u  {u e µ (t) + u [g fµ (t)+g*(f -x (f))] + u "(f -z (f))]* -1
t t 1 11 t e 12 1 t f 2 t t 13 t t

+ ½u eF F 'e  + u g eF F 'f  + ½u (g ) fFF 'f }, (56)111 t e e t 112 1 t e f t 122 2 t f f t
2

µ -r1 = - u [u FeF ' + u gF fF '], (57)t t 1 11 t t e 12 1 t t f
-1

where the derivatives of the utility function appearing in (56), (57) are evaluated at

(e ,s ,z (f)) and the derivatives of the status function are evaluated at (f ,x (f)).t t t t t

Equilibrium allocations are supported by the no-trade strategy B =0; equilibrium*
t

wealth is X  = 0. *
t

Condition (50) ensures that the equivalent martingale measure is well defined

in equilibrium.  The relationships (54)-(57) characterize the structure of equilibrium

for the general preference-attribute model of assumptions 5-7.  As in section 5

comparisons of equilibria across different economies can be performed.  In particular,

conditions similar to (38), (39) will identify time periods in which the interest rate is

reduced while asset risk premia are increased when a multiattribute durable good is

available in place of a perishable commodity.
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Appendix A:  proofs.

This appendix provides the proofs for the results in the body of the paper.

 

Theorem 6:  The policy (c,l) is optimal for the static problem if and only if (c,l,y)

satisfies,

u (c ,l +z ) = yD> , (A.1)1 t t t t t

u (c ,l +z ) + "E [I D e u (c ,l +z )ds] # yD>p ; = if l>0, (A.2)2 t t s t t s,t 2 s s s t t t
T -"(s-t)

c$0, l$0, t0[0,T]; y>0, (A.3)t t

E [I b (c +l p )dt] # E [I b (e +f p )dt]. (A.4)* T * T
0 t t t t 0 t t t t

Proof of Theorem 6:

(i)  necessity:  the utility gradient implied by the preference structure (1)-(2) has

components given by the left hand sides of (A.1) and (A.2) (see Detemple and

Zapatero (1992) and Duffie and Skiadas (1992)).  The conditions (A.1)-(A.4) are then

standard Karush-Kuhn-Tucker conditions (Saddle Point Theorem).

(ii)  sufficiency:  consider an alternative budget feasible policy (c ,l ).  Defining theo o

process h (l)/l +z (l) we have by concavity of the utility function,t t t

u(c ,h (l)) $ u(c ,h (l )) + u (c ,h (l))(c -c ) + u (c ,h (l)) (h (l)-(h (l )).t t t t 1 t t t t 2 t t t t
o o o o

Multiplying both sides by D  and integrating over the product measure dPxdt yields,t
-1

E[I D u(c ,h (l))dt] $ EI D [u(c ,h (l ))+u (c ,h (l))(c -c )T -1 T -1 o o o
0 t t t 0 t t t 1 t t t t

+ u (c ,h (l))(h (l)-(h (l ))]dt (A.5)2 t t t t
o

It is enough to show that the sum of the last two terms on the right hand side of the

inequality above is nonnegative.  Since z(l)-z (l ) = "I e (l -l )ds we have,t t 0 s s
o t -"(t-s) o

EI  D u (c ,h (l)) [h (l)-(h (l )]dtT -1 o
0 t 2 t t t t

= EI  D u (c ,h (l)) [l -l  + "I e (l -l )ds]dtT -1 o t -"(t-s) o
0 t 2 t t t t 0 s s

= E[I  D u (c ,h (l)) (l -l )dt] + E[I I  D u (c ,h (l)) "e (l -l )dsdt]T -1 o T T -1 -"(s-t) o
0 t 2 t t t t 0 t s 2 s s t t

= EI  (l -l ) [D u (c ,h (l)) + "I  D u (c ,h (l))e ds] dtT o -1 T -1 -"(s-t)
0 t t t 2 t t t s 2 s s

$ EI  (l -l ) y>p  dt. (A.6)T o
0 t t t t



       Conditions for existence of a solution to this nonlinear recursive equation17

involve functional Lipschitz and integrability conditions on the integrand which
appears on the right hand side of (16) (Detemple and Zapatero (1992), Antonelli
(1993)).
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The inequality in the last step of (A.6) follows since (A.1)-(A.3) implies,

l [D u (c ,l +z ) + "E [I D e u (c ,l +z )ds]] = l y>pt t 2 t t t t t s 2 s s s t t t
-1 T -1 -"(s-t)

while admissibility of (c ,l ) in combination with (A.2) implies,o o

-l [D u (c ,l +z ) + "E [I D e u (c ,l +z )ds]] $ -l y>p .o -1 T -1 -"(s-t) o
t t 2 t t t t t s 2 s s s t t t

Hence, substituting (A.1) and (A.6) in (A.5) yields,

E[I  D u(c ,h (l)) dt] $ E[I  D u(c ,h (l ))dt] + y EI  [(c -c )+(l -l )p ]>dt.T -1 T -1 o o T o o
0 t t t 0 t t t 0 t t t t t t

By the budget constraint (A.4) and the condition y>0 the last term is nonnegative.

Optimality of (c,l) follows.Í

Proof of Theorem 1:  We assume that (16) has a solution.   The demand functions17

stated in the theorem are then obtained by construction.Í

Proof of Theorem 2:  The solution (25) to the recursive equation is computed using

the procedure outlined in appendix C and passing to the Q-measure.  To prove the

theorem we show (i) existence of y >0, (ii) uniqueness of y  and (iii) admissibility of* *

the policies (c ,l ).* *

(i)  Existence of y :  Since the inverse marginal utility I(.,s): [0,4)6[0,4) satisfies*

u (I(yD>,s),s) = yD> we have I  = (u )  and I  = -(u /u ).  Assumption 1 then implies1 1 11 2 12 11
-1

that I( , ) is continuously differentiable and strictly decreasing in its first argument with. .

limiting values I(0 ,s) = +4 and I(4,s) = 0, for all s0U .  The inverse function H( , ):+ + . .

[0,4)x[0,4)6[0,4) is also continuously differentiable and satisfies

u (I(yD>,H(yD>,y()),H(y>,y()) = y(.  It has limiting values 0 # H(0 ,0 ) < 4 and2
+ +

H(4,4) = 0 (assumption 1 (ii)-(iii)); also I(4,H(4,4)) = 0 (assumption 1 (iv)). 
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Hence the map P(y) is continuous and satisfies,

P(4) / lim P(y) = -E [I b z p e dt] < 0.y84 0 t 0 t
* T -2"t

P(0 ) = lim P(y) = +4.+
y90

The existence of y >0 such that P(y ) = 0 follows.* *

(ii)  Uniqueness of y :  Note that P(y) can be rewritten as follows, *

P(y) / E I  b  [I(yD> ,H(yD> ,y( )) - p z e  + H(yD> ,y( ) * T -2"t
0 t t t t t t t 0 t t t

{p  - "I e (b /b )p ds}]dt.t t s t s
T -2"(s-t)

= E I  b  [I(yD> ,H(yD> ,y( )) - p z e  + H(yD> ,y( )N ]dt.* T -2"t
0 t t t t t t t 0 t t t t

where N  / p  - "E [I e (b /b )p ds] is positive by assumption.t t t t s t s
* T -2"(s-t)

Using the definition of H and differentiating leads to,

u (I +I H ) + u H  = 021 1 2 1 22 1

u I H  + u H  = 1,21 2 2 22 2

so that H  = -(u /u )[u -(u ) /u ]  (ambiguous sign depending on -sgn(u )) and1 21 11 22 21 11 12
2 -1

H  = [u -(u ) /u ]  < 0.  Hence, H(yD> ,y( ) is decreasing in y if u  > 0.  Also2 22 21 11 t t t 12
2 -1

MI(yD> ,H(yD> ,y( ))/My = [I +I H ]D>  + I H (  has negative sign if u  $ 0.  Itt t t t t 1 2 1 t t 2 2 t 12

follows that under the conditions of the Theorem the map P(y) is strictly decreasing

in y and the fixed point y  is unique.*

(iii)  Admissibility of (c ,l ):  The processes c(y ) and l(y ) are nonnegative and* * * *

progressively measurable.  The budget constraint (A.4) is satisfied by construction.

This completes the proof of Theorem 2.Í

Corollary 1:  Suppose that the demand for the durable good is interior (l>0).  Then,

the demand for the perishable good is decreasing in y>, decreasing (increasing) in

y( if u  > 0 (u  < 0) and independent of z.  The demand for the durable is12 12

decreasing in y( and decreasing (increasing) in y> if u  is positive (negative); it is12

also decreasing in the level of services from past purchases z.
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Proof of Corollary 1:  We have, Mc /M(y D ) = (I  + I H )D  < 0, Mc /M(y( ) = I H y  <* * * *
t t 1 2 1 t t t 2 2

0 (>0) if and only if I  > 0 (<0).  Also, Ml /M(y D ) = H D  < 0 (>0) if and only if H  < 02 t t 1 t 1
* *

(>0) and Ml /M(y ( ) = H  < 0.Í* *
t t 2

Corollary 2:  Consider the economy with two perishable commodities (i.e. " = 0,

z =0).  If the two commodities are substitutes (complements) then the demand c0
*

decreases (increases) when durability is introduced locally (in a neighborhood of

" = 0) in the economy.  If the second commodity is a normal good local introduction

of durability increases the demand l  for the second commodity.*

Proof of Corollary 2:  In a neighborhood of "=0 we have, M( /M" = - (D> )E [I et t t t t
* T -2"(s-

b p ds].  Substitutability (complementarity) implies Mc /M(>0 (<0) in the economyt) *
t,s s t t

with "=0.  The result follows since demand functions are continuous in " over the

appropriate range, in particular in neighborhoods of "=0.Í

Proof of Theorem 3:  At equilibrium the representative agent consumes his

endowments: c  = e  and l  = f .  The index z(f) is then uniquely defined by* *
t t t t

(31).  Equilibrium Arrow-Debreu prices and the price of the durable

commodity are obtained by substituting allocations in the optimality

conditions (11)-(12).

To compute asset risk premia apply Ito's lemma to both sides of (32).

The derivative of the left hand side is,

d>  = -> r dt - > 2dW* * * *
t t t t t t

while the derivative of the right hand side equals,

(y D ) [-$dt + u de +½u eF F 'e dt+u eF F 'f dt + ½u fFF 'f dt +* -1
t t 11 t 111 t e e t 112 t e f t 122 t f f t

u dh(f)] 12
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where all derivatives are evaluated at the equilibrium allocations e and h(f) =

f+z(f).  Substituting the processes specified in assumption 4 and equating

terms in dt on the one hand and terms in dW on the other hand yields formulast

(34) and (35).Í
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Appendix B:  the valuation of productive assets.

This appendix complements sections 4-5 by providing valuation

formulas for the two productive technologies which generate, respectively, the

flows e and f of the perishable and durable goods.  These prices represent the

values of the firms (or of their equity under all equity financing) producing the

two commodities.  Particular care is taken to endogeneize the volatility

coefficients of these values.

Let V  and V  denote the respective market values of the two firms.1 2

To simplify notation we write u (t) and u (t), i,j = 1,2, for the first and secondi ij

partial derivatives evaluated of the utility function evaluated at (e ,s +z (f)).t t t

Our next Theorem describes the structure of the firms' values.

Theorem 7:  Consider the economy described in section 2 and suppose that

assumptions 1, 2 and 4 hold.  The values of the firms are, respectively, given

by,

V  = E [I b e ds] (B.1)1t t t t,s s
* T

V  = E [I b p f ds*T ], (B.2)2t t t t,s s s t
* T

where E  is the expectation relative to the measure dQ / (b ) > dP and >* -1 * *
T T T

and r  are respectively given by (32) and (34).  The volatility coefficientst
*

associated with these values are,

V F  = u (t) [DE [D F] - V [u (t)eF +u (t)fF ]] (B.3)1t 1t 1 t t t 1t 11 t e 12 t f
-1

V F  = u (t) [D (E [D G]+E [D I]-H E [D J])2t 2t 1 t t t t t t t t
-1

 - V [u (t)eF +u (t)fF ]] (B.4)2t 11 t e 12 t f

where,

D F = I D [u (v)e (-I D$ du) + (u (v)e +u (v))D e  t t v 1 v t t u 11 v 1 t v
T -1 v

+ u (v)e (D s +D z (f))]dv. (B.5)12 v t v t v
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D G = I D [u (v)f (-I D$ du) + u (v)fD e  + u (v)f (D s +D z (f)) t t v 2 v t t u 21 v t v 22 v t v t v
T -1 v

+ u (v)D f ]dv (B.6)2 t v

D I = I D e [u (v)H (-I D$ du) + u (v)HD e  + u (v)H (D s +D z (f)) t t v 2 v t t u 21 v t v 22 v t v t v
T -1 -"v v

+ u (v)D H ]dv    (B.7)2 t v

H  / I "e f dv, D H  = I "e (D f )dv (B.8)s t v t s t t v
s -"v s -"v

D J = I D e [u (v)(-I D$ du) + u (v)D e  + u (v)(D s +D z (f))]dv (B.9)t t v 2 t t u 21 t v 22 t v t v
T -1 -"v v

and,

D e  = e [I D (µ (u)-½F (u)F (u)')du + I DF (u)dW  + F (t)] (B.10)t v v t t e e e t t e u e
v v

D f  = f [I D (µ (u)-½F (u)F (u)')du + I DF (u)dW  + F (t)] (B.11)t v v t t f f f t t f u f
v v

D z (f) = "I e D f ds (B.12)t v t t s
v -"(v-s)

In (B.3)-(B.12) D  represents the Malliavin derivative operator.t

Formulas (B.3)-(B.4) are closed form solutions for the volatilities of

the values of the firms.  These volatilities depend (i) on the contemporaneous

volatilities F (t) and F (t) of the endowment processes and (ii) on thee f

sensitivities of the future coefficients of the model to perturbations in the

current Brownian motion process W  (the terms involving the Malliavint

derivatives in (B.10)-(B.11)).

Proof of Theorem 7:  Using the definition of the equivalent martingale

measure we can write,

V  = E [I b e ds] = (> ) E [I > e ds] = (> ) [E [I > e ds] - I > e ds]. 1t t t t,s s t t t s s t t 0 s s 0 s s
* T -1 T -1 T t

Substituting the equilibrium state price density (32), defining 

F / I D u (s)e ds and applying the Clark-Ocone formula yields (B.3).T -1
0 s 1 s

Similarly,

V  = E [I b p f ds] = (> ) E [I > p f ds].2t t t t,s s s t t t s s s
* T -1 T
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Substituting the equilibrium values (32)-(33) leads to,

E [I > p f ds] = E [I [u (0) D {u (s) + "E [I e uu (v)dv]}f ]ds]t t s s s t t 1 s 2 s s 2 s
T T -1 -1 T -Iv

s($u+")d

= u (0)  E [I [D u (s)f  + "E [I D e u (v)dv]f ]ds]1 t t s 2 s s s v 2 s
-1 T -1 T -1 "(s-v)

= u (0)  E [I [D u (s)f  + "f I D e u (v)dv]ds]1 t t s 2 s s s v 2
-1 T -1 T -1 "(s-v)

= u (0)  {E [I D u (s)f ds] + E [I "f (I D e u (v)dv)ds]}1 t t s 2 s t t s s v 2
-1 T -1 T T -1 "(s-v)

= u (0)  {E [I D u (s)f ds] + E [I D u (s)e (I "f e dv)ds]}1 t t s 2 s t t s 2 t v
-1 T -1 T -1 -"s s "v

= u (0) {E [G] - I D u (s)f ds + E [I] - I D u (s)e H ds - H [E [J]1 t 0 s 2 s t 0 s 2 s t t
-1 t -1 t -1 -"s

 - I D u (s)e ds]},t -1 -"s
0 s 2

where G / I D u (s)fds, I / I D u (s)e H ds, H  / I "f e dv and T -1 T -1 -"s s "v
0 s 2 s 0 s 2 s s 0 v

J / ID u (s)e ds.  To obtain (B.4) we apply the Clark-Ocone formula to thisT -1 -"s
0 s 2

last expression.Í 

When the subjective discount rate and the coefficients of the

endowment processes are deterministic the volatility formulas (B.3)-(B.4)

simplify substantially.

Corollary 3:  In the economy of section 2 with deterministic coefficients the

equilibrium volatilities of the values of the firms are,

V F  = u (t) [DF (t,T) - V u (t)e ]F  + u (t) [DF (t,T) 1t 1t 1 t 1 1t 11 t e 1 t 2
-1 -1

- V u (t)f ]F (B.13)1t 12 t f

V F  = u (t) [D (G (t,T)+I (t,T)-H J (t,T)) - V u (t)e ]F2t 2t 1 t 1 1 t 1 2t 11 t e
-1

+ u (t) [D (G (t,T)+I (t,T)-H J (t,T)) - V u (t)f ]F , (B.14)1 t 2 2 t 2 2t 12 t f
-1

where,

F (t,T) / E [I D (u (v)e +u (v))e dv] (B.15)1 t t v 11 v 1 v
T -1

F (t,T) / E [I D u (v)e (s +K )dv] (B.16)2 t t v 12 v v t,v
T -1

K  / I "e f du (B.17)t,v t u
v -"(v-u)
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G (t,T) / E [I D u (v)f e dv] (B.18)1 t t v 21 v v
T -1

G (t,T) / E [I D [u (v)(s +K ) + u (v)]f dv] (B.19)2 t t v 22 v t,v 2 v
T -1

I (t,T) / E [I D e u (v)H e dv] (B.20)1 t t v 21 v v
T -1 -"v

I (t,T) / E [I D e [u (v)H (s +K ) + u (v)L ]dv] (B.21)2 t t v 22 v v t,v 2 t,v
T -1 -"v

L  = I "e f ds (B.22)t,v t s
v -"s

J (t,T) / E [I D e u (v)e dv] (B.23)1 t t v 21 v
T -1 -"v

and, J (t,T) / E [I D e u (v)(s +K )dv] (B.24)2 t t v 22 v t,v
T -1 -"v

When the opportunity set is deterministic the volatilities of the values

of the firms can be expressed solely in terms of the contemporaneous

volatilities of the endowments processes.  Formulas (B.13)-(B.24) can be

further simplified by considering parametric forms of utility functions.  The

results of Theorem 7 and Corollary 3 can also be used to complement section

5.2 and compare the equilibrium volatilities of the firm values across

economies with and without durability.

Proof of Corollary 3:  In the economy with deterministic coefficients we have

D e  = eF (t), D f  = f F (t) and D z (f) = "(I e f ds)F (t) / K F (t).t v v e t v v f t v t s f t,v f
v -"(v-s)

Substituting in the relevant expressions and collecting terms leads to (B.13)

and (B.14).Í
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Appendix C: demand functions for general preferences over attributes.

In this appendix we provide some insights about the optimal

consumption policies for the general model of durability of section 6.  For the

sake of clarity we focus on the case g(l,x) = g(l) in which status depreciates

infinitely quickly; the general case of persistence in status can be handled

along the same lines with appropriate adjustments.  Essentially we show that

a construction similar to that of section 3, albeit somewhat more complex,

leads to the optimal policies.

Our first Theorem provides a characterization of the optimal policies,

Theorem 8:  Consider the economy of section 6 and suppose that

assumptions 5, 6 and 7 hold with g(l,x) / g(l).  The policy (c,l) is optimal for

the static problem if and only if (c,l,y) satisfies,

u (c ,g(l ),z ) = yD> , t0[0,T], (C.1)1 t t t t t

g'(l )u (c ,g(l ),z ) + "E [I D e u (c ,g(l ),z )ds] = yD>p , t0[0,T], (C.2)t 2 t t t t t s,t 3 s s s t t t
T -"(s-t)

c$0, l$0, t0[0,T]; y>0, (C.3)t t

E [I b (c +l p )dt] # E [I b (e +f p )dt]. (C.4)* T * T
0 t t t t 0 t t t t

Proof of Theorem 8:

(i)  necessity:  the utility gradient implied by the preference structure (45)-(47)

has components given by the left hand sides of (C.1) and (C.2).  The

conditions (C.1)-(C.4) are standard Kuhn-Tucker conditions.  Note that (C.2)

holds as an equality since the function W(c,l,z) / g'(l)u (c,g(l),z) is continuous,2

strictly decreasing with respect to l and has the limiting values

lim W(c,l,z) = 0 and lim W(c,l,z) = 4. l84 l90

(ii)  sufficiency:  consider an alternative budget feasible policy (c ,l ).o o

Concavity of the utility function and of the status production function imply,
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u(c ,g(l ),z ) $ u(c ,g(l ),z ) + u (c ,g(l ),z )(c -c ) + u (c ,g(l ),z )g'(l )(l -l )t t t t t t 1 t t t t t 2 t t t t t t
o o o o o

 + u (c ,g(l ),z )(z -z ).3 t t t t t
o

Multiplying both sides by D  and integrating over the product measure dPxdtt
-1

yields,

E[I D u(c ,g(l ),z )dt] $ EI D [u(c ,g(l ),z )+u (c ,g(l ),z )(c -c ) T -1 T -1 o o o o
0 t t t t 0 t t t t 1 t t t t t

+ u (c ,g(l ),z )g'(l )(l -l )+u (c ,g(l ),z )(z -z )]dt (C.5)2 t t t t t t 3 t t t t t
o o

Consider the last two terms on the right hand side of the inequality above.

Using z -z  = "I e  (l -l )ds and proceeding as in the proof of Theorem 6t t 0 s s
o t -"(t-s) o

leads to,

EI D [u (c ,g(l ),z )g'(l )(l -l )+u (c ,g(l ),z )(z -z )]dt $T -1 o o
0 t 2 t t t t t t 3 t t t t t

 E[I  (l -l )y>p  dt]. (C.6)T o
0 t t t t

Substituting (C.1) and (C.6) in (C.5) now yields,

E[I  D u(c ,g(l ),z ) dt] $ E[I  D  u(c ,g(l ),z )dt] T -1 T -1 o o o
0 t t t t 0 t t t t

+ y EI  [(c -c )+(l -l )p ]>dt.T o o
0 t t t t t t

The budget constraint (C.4) and the condition y>0 imply that the last term is

nonnegative.  Optimality of (c,l) follows.Í

To construct the optimal policies we proceed as follows.

Define the map I: U xU xU  6 U  as the solution to the equation,+ + + +

u (I(y,g,z),g,z) = y,1

where y>0.  Note that I exists, is unique and has the limiting values

lim I(y,g,z) = 0 and lim I(y,g,z) = 4.  The strict concavity of the utilityy84 y90

function also implies that I >0.1

Define now the map V: U xU xU 6U  as,+ + + +
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V(l,y,z) / g'(l)u (I(y,g(l),z),g,z(l)).2

It is easy to verify that V is strictly decreasing in its first argument and has the

limiting values lim V(l,y,z) = 4 and lim V(l,y,z) = 0.  For (>0 let H:l90 l84

U xU xU 6U  denote the solution to,+ + + +

V(H((,y,z),y,z) = (.

The function H exists and is unique.  It is also strictly decreasing in its first

argument with lim H((,y,z) = 4 and lim H((,y,z) = 0.(90 (84

Equation (C.1) now yields, c  = I(yD> ,g(l ),z ).  Substituting in (C.2)t t t t t

and defining the process,

(  = V(l ,yD> ,z ),t t t t t

produces the following simultaneous system of equations for the processes (

and z,

(  = ypD>  - "E [I D e  f(( ,yD > ,z )ds]; t0[0,T], (C.7)t t t t t t s,t s s s s
T -"(s-t)

z  = z e  + "I e H(( ,yD > ,z )ds, z$0; t0[0,T]. (C.8)t 0 0 s s s s 0
-"t t -"(t-s)

where

f(( ,yD > ,z ) / u (I(yD > ,g(H(( ,yD > ,z )),z ),g(H(( ,yD > ,z )),z ).s s s s 3 s s s s s s s s s s s s

The system (C.7)-(C.8) is a system of forward-backward integral equations

similar to the ones that are studied in Detemple and Zapatero (1992) and

Antonelli (1993).  A unique solution to this system exists provided that the

functionals f and H satisfy appropriate Lipschitz, Growth and integrability

conditions.  To proceed with the construction we assume the existence of a

solution ((y) which is a process taking values in U .  Our candidate policies+

for consumption and durable purchases become,

c (y) = I(yD> ,g(H(( (y),yD> ,z (y))),z (y)) / J(( (y),yD> ,z (y)), (C.9)t t t t t t t t t t t t



       Note that we only need the existence of a solution to (C.7)-(C.8) at the18

point y .  Hence requiring the existence of a solution to (C.7), (C.8) and (C.12) is*

weaker than treating (C.7)-(C.8) in isolation.
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l (y) = H(( (y),yD> ,z (y)). (C.10)t t t t t

Now define the map,

P(y) / E I b [J(( (y),yD> ,z (y)) + p H(( (y),yD> ,z (y))]dt, (C.11)* T
0 t t t t t t t t t t

and consider the equation (in y),

P(y) = E [I b (e +f p )dt]. (C.12)* T
0 t t t t

Suppose that (C.12) admits a solution y .  Substituting into equations (C.9)*

and (C.10) yields the optimal strategies for consumption and durable

purchases.

The analog of Theorem 1 for the general model of Appendix C is,

Theorem 9:  Consider the economy of section 6 and Appendix C.  Suppose

that assumptions 5, 6 and 7 hold with g(l,x) / g(l).  Also assume that the

system of equations (C.7), (C.8) and (C.12) admits a solution, (y ,( ,z ) with* * *

( >0.   Then optimal policies (c ,l ,B ) are,* 18 * * *

c  = c (y )= J(( ,y D> ,z ) (C.13)* * * * *
t t t t t t

l  = l (y ) = H(( ,y D> ,z ) (C.14)* * * * *
t t t t t t

B  = (b ) (F ) N , (C.15)* -1 ' -1
t t t t

where N = {N ; t0[0,T]}  is the d-dimensional, square integrable, adaptedt

process that uniquely represents the martingale, E [I b (c -e +p (l -f ))dt] -* T * *
t 0 t t t t t t

E [I b (c -e +p (l -f ))dt].  Optimal wealth is X  = (b )  [I b (e +p f )ds -* T * * * -1 t * *
0 t t t t t t t t 0 s s s s

I b (c +p l )ds + I N dW ].t * * t
0 s s s s 0 s s

~
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Remark 1:  Suppose that the conditions of Theorem 9 are satisfied.  Define

the process,

N  / p  - (yD> ) "E [I D e  f(( ,y D > ,z )ds], (C.16)t t t t t t s,t s s s s
* -1 T -"(s-t) * * *

for t0[0,T] and note that N>0 under the assumptions of the Theorem.  As for

Theorem 2, N represents the marginal cost of the status attribute embedded

in durables and we can write, (  / ( (y ) = y D>N .  The difference with the* * *
t t t t t

results contained in Theorem 2 is that in the economy with nonlinear

production function for status, N cannot be stated in terms of exogenous

processes only: as (C.16) clearly reveals it depends on the endogenous

processes y , (  and z .  Due to the nonlinear form of this model of* * *

durability a simple closed form solution does not exist, at least not in the

generality of the model analyzed.  The absence of a closed form solution

also implies that it is not as straightforward to exhibit simple conditions on

the exogenous parameters and processes (as condition (24) in Theorem 2)

under which the solution (  is strictly positive.*

To complete the analysis we provide a set of sufficient conditions

under which the solution ((y) to (C.7)-(C.8), if it exists, is strictly positive. 

Define the process k  / D>p  and for y>0 consider the equation,t t t t

dz  = "[H(yk ,yD> ,z )-z ]dt, z >0; t0[0,T]. (C.17)o o o
t t t t t t 0

If we assume that the function H satisfies Lipschitz and Growth conditions

with respect to z for z$z e , then (C.17) has a unique solution, z (y).  Also,0
-"T o

for y>0 define the process,

L (y) / yk  - "E [I D e  f(yk ,yD > ,z )ds], t0[0,T]. (C.18)t t t t s,t s s s s
T -"(s-t) o

With this notation we have,
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Theorem 10:  Consider the economy of section 6 and Appendix C, and

suppose that assumptions 5, 6 and 7 hold with g(l,x) / g(l).  Suppose that the

conditions,

f((,y,z) is nondecreasing in its first argument, (C.19)

there exists y >0 such that L (y) > 0 for y>y  and lim L (y) = 4, (C.20)o t o y84 t

hold, where L (y) is defined in equation (C.18).  Then,t

yk  $ ( (y) $ L (y) > 0 for all y>y (C.21)t t t o

and lim ( (y) = 4. (C.22)y84 t

Assumption (C.20), in particular the condition L (y)>0, plays a rolet

similar to the condition N >0 in Theorem 2.  It ensures that the demandt

functions are well-behaved and do not explode. In the general model this "no

singularity" condition has a more complex structure since it involves the

nonlinear function f and the multiplier y.  As in the linear model of section 3

it represents a restriction on the set of "admissible" exogenous processes of the

economy.

Proof of Theorem 10:  Let y>0 be given.  Since f>0 by assumption 5 any

solution to (C.7)-(C.8) must satisfy,

( (y) # yk .t t

Since H is decreasing in its first argument it follows that,

H(( (y),yD> ,z ) $ H(yk ,yD> ,z ).t t t t t t t t

By the comparison Theorem for solutions of stochastic differential equations

(Karatzas and Shreve (1988, p. 293)), we then have,

z (y) $ z (y),t t
o
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where z (y) solves (C.17).  Using first the fact that the function f is decreasingo

in its last argument and condition (C.19) of the Theorem we obtain,

-f(( (y),yD> ,z ) $ -f(( (y),yD> ,z (y)) $ -f(yk ,yD> ,z (y)).t t t t t t t t t t t t
o o

Substituting this inequality in the right hand side of the recursive equation

(C.7) and recalling the definition of the process L (y) in (C.18) yields the lowert

bound,

( (y) $ L (y),t t

which is positive by (C.20) for y>y .  Also, using (C.20)o

lim ( (y) $ lim L (y) = 4.Íy84 t y84 t

Remark 2:  To obtain the existence of the multiplier y  satisfying equation*

(C.12) it suffices to assume that the range of the map J(( (y),yD> ,z (y)) +t t t t

p H(( (y),yD> ,z (y)) is (0,4).  This ensures the existence of y  for allt t t t t
*

x0(0,4).  However, if we consider a given level of initial wealth x>0 we only

need the weaker condition that x belongs to the range of P(y).  Note also

that the condition (C.20) of Theorem 10 is too strong: the condition

L (y) > 0 need only hold at the point y .t
*

To conclude we exhibit an example which satisfies several of the

conditions of Theorem 10. 

Example 1:  Consider the economy with preferences,

u(c,l,z) / Log(c) + Log(g(l)) + v(z)

where the function v is strictly increasing and concave with lim v'(z) = 0 andz84

lim v'(z) = 4.   Also suppose that the status production function is,z90
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 g(l) / (1/0)l , 00(0,1).0

For this economy the recursive system (C.7)-(C.8) becomes,

(  = ypD>  - "E [I D e  v'(z )ds]; t0[0,T],t t t t t t s,t s
T -"(s-t)

z  = z e  + "I e (0/( )ds, t0[0,T],t 0 0 s
-"t t -"(t-s)

where the function H((,y,z) = 0/( is independent of z and therefore

automatically satisfies Lipschitz and Growth conditions with respect to z.

Since f((,y,z) = v'(z), condition (C.19) holds.  It is easy to verify that

( (y) $ L (y) with L (y) given by,t t t

L (y) / yk  - "E [I D e v'(z e + "I e (0/yk )dv)ds].t t t t s,t 0 0 v
T -"(s-t) -"s s -"(s-v)

The condition L(y) > 0 for y>y  in (C.20) is then a restriction on the set oft o

processes (k,D), utility functions v and parameters (",z ,0) characterizing thet t 0

economy.  Straightforward computations show that the limit condition in

(C.20) holds.  For this example we also have J(( (y),yD> ,z (y)) +t t t t

p H(( (y),yD> ,z (y)) = (yD> )  + p0(( (y)) .  Since the process ( (y) ist t t t t t t t t t
-1 -1

continuous with respect to y with lim( (y)=4 and since ( (y) can gety84 t t

arbitrarily close to zero for y sufficiently low equation (C.12) has a solution

y .*
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Appendix D: linear recursive integral equations: a solution procedure.

This appendix outlines a simple methodology to solve a class of

recursive integral equations with linear or functional linear integrand and

semimartingale driving term.  Linear equations of this type appear in asset

pricing models with habit forming utilities (Detemple and Zapatero (1991,

1992)).  Nonlinear backward and backward-forward integral equations also

arise in models with recursive preferences (Duffie and Epstein (1992), Duffie

and Lions (1993), Duffie and Skiadas (1992), Duffie, Geoffard and Skiadas

(1992)).  Questions of existence and uniqueness of solutions to equations in

this class have been extensively studied in the recent literature (see, for

instance, Pardoux and Peng (1990) and Antonelli (1993)).

The setting is a complete probability space (S,T,P) where S is the set

of states of nature, T is a F-algebra and P is a probability measure defined on

(S,T).  The time interval is finite [0,T].  The filtration T  satisfies the "usual(.)

conditions" (right continuity and P-completeness) and T  = T.T

Consider the linear recursive integral equation,

R  = X  + E [I b *R ds], R  = X , (D.1)t t t t t,s s s T T
T

where X / {X ; t0[0,T]} is a semimartingale adapted to the filtration andt

* / {* ; t0[0,T]} is a predictable and bounded process.  We recall that thet

double index process b is b  / b /b  where b  / exp[-I r dv] andt,s s t t 0 v
t

r / {r ; t0[0,T]} is predictable and bounded.  The integrand in (D.1) is lineart

in the contemporaneous value of the unknown process R.  We seek to find an

adapted solution of (D.1).

The solution procedure involves three steps.  First, an assumption on

the representability of a selected random variable B enables us to convert the

backward integral equation into a linear forward equation.  In a second step we

solve the forward version as a function of the process in the representation of



       A related class of backward stochastic differential equations (SDE) characterizes19

the adjoint processes (p,N) arising in applications of the stochastic maximum principle
in settings with Brownian uncertainty structure (Brock and Magill (1979), Cadenillas
(1992), Cadenillas and Karatzas (1993)). A typical equation takes the form dp  =t

[A+Bp+CN]dt + NdW , p =D , for appropriate processes A, B, C, D and where Wt t t t t t t T T

is a Brownian Motion; the objective is to find an adapted pair (p,N) which solves this
equation.  Since N impacts the drift of the backward SDE the procedure outlined in
(D.2)-(D.10) does not work.  Cadenillas (1992) finds a parammetric family of
solutions to the SDE and uses the free parameters to fit the boundary condition and
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B.  In the last step we use the boundary condition at time T and apply

conditional expectations to obtain an expression for R  which involves thet

projection of functionals of the exogenous processes r, X and * on the

contemporaneous information set T .  This solution procedure is constructivet

and removes the need to formulate "guesses".

Defining the random variable B / I b*R ds we can write (D.1) as,T
0 s s s

R  = X  + (b ) {E [B] - I b*R ds} (D.2)t t t t 0 s s s
-1 t

subject to the boundary condition R  = X .  Suppose that B admits theT T

representation, 

E [B] = EB + I N dM , t0[0,T], (D.3)t 0 s s
t

for some k-dimensional martingale M / {M; t0[0,T]} adapted to the filtrationt

and some predictable, square-integrable process N: E[I N d[M] ] < 4.  Then,T 2
0 s s

an application of Ito's lemma produces,

dR  = dX  + r (b )   {E [B] - I b*R ds}dt + (b ) NdM  - *Rdt.(D.4)t t t t t 0 s s s t t t t t
-1 t -1

Using the fact that (b ) {E [B] - I b*R ds} = R  - X  (from (C.2)) andt t 0 s s s t t
-1 t

collecting terms yields,

dR  = dX  + [(r -* )R  - r X ]dt + (b ) NdM , R  = X , (D.5)t t t t t t t t t t T T
-1

or, in integral form,19



meet the adaptedness condition.
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v vR  = eT t t s s s s s s T T
I T -I -1T

t(rv-*v)d {R  + I e
s
t(rv-*v)d [dX  - r X ds + (b ) N dM ]}, R  = X . (D.6)

Substituting the boundary condition R  = X  on the left hand side of (C.6) andT T

rearranging yields,

v vR  = et T t s s s s s s
-I T -I -1T

t(rv-*v)d X  - {I e
s
t(rv-*v)d [dX  - r X ds + (b ) N dM ]}. (D.7)

But by Ito's lemma,

e X  = X  + I e v[dX  - (r -* )X ds]. (D.8)-I T -IT
t(rv-*v)dv

T t t s s s s

s
t(rv-*v)d

Substitution in (D.7) produces,

R  = X  + {I [e * X ds - (b ) N dM ]}. (D.9)t t t s s s s s
T -I -1s

t(rv-*v)dv

Since we assumed that N0� [M] is predictable and since r is bounded and2

predictable we have 

E[I (b ) N dM ] = 0.  Taking conditional expectations on each side of (D.9)T -1
t s s s

then yields,

R  = X  + E [I e * X ds]. (D.10)t t t t s s
T -Is

t(rv-*v)dv

To complete the proof it suffices to ensure that the random variable

B / I b*Rds has the properties assumed at the outset.  Substituting (D.10)T
0 s s s

into the definition of B leads to a condition involving only the exogenous

processes X, r and *.  Hence, we have established the following result,

Theorem 11:  Consider the recursive integral equation with linear integrand

(D.1) and suppose that,

B / I b* [X  + E [I e * X du]]ds, (D.11)T T -I
0 s s s s s u u

u
s(rv-*v)dv
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admits the representation,

E [B] = EB + I N dM , t0[0,T], (D.12)t 0 s s
t

for M / {M; t0[0,T]}  a k-dimensional martingale adapted to the filtrationt

and some predictable, square-integrable process N.  Then, the solution to

the recursive integral equation (D.1) is given by

R  = X  + E [I e * X ds]. (D.13)t t t t s s
T -Is

t(rv-*v)dv

If the representation (D.12) is unique the solution (D.13) is unique as well.

Remark 3:  Note that the process N which is used in the derivation of the

solution can be expressed in terms of the exogeneous processes X, r and *

only.  Indeed, N is the predictable process in the representation of the

random variable B defined in (D.11).

Remark 4:  Conditional expectations can be applied directly to both sides

of (D.7) to obtain the equivalent representation

 R  = E [e X  - I e v[dX  - r X ds]].t t T t s s s
-I T -IT

t(rv-*v)dv s
t(rv-*v)d

Example 2 (Brownian Filtration):  Suppose that a d-dimensional Brownian

Motion process W is defined on (S,T,P) and that the flow of information is

given by the natural filtration T , i.e. the P-augmentation of the Brownian(.)

filtration.  Then, if the random variable B / I e v* [X  + E [I e v
T -I T -I
0 s s s s

s
0rvd u

s(rv-*v)d

* X du]]ds 0 � (S,T,P) the martingale representation Theorem (Karatzas andu u
2

Shreve (1988)) ensures that there exists a unique progressively measurable

and square integrable process N such that E [B] = EB + I N dW , t0[0,T].  Int 0 s s
t

this setting condition (D.12) is satisfied and the solution to the recursive

equation is unique and given by (D.13).



       M and N are strongly orthogonal if the product MN is a (uniformly integrable)20

martingale.
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 Example 3:  Consider a complete filtered probability space (S,T,T ,P) where(.)

the filtration T  satisfies the usual conditions.  Let M  denote the space of(.)
2

square-integrable martingales endowed with the usual � -norm and inner2

product.  Consider the set A = {M ,..,M } of square integrable martingales1 k

with k elements and suppose that M , M  are strongly orthogonal for i�j.i j
20

Suppose also that for any N0M  which is strongly orthogonal to all elements2

of A we have N = 0.  Under these conditions any square integrable martingale

has the predictable representation property (Protter (1990), Corollary 3,

p.151).  Hence if B defined in (D.11) belongs to � (S,T,P) the representation2

property (D.12) holds.

We consider now two variations of the basic linear model (D.1).  Both

of these variations can be solved by finding an appropriate transformation

mapping the equation into a version of (D.1).

Consider the following equations,

(  = Y  + *E [I b ( ds], (  = Y , (D.14)t t t t t t,s s T T
T

and

R  = X  + E [I b (*R  + I $ R dv)ds], R  = X . (D.15)t t t t t,s s s t v v T T
T s

where Y / {Y; t0[0,T]} is an adapted semimartingale, * / {* ; t0[0,T]} andt t

r / {r ; t0[0,T]} are predictable, bounded processes of the filtration andt

$ / {$ ; t0[0,T]} is a predictable process.  Also suppose that * is a strictlyt

positive process: *>0.
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Corollary 4:  Suppose that the random variable,

B / I b* [(Y /* ) + E [I e Y du]]ds, (D.16)T T -I
0 s s s s s s u

u
s(rv-*v)dv

admits the representation, E [B] = EB + I N dM , t0[0,T], for some k-t 0 s s
t

dimensional martingale adapted to the filtration M / {M ; t0[0,T]}  andt

some predictable, square-integrable process N.  Then, the solution to

equation (D.14) is given by,

(  = Y  + *E [I e Y ds]. (D.17)t t t t t s
T -Is

t(rv-*v)dv

Proof of Corollary 4:  Upon dividing both sides of (D.14) by *  and definingt

the new processes,

R  / ( /* , X  / Y /* ,t t t t t t

leads to the equation, R  = X + E [I  b *R ds], R  = X , which has the samet t t t t,s s s T T
T

form as (D.1).  Applying Theorem 10 and performing the inverse

transformation yields (D.17).Í

Corollary 5:  Define the process D / {D ; t0[0,T]}  by D  / E [I b ds] andt t t t t,s
T

suppose that,

B/I b (* +$ D )T
0 s s s s

[X +E [I e v(* +$ D )X du]]ds, (D.18)s s s u u u u
T -Iu

s(rv-*v-$vDv)d

has the representation, E [B] = EB + I N dM , t0[0,T], for some k-t 0 s s
t

dimensional martingale M / {M ; t0[0,T]} adapted to the filtration andt

some predictable, square-integrable process N.  Then, the solution to

equation (D.15) is given by,

R  = X  + E [I e v(* +$ D )X ds]. (D.19)t t t t s s s s
T -Is

t(rv-*v-$vDv)d
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Proof of Corollary 5:  Using the integration by parts formula yields,

E [I  b (I $ R dv)ds] = E [I b $R (I b dv)ds]t t t,s t v v t t t,s s s s s,v
T s T T

 = E [I b $R E [I b dv]ds],t t t,s s s s s s,v
T T

where the second equality follows from the law of iterated expectations and the

T -measurability of b$R .  The resulting recursive equation is again of thes t,s s s

form (D.1) with *  replaced by *  + $ D .  The Corollary follows.Ís s s s
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