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Trading Patterns, Time Deformation and
Stochastic Volatility in Foreign Exchange
Markets*

Eric Ghysels', Christian Gouriéroux', Joanna Jasiak™*

Résumé / Abstract

La globalisation des échanges sur le marché mondial des taux de change
est une des sources principales des effets saisonniers —. journaliers et
hebdomadaires — dans la volatilit¢ des prix. Une fagon de modéliser ces
phénoménes consiste 2 utiliser la spécification d'un processus subordonné pour
formaliser la relation entre la volatilité et I'intensité des échanges. Cet article, fondé
sur les idées de Clark (1973), Dacorogna et al. (1993) et Ghysels et Jasiak (1994},
présente un modele de volatilité stochastique avec la déformation du temps pour les
séries des taux de change. La déformation du temps est déterminée par la
dynamique du flux des cotations  travers la journée, les fourchettes de prix passces
ainsi que les rendements antérieurs. Dans la partie empirique, nous appliquons ce
modgle aux données de haute fréquence de Olsen and Associates. La méthode
d'estimation que nous avons employée est le Quasi-Maximum de Vraisemblance
proposé par Harvey et Stock, adapté par Ghysels et Jasiak aux processus déformes
du temps.

Globalization of trading in foreign exchange markets is a principal
source of the daily and weekly seasonability in market volatility. One way 10
model such phenomena is to adopt a framework where market volatility is tied
to the intensity of (world) trading through a subordinated stochastic proces’
representation. In this paper we combine elements from Clark (1973),
Dacorogna et al. (1993) and Ghysels and Jasiak (1994), and present a stochastic
volatility model for foreign exchange markets with time deformation. The time
deformation is based on daily patterns of arrivals of quotes and bid-ask spreads
as well as returns. For empirical estimation we use the QMLE algorithm of
Harvey et al. (1994), adopted by Ghysels and Jasiak for time deformed
processes, and applied to the Olsen and Associates high frequency data set.

-~ We would like to thank Blake LeBaron and Bary J. Smith for many insightful comments as well as Bill
Goffe and Sophie Mahseredjian for their invaluable help on implementing the simulated annealing
algorithm.
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1. Introduction

The interbank FX market for foreign exchange transactions is one of the prime exam-
ples of the recent trends in globalization of trading in international financial markets.
The Bid/Ask prices quoted by various firms and banks are recorded over the 24 hours
per day and displayed worldwide by news services, such as Reuters or Telerate. Due
to the overlapping periods of activity of market makers located over the three con-
tinents — America, Europe and Asia, a sequential pattern in intra-day trading is
observed. Works by Wasserfallen and Zimmerman (1985), Wasserfallen (1989), Fe-
instone (1987), Ito and Roley (1987), Miiller et al. (1990), Goodhart and Figliouli
(1991), Bollerslev and Domowitz (1993) and Dacorogna et al. (1993) are examples of
a growing interest in research in this area. Most of them document and examine both
daily and weekly seasonalities in the volatility of foreign exchange rates.

The seasonal phenomena in the volatility of foreign exchange markets can be
modelled in a variety of ways. One possibility to accommodate seasonality is to modify
the traditional ARCH or GARCH type models.! Another strategy is to seasonally
adjust the data, a practice quite common for economic time series but which is not
without its longstanding controversies.? Alternatively, the market volatility can be
tied to the intensity of trading via a subordinate stochastic process representation,
as suggested by Clark (1973). This approach has been adopted in some recent works
by researchers from Olsen and Associates [see, for example, Dacorogna et al. (1992,
1993), Miiller et al. (1992)]. Instead of modelling asset price behavior in calendar
time, price movements can be represented as being driven by an information arrival
process which itself evolves randomly yet with certain predictable patterns through
time. Formally, daily returns, £(At) = log(p(t)/p(t — 1)), are hence redefined as
logp(t)/p(t — 1) = 2(Ag(t)) where g(t) is a positive, increasing stochastic process,
sometimes called directing process. This setup can be referred to as time deformation
since the relevant time scale is no longer calendar time ¢ but operational time g(t)-
Let us point out some advantages of this approach. As emphasized by Mandelbrot

and Taylor (1967), it easily accommodates leptokurtic distributions for asset returns.

1ARCH models with seasonality are discussed in Bollerslev and Ghysels (1994},
2See Chysels (1994) and Miron (1994) for further discussion as well as Andersen and Bollerslev
{1994) for applications. .



Clark (1973) has shown that within this framework, comovements between trading
volume and asset returns can easily be modelled. Finally, time deformation yields
a random variance similar to a stochastic volatility model. These ideas have been
refined and extended in several ways for foreign exchange markets. Dacorogna et
al. (1993) proposed time scales related to a measure of worldwide activity, based on an
empirical scaling law of returns relating the mean absolute change of the logarithmic
middle price to calendar time. It is intuitively based on the notion that as the
world market time “slows down”, depending on the number of markets active and
on their local intra-day pattern; price volatility decreases and vice versa. Since this
time deformation concept is based on average market activity at any point in time,
it accommodates the repetitive seasonal pattern. Dacorogna et al. (1993) do not
fully exploit, however, the framework of subordinated processes suggested by Clark
as they forego the information in the current market activity. In this paper we adopt
the generic framework of Ghysels and Jasiak (1994) and propose a stochastic volatility
model with time deformation which blends features of an average and a conditional
market activity.

The empirical work is based on the data provided by Olsen and Associates. The
series consist of DEM/USD, JPY/USD and JPY/DEM exchange rates and contain
all quotes that appeared on the interbank Reuters network over the entire year from
October 1, 1992 through September 29, 1993. Although this data bank contains a bid
and ask price for each quote along with the time to the nearest even second, several
researchers (see, for example, Dacorogna et al. (1993), Miiller et al. (1993), Moody
and Wu (1994)) consider a single price series constructed as a logarithmic average
of asks and bids. In section 2 we examine the data and discuss the advantages and
shortcomings of this approach. The stochastic volatility model in its generic form is
presented in section 3. In section 4, we discuss observable stochastic processes which
approximate the market activity and appear in our specification of operational time.
In section 5 we report the empirical estimates of the stochastic volatility model with

time deformation based on intra-day market activity. Section 6 concludes the paper.



2. Market Dynamics and the Distributional
Properties of Asks and Bids

In this section we provide a statistical analysis of asks and bids and study the behavior
of their geometric average. We examine the descriptive statistics, the autocorrelation
patterns and also investigate marginal and joint empirical densities. Since the out-
comes of time scale adjustments are for us of primary concern, the data are both
analyzed on a real time (tick-by-tick) basis, and over a fixed 20 minute sampling
interval.

The high frequency data consist of interbank FX price quotes for three exchange
rates: the Deutschmark/US Dollar (DEM/USD), the Japanese Yen/US Dollar (JPY/
USD) and the Yen/Deutschmark {JPY/DEM) rate. The numbers of observations in
the three samples are, respectively, 1,472,266, 570,839 and 159,004. Although the ask
and bid sequences are reported simultaneously for every transaction, a vast majority
of researchers study a single price series constructed as a logarithmic average of asks
and bids. Following the notation adopted by Dacorogna et al. (1993), the returns on

the foreign exchange market are thus defined as:

Azx(t) = z()—=z{t—1)
= L[(fogask(t) + Logbid(t)) — (fogask(t — 1) + fogbid(t — 1))] ,

or,

Az(t) = L|{fogask(t) — fogask(t ~ 1)) + (fogbid(t) — fogbid(t — 1))]

LA tog ask(t) + Alog bid(t)] -

Usually it is assumed that the dynamics of the x(t) series reflect the general
pattern of market activity. One could argue, however, that the logarithmic middle
price averages out outcomes of distinct trading strategies of buyers and sellers. Indeed,
the real time data reveal several differences between asks and bids. Table 2.1 presents
the summary statistics of Afog ask(t) and Aflog bid(t), the two components of
Ax(t), as well as of Ax(t) compared across markets in real time. Table 2.2 contains
the same statistical summary over a fixed 20 minute interval of time scale. We report

the mean, variance, standard deviation, skewness coefficient, excess kurtosis (i.e., the



empirical kurtosis -3), the minimum and maximum values as well as the range. A
95% confidence interval of the mean and variance estimators are also provided.

In real time, we find in general that Afog ask(t) has a higher mean and a larger
variance than Afog bid(t) . However, the first two moments of asks and bids differ
only marginally as compared to the discrepancies reported in moments of order 3 or 4.
In fact, the most relevant differences arise in terms of asymmetry and tail properties.
On the JPY/USD and JPY/DEM markets, the ask series are skewed to the right,
while the bids are skewed to the left. The quotes on the DEM/USD exchange rates
are both skewed to the right and show little differences in absolute values of the
skewness coefficients. On the contrary, on the JPY/DEM market, we report a 434
times higher absclute value of the skewness coeflicient of asks compared to bids. More
excess kurtosis is found in the ask series as well. The difference is either slight, as it
is the case of the most active and hence, most regularly behaved DEM/USD market,
moderate in the JPY/USD quotes, where excess kurtosis in asks is almost 3.5 times
higher than in bids or extreme on the JPY/DEM market where the ask coefficient is
almost 1523 times larger than the excess kurtosis of the bid series.

Two observations can be made regarding the third and fourth moment statistics
reported in tables 2.1 and 2.2. First, the differences in skewness and kurtosis for bids
and asks in the tick-by-tick data indicate that there are far more extreme changes
in the ask quotations than there are in the bids. As noted before, these differences
are particularly important for the JPY/DEM and JPY/USD markets. A second
observation is with respect to the comparison of the kurtosis statistics obtained from
real time and twenty minute sampling. In Ghysels, Gouriéroux and Jasiak (1995) it is
shown that for a time deformed process X (Ag(t)) there is an increase in kurtosis due
to time deformation when the mechanism generating Ag(?) is independent of X . This
would yield larger excess kurtosis for the twenty minute sampled series in comparison
with the tick-by-tick series. The results in tables 2.1 and 2.2 show that this is the
case for the DEM/USD series and for the bid series of the JPY/USD market. All
other series do not have this feature.

The logarithmic middle price seems to follow the asymmetric pattern of the bid
quotes, both in terms of the sign and the magnitude of skewness coefficients. The

thickness of tails in the Az(t) series appears also to be determined rather by bids



than by asks at least on those markets where the largest bid-ask discrepancies in
terms of excess kurtosis were reported, i.e., JPY/USD and JPY/DEM.

The descriptive statistics resulting from data sampled over 20 minute intervals,
presented in Table 2.2, provide us some insights on the time scale adjustment effects.
The results in Tables 2.1 and 2.2 indicate that the sampling scheme has an immediate
and very strong impact on the distributional properties of the data. We report largely
different values of the first four moments of quotes on the same exchange rates sampled
on the adjusted time scale.® Besides, data show much less variety across the markets
in a sense that the basic statistics defining the distinct character of the three data sets
become much less dissimilar. It seems that on the aggregated time scale, some of the
properties identifying the individual series are getting attenuated. Accordingly, we
do not observe either the bid-ask discrepancies, at least to the extent reported in the
real time. For this reason, statistics on both quote sequences and their logarithmic
average appear more coherent as well.

To visualize the differences between the Afog ask(t) , Afog bid(t) and Az ()
series in terms of their distributional properties, we present plots of the corresponding
empirical univariate densities. (See figure 2.1, appendix 1.} For clarity of exposition,
we cover only one market, namely JPY/DEM featuring extreme bid-ask discrepancies
in real time.

Figures 2.2-2.3 display the bivariate distributions of [Afog ask(l) , Afog bid(t)
], the univariate distributions of the two series, as well as the contour plots of quotes
recorded both in real time and on the adjusted time scale. A typical shape of the
bivariate density can be described as a sudden, very pronounced peak surrounded by
some smaller ones within a large domain of infrequently quoted values. In all data
sets, the empirical densities are stretched out along one axis of the ellipse, indicating
a strong positive correlation between Afog ask(t) and Afog bid(t) . The shapes
shown on the contour plots confirm a higher variance of data sampled at 20 minute
intervals and suggest more correlation between both quote sequences on the 20 minute
grid.

The issue that remains to be investigated is whether the distributional properties

revealed by quotes recorded over one year are shared by samples over shorter time

3his phenomenon has been documented for series aggregated from daily to weekly or to monthly
sampling frequencies [see Drost and Nijman (1993)].



horizons, like one month or one day. A closely-related problem is the stability of
the empirical densities through calendar time to uncover the presence of seasonal
patterns.

We selected 6 monthly subsamples consisting of quotes recorded in October and
December 1992 as well as in Janunary, March, May and July 1993. We analyzed both
the tick-by-tick data and quotes sampled at 20 minute intervals. For convenience, we
report again the results for one market only, i.e., the JPY/USD. {See figures 2.4-2.5, |
appendix 1.)

The variety of shapes of the bivariate empirical densities of monthly subsamples
throughout the year reveals the complexity of seasonal phenomena in exchange rates.
In the monthly tick-by-tick data sets, asks and bids show less discrepancies than in the
entire sample. The JPY/USD market is particular in a sense that Afog ask(t) still
take values over a larger range than Afog bid(t) , has a higher variance and longer
tails. (See figure 2.4, appendix 1.) Especially ask quotes on the JPY/USD rates
remain symmetric in October, while bids display a strong skewness. Interestingly,
the October asymmetry is common to all bid sequences and exhibited also by asks
on the JPY/DEM exchange rates.

The density of the average JPY/USD price, Ax(t), seems, in general, to take on
values over the bid’s range. However, it does not reflect the bid’s asymmetry. On
the remaining markets where the ask and bid densities are more similar in terms of
range and variance, skewness in the Az (t) sequence seems to be determined by the
skewness of bids.

Quotes on the JPY/USD rates, sampled at 20 minute intervals, do not reveal
the “October skewness”. (See figure 2.5, appendix 1.) Instead, an asymmetry in
the asks’ density is observed in January, while bids display asymmetric behavior
either in January, May, July and December. The bids and asks prices recorded
on the remaining two markets have similar asymmetric distributions in almost all
monthly subsamples. Apparently, on the adjusted time scale, every month has its
own particular rhythm and pattern of trading, as reflected by a characteristic tail
behavior.

Since asks and bids on DEM/USD and JPY/DEM rates exhibit on the 20 minute

grid similar distributional properties, the general tendency of these markets is ex-



pected to be well-approximated by Az (t) . In case of the JPY/USD quotes, their
logarithmic average mimics the tail behavior of bids rather than asks.

The empirical densities corresponding to a given day are shown in figures 2.6-2.7,
appendix 1. Our data consists of quotes recorded over 4 days of the week of October
5 through 12, 1992. Daily patterns are examined on the most active DEM/USD
market. The empirical densities of daily subsamples differ again in terms of shape. In
the tick-by-tick records, Wednesday’s and Sunday’s distributions are more stretched
out and are more symmetric than the Monday’s and Friday’s ones. On Monday, both
asks and bids are characterized by long right tails, while on Friday the asymmetry
is exhibited by bids only. The middle price Az(t) reflects again the distributional
properties of bids.

The quotes sampled over the 20 minute grid show a variety of daily densities
although due to a small number of observations, Sunday’s data can be disregarded.
As we have observed in the monthly data, the adjustments of the time scale imparts
asymmetries and thus seasonality on days (months) where they are not reported in
the tick-by-tick data. For example, thick and uneven Wednesday’s tail reappear on
all markets.

Many of the seasonal phenomena may also be recovered within the autocorrelation
patterns of the series. As this issue will be discussed in section 4, we concentrate on
serial dependencies on the real and the adjusted time scales up to lag 100.

The autocorrelations in bids and asks on both time scales are persistent and do
not reveal any new facts. Although we do not report the cross-correlation functions,
some insights on the price dynamics are worth being presented. As we have inferred
from the empirical densities, asks and bids sampled at 20 minute intervals are more
correlated than asks and bids ir the real time. In fact, covariances of data on the
adjusted time scale are almost equal to one on all markets and vary between 0.7-0.8
across markets in the tick-by-tick samples. In terms of the lagged dependence, the
first tick is of primary importance for the ask and bid price adjustments. The cross-
correlation at lag 1 is negative and varies un the markets between -0.2 and ~0.3. The
cross-correlations drop dramatically within the next tick indicating still a significant,
although a very low, positive dependence {less than 0.03) at lag 2. At higher lags, the

dependence between ask and bid series remains extremely low and occasionally takes



on significant values. On the 20 minute scale, the real time cross-correlations sum up
to one significant lag observed on all markets of a negative value close to ~0.1.

To investigate the persistence in (Az(z) )%, modelled within the SV framewaork,
we computed the autocorrelation functions of (Afag ask(t) )?, (Afog bid(t) )2 and
(Az(t) )% On all markets, squared values of returns, asks and bids in real time show
similar, persisting patterns of serial dependence. (See figure 2.8, appendix 1.) The
same behavior is revealed by data sampled at 20 minute intervals on the DEM /USD
and JPY/USD markets. The squares of returns (Az(t) ) on the JPY/DEM exchange
rates are exceptional, as they do not follow the autocorrelation pattern of squared
values of ask and bids (see figure 2.9, appendix 1).

The time scale adjustments have shown, so far, either to alleviate some extremes
in the distributional structure of the tick-by-tick data or to impart some phenomena
related to the seasonality unobserved in real time. Two interpretations seem to be
plausible: by sampling at fixed time intervals, we either extract the necessary infor-
mation out of the noisy tick-by-tick records and reveal the essential properties of the
data, or we forego important information and hence obtain an oversimplified image of
the true underlying processes. The evidence we have presented, indicates that, apart
from some exceptions, the behaviors of asks and bids, the two components of the log-
arithmic middle price, are much more coherent on the 20 minute time scale. Hence,
the middle price increments Az (t) approximate better the general tendency of the
quotes. By choosing the 20 minute grid to model volatility in the Az(t) series, we
need to make the necessary adjustments in the traditional SV model to accommodate
several aspects of seasonality. In the next section we explain how this can be achieved

by modelling the stochastic volatility within a time deformation framework.
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3. Stochastic Volatility and Time Deformation

In this section we provide a brief summary of the stochastic volatility model with
time deformation presented in Ghysels and Jasiak (1994) and Ghysels, Gouriéroux
and Jasiak (1995). Following the work by Hull and White (1987), Johnson and
Shanno (1987), Scott (1987), Wiggins (1987), Chesney and Scott (1989), Stein and
Stein (1991) and Heston (1993), we call a stochastic volatility model the following set

of equations:

dy(t) = py(t) dt + o() y(O) Wi (1) (3.1a)
dlogo(t) = a(b - loga(t)) dt + cdWs(t) , (3.1b)

where Wi(t) and Wy(t) are two independent, standard Wiener processes. Ghysels
and Jasiak (1994) suggested to adopt the framework of equations (3.1a) and (3.1b)
and define the volatility process as a subordinated stochastic process evolving in a
time dimension driven by market activity. This approach has been motivated by the
works of Mandelbrot and Taylor (1967) as well as Clark (1973). The complex and
quite frequently irregular behavior of asset prices becomes simpler and hence easier
to model once we assume that the volatility is tied to some observed or unobserved
variables, like the information arrival, which determine the dynamics of tradings.!
Hence, we assume that there exist an operational time scale of the volatility process,

with s = g(t), a mapping between operational and calendar time ¢, such that:®
dy(t) = ) e+ o (g(0)) p(E) dn 1) (3.20)

dlogo(s) = a{b—logo(s))ds + cdwa(s) . (3.20)

Following Stock (1988), we use the notation g(t) for the directing process to indi-
cate some generic time deformation, which may include trading volume besides many
other series that help to determine the pace of the market. Before discussing what
- might determine ¢(t), we would like to make some observations regarding equations
(3.1a) and (3.1b). Indeed, it should first be noted that the equations collapse to the

usual stochastic volatility model if g(t) = t. Obviously, there are several possible

4The microfoundations for time deformation and the process of price adjustments can be found
most explicitly in Fasley and O’Hara {1992).
5The mapping § = g(t) must satisfy certain regularity conditions which will be discussed later.
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specifications of o{g(t)). Moreover, one could correctly argue that defining volatility
as a subordinated process amounts to suggesting a more complex law of motion in
comparison to the Ornstein-Uhlenbeck (henceforth, O-U) specification appearing in
(3.1b). This interpretation is valid, yet it should be noted that, through g(t), one can
associate many series other than the security price y() to explain volatility; hence,
one implicitly deals with a multivariate framework. Moreover, as we have pointed out,
the time deformation setup enables us to handle rather complex structure through
the subordinated representation.

To enhance our understanding of the mechanism of the process, we first con-
sider the system (3.2} in its continuous and discrete time versions. To simplify the
presentation, let us set b = 0 and discuss a continuous time AR(1). An investor’s
information can be described by considering the probability space (£, F, P) and the
nondecreasing family F' = {F;};% of sub-o-algebras in calendar time. Furthermore,
we let Z, be a m-dimensional vector process adapted to the filtration F, i.e., Z; is
F-measurable. The increments of the time deformation mappin‘g g will be assumed

to be F,_; measurable via the logistic transformation:

dg(7; Zi_ , 1 & _

—Q(—f———lz = g(1;Z1-1) = exp( Zi) /[ { = Zexp(c’Zthl) , (3.3)
dr T

for t —1 < 7 < .5 Equation (3.3), setting the speed of changes in operational time as

a measurable function of calendar time process Z;_y, is completed by the additional

identification assumptions:

0<g(r; Ze3) <00, (3.4)
9(0) =0, (3.5)

1 T
= ZAg(t) =1 (36)

These three conditions guarantee that the operational time clock progresses in the
same direction as calendar time without stops or jumps.” Given that g is constant
between consecutive calendar time observation via (3.3), its discrete time analogue

Ag(t) = g(t) — gt —1) takes the same logistic form appearing in (3.3). At this point,

5The fact that the denominator in (3.3} contains a sample average may suggest that o(g{t)) is
not measurable with respect to the filtration F; in calendar time. However, the denominator in
(3.3) is there for reasons of numerical stability of the algorithms. Since it is only a scaling factor,
its presence is of no conceptual importance.

See Stock (1988) for a detailed discussion of the identification assumptions.
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we will not present the components of the Z; ; vector. As we will discuss this issue in
the next section, let us just indicate that, in principle, Z;_, consists of any processes
related to the information arrival. Ghysels and Jasiak (1994) show that the solution

in calendar time can be expressed as:

Alogy, — aAlogyey — A= eMe, (3.7)
hy = [(1 ~ exp(alg(£)))]b + exp(aAg ()1 + vt , (3.8)
v ~ N0, ~Z(1 - exp(2a g (£)))/2) - (3.9)

Equations (3.7) and (3.8) constitute the basic set of equations for the discrete time
representation of the SV model with a subordinated volatility process which evolves
at a pace set by Ag(t) . A linear state-space representation of the system (3.7)-
(3.8) can be estimated by maximizing the conditional maximum likelihood function
within the Kalman filter framework. Following Harvey, Ruiz and Shephard (1994),

we rewrite equation (3.7) as:

log[Alogy, — a1 A logy, 1 — AP = h, +loge? {3.10)
where: Elogs? = —1.27 and Varloge] = 7?/2. Defining ¢ = logz?, we obtain:
log[Alogy, — asAlogyeg — A = 12T+ h + . (3.11)

Apart from the parameter A, whose treatment is discussed for instance by Gouriér-
onx, Monfort and Renault (1993), the coefficients of this state-space model are time-
varying and, hence, similar to the specification proposed by Stock (1988), except
for the properties of the g process which is no longer Ganssian. Consequently, the
estimation procedure based on the Kalman filter will result here in a quasi-maximum
likelihood estimates, as pointed out by Harvey, Ruiz and Shephard (1994). The
details of the QMLE algorithm for time deformed SV models are discussed in Ghysels
and Jasiak (1994); while Ghysels, Gouriéroux and Jasiak (1995) present a detailed

account of subordinated process theory and their estimation.
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4. Directing Processes for Market Activity

The model structure described in the previous section is a generic one where, apart
from some regularity conditions and the logistic form, the specification of Ag(t) was
left open. Clark (1973), Tauchen and Pitts (1983) and Ghysels and Jasiak (1994)
studied stock returns and used a time deformation model with trading velume as
proxy for market activity. It is well known that for foreign exchange markets trading
volume is difficult to obtain. Hence, we need to consider other series. The Oisen
and Associates data base provides several possibilities to model market activity. The
purpose of this section is to discuss the different approaches one could consider.

Our strategy will consist of distinguishing “regular” or average market activity,
and deviations from the expected level of activity. For example, when European finan-
cial markets open and start active trading in say the DEM/USD currency exchange,
each market participant has a certain expectation of the number of quotes arriving
during the first five minutes, the next five minutes, and so on. Some mornings, trading
is more brisk or even sometimes frenzy-like. On other mornings, the market activity
is down relative to its usual rhythm. Every part of the trading day has a certain
reference norm of activity against which one portrays the latest quote arrivals. What
is true for quote arrivals holds also for other market indicators like bid-ask spreads,
returns, absolute value of returns, etc. The model specification strategy which we will
adopt is to incorporate into Ag(t) measures of “regular” or average market activity
and series representing deviations from average trading patterns. To continue with

the quote arrival example, we can formulate Ag(t) as:
Ag(t) = exp(c' Zi—1) = exp(Ogangai—y + Oglnga, 1 — nge1)) , (4.1)

where the scaling constant appearing in (3.3) has been omitted from (4.1). Hence,
from (4.1) we have that: Z,_; = (nga;-1, {ng:_1 — ng,—1)) where nqa,_; is the mean
number of quotes arriving over the interval ¢ — 1, while ng,_, is the actual number of
quotes which arrived in ¢ — 1.

To clarify this, let us consider the plots appearing in figure 4.1, appendix 2. The figure
consist of six plots, the left side displaying graphs with results from data sampled at
5 minute intervals and the right panel containing the 20 minute sampling frequency

equivalent. We study the three markets of the Olsen data set, namely DEM/USD,
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JPY/DEM and JPY/USD. Each plot covers a span of a week, omitting the weekends,
and displays the average number of quotes, computed over the entire sample, for
each 5 (left) or 20 (right) minute time intervals of the week. The plots display the
repetitive intra-day cycle which is so typical for high frequency exchange rate data.
The 5 minute plots are, of course, more jagged than the 20 minute ones, but each
shows clearly the patterns of quote arrivals repeating each 24 hour cycle. The graphs
displayed in figure 4.1 represent the nqa,.; series used to model A g(t) . The number
of quote arrivals is one candidate series to measure market activity, besides other
series which we shall discuss shortly.

Before turning to these other series, it is worth drawing attention to a special case
of time deformation. Suppose for the moment that ©g, = 0 in (4.1). Then, Ag(t) is
purely a function of the repetitive daily pattern of {nga,} which amounts to volatility

being a periodic autoregressive process:
hy =y + athey + We (4.2)

where 7, and «, are changing every & or 20 minutes, depending on the sampling
frequency, with a 24 hour repetitive cycle, l.e., 11 = Yo, ¢ = Qs with s = { + 24
hours.® A periodic medel like (4.2) resembles the class of periodic ARCH processes
proposed by Bollerslev and Ghysels (1994) in analogy with periodic ARMA models
for the mean which have been extensively studied. Of course, the parameter variation
in (4.2) is determined by v = (1 — exp(ag(t))) and oy = (aAg(?)).

We noted that quote arrivals are not the only measure of market activity, and
indeed several other series in the Olsen data file could be considered. Figure 4.2 of
appendix 2 displays the intra-daily pattern of bid-asks spreads. The figure has the
averages computed on a weekly basis of the average bid-ask spreads during 5 or 20
minute intervals. We notice in figure 4.2 a reasonably regular 24 hour pattern for bid-
ask spreads but by far not as pronounced and regular as the quote arrivals displayed in
figure 4.1 of appendix 2. Following the example in (4.1), we can formulate a directing

process as follows, using the same principle:

Ag(t) = exp(Ogespas-1 + O,4(5pa¢-1 — SPe-1)) (4.3)

8Since the averages nga, were computed on a weekly basis, there might be some slight differences
from one day to the next one over an entire week. Yet, judging on the basis of figure 4.1, those
differences appear minor.
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where spa,_ is the sample average computed on a weekly basis of the mean spread
over the interval ¢ — 1 while sp,_; is the mean spread actually realized.

Last, but certainly not least, we can use absolute return. The weekly averages
are displayed in figure 4.3 of appendix 2. The absolute return series has been used
by Miiller et al. (1990) to model an activity scale. These authors have observed
that absolute returns exhibited clear structures reflecting market activity through
the repetitive cycle of business hours. Indeed, we recover such a pattern in absolute
returns, although it appears again to be not as regular as in the case of quote arrivals.

If we were to use only absolute returns, we could construct a directing process:
Ag(t) = exp(©,qara,_1 + Orq(ara,y — ar 1)) , (4.4)

where ara; ; is the sample average of absolute returns while ar;_; are the actual
realization for time interval ¢ — 1.

Whatever measure suits best to formulate the directing process is ultimately an
empirical question of model specification and diagnostics. In (4.1) through (44) we
considered each of the series separately in their expected value format and deviations

from the mean. However, one could easily combine the series and create a generic

directing process:

Ag(t) = exp(d Zi-1) = exp(©gangoe-1 + Oyaspas.) + Orearae (4.5)

+ Oye(ngas-1 — ngi1) + Osa(spas-1 — spi-1) + Orglarac; — are1)) -

A priori one should expect that the formulation (4.5) has a lot of redundancy, par-
ticularly with respect to the nga, spa and ara time series. Presumably, the best
representation is to pick one of the averages as representative to measure market
activity as a combination of the selected average processes and add the series mea-
suring deviations from regular market activity. The latter could be represented either
by one, two or all three surprise variables in (4.5). This is precisely the modelling
strategy which we will adopt in the next section.

Before presenting the estimation results, we need to discuss the time series prop-
erties of the {nqa; — ng.), (spac— sp) and (ara, —ar,) series, i.e., the series measuring

deviations from regular market activity. To do this, we examine the autocorrelation
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function of each series. They are plotted in figures 4.4 through 4.6 of appendix 2,
and they are complementary to the plots of the weekly averages. The first of the
three figures covers the ACF of the {nga, — ng} series. We notice a very strong and
repetitive pattern in all three markets. This means that average quote arrivals, as
displayed in figure 4.1 of appendix 2 are not the only source of periodic patterns ap-
pearing in equation (4.1), since the deviations from market average are also strongly
autocorrelated with seasonal patterns. When we turn our attention to figure 4.5 of
appendix 2, which covers the bid-ask spread series {spa; — sp:}, we observe less sea-
sonal autocorrelations, at least on a daily basis, but still within a weekly lag. Since
weekends were deleted prior to computing the autocorrelation functions, one recovers
a positive autocorrelation at around 360 lags. This weekly pattern is present on both
the DEM/USD and JPY/USD markets. On the JPY/DEM market, we find a daily
seasonal pattern, however, quite similar to that in figure 44. Finally, we turn our
attention to the absolute return market deviation series {ara; — ar;} in figure 4.6.
Unlike the two previous series, it exhibits no particular regular patterns in the corre-

sponding ACF. Instead, we find a slowly decaying pattern starting from a first order

_autocorrelation which is much higher than the previous ones, namely .25 instead of

around .05 as those appearing in figures 4.4 and 4.5. Even after 800 lags, we still have

an autocorrelation above .05.
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5. Empirical Results

There are three currency exchange markets available in the Olsen and Associates data
set, and hence, we will devote a subsection to each market. We begin with the most
active DEM/USD market which is covered in section 5.1 followed by JPY/DEM and
finally, JPY/USD markets which are covered in section 5.2. Before discussing the
actual results, a few observations are in order regarding estimation. It was noted
in the previous section that the details of the QMLE algorithm are omitted here as
they appear in Ghysels and Jasiak (1994). The numerical optimization of the quasi-
likelihood function was accomplished via simulated annealing. The algorithm, which
is described in Goffe et al. (1994), appeared to be the best equipped to deal with
the multiplicity of local maxima which tricked most other conventional algorithms we
tried. Also, for reasons of numerical stability, we rescaled the quote and spread series

by 1.e-03 while the absolute return series was rescaled by 1.e-01.

5.1 The DEM/USD Foreign Exchange Market

In section 4 we noted that our modelling strategy of the mapping between calendar
time and operational time would consist of picking one of the three series measuring
anticipated market activity and combine it with the set of series reflecting deviations
from averages. Table 5.1 reports the estimation results obtained from the 20 minute
sampling interval for three model specifications, each involving different measures of
average market activity, as appearing in equations (4.1) through (4.5), completed
with several combinations of the deviations from average market activity. To avoid
reporting too many empirical results, we present models with nga and ara variables of
average market activity and omit those with spa which yield quite similar results. The
three surprise terms appear either simultaneously or separately in models summarized
in table 5.1. Besides the point estimates, we also report standard errors which were
computed using a heteroskedasticity consistent QMLE covariance matrix estimator.
One should recall that the QMLE procedure is asymptotically inefficient, yet the
standard errors in Table 5.1 reveal that all series entering Ag(t) , no matter what

specification is used, appear significant. Hence, the standard errors do not give us
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much guidance on what model specification to chose. Belore elaborating further
on model choice, let us first discuss the interpretation of the estimates. One can
note immediately that all the coefficients ©,; have negative signs. Obviously, each
coefficient measures a partial effect. However, from microstructure models we know,
for instance, that as the time interval between quotes decreases, one expects spreads
to increase (see, for instance, Easley and O’Hara (1992) for further discussion). Hence,
each of the series reflects movements that are obviously not unrelated. The mapping
between calendar time and operational time we investigate is, of course, one based
on statistical fit. Let us distinguish first the coefficients related to average market
activity from those related to deviations from the normal pace. The first example
covers average quotes. Negative coefficients ©4, and a imply that when the average
number of quotes 1s high, market volatility becomes more persistent and less erratic.
Obviously, high quote arrivals do not necessarily reflect a high information content,
but often it means that many markets are active simultaneously. Comparing figures
4.1 and 4.2, we note that high average quote arrivals appear to be associated with
higher bid-ask spreads, at least for the DEM/USD market discussed here. Likewise,
comparing figures 4.1 and 4.2, we make the same observation for absolute returns, at
least again on the DEM/USD market.

The coefficients related to deviations from normal market activity are also nega-
tive. Since deviations are measured as average minus actual realizations, it is clear
that, with negative a coefficient, above normal market activity increases volatility
and vice versa. Also, operational time increases (decreases) when market activity is
above {below) average. It must also be noted that each specification of Ag(t) in-
volves lagged values of the deviations from market activity. This is, of course, done in
order to guarantee that Ag(t) is based on variables that are measurable with regard
to t — 1 information. From the autocorrelation functions in figures 4.4 through 4.6,
we also know, however, that the first order autocorrelations for each of the market
activity deviation processes are positive.

With all entries being significant for the 20 minute DEM/USD specifications, we
must rely on other criteria to discriminate among models. In the remainder of this
section, we will focus on the models appearing in the first column of tables 5.1 through

5.3. These models contain all three measures of deviations from average market
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activity combined with each of the three measures of average market activity. We
first turn our attention to the plots of squared returns paired with the sample paths
of market time as obtained from the estimated Ag(f) processes. They are displayed
in figure 5.1 of appendix 3. The three Ag{t) processes appear quite similar, although
upon closer examination, it is clear that the time deformation involving average quotes
looks quite distinct from the other two specifications.

Since we have computed the Ag(t) process, we may also proceed as in Miiller et
al. (1993) and analyze returns not in calendar time, but rather in operational time.
It is a useful tool, as Miiller et al. {1993) suggest, to study “deseasonalized” returns.
It should be noted though that while the Olsen and Associates activity scale is purély
based on average (repetitive) patterns, our uses direct dynamic effects. We compute
the autocorrelation function in operational time estimated from our models, by us-
ing an approximation, namely, by defining the [Alogy, — a1, Alogy.—1 — A]? / Ag(t)
process as being the normalized returns, relative to market time. Obviously, when
Ag(t) = 1, we recover the calendar time process. Otherwise, we recover a squared
return process adjusted for serial dependence and drift which is normalized by oper-
ational time changes. This normalized process is used to compute an autocorrelation
- function. For comparison, we plot first the squared returns ACF in calendar time fol-
lowed by the ACF computed from the Olsen and Associates time scale.® (See figures
5.2-5.3, appendix 3.) We observe that all operational time autocorrelation functions,
namely, the Olsen and Associates and our specifications lock very different. Those
involving average spreads which were not reported in table 5.1 show significant au-
tocorrelations at weekly, biweekly, etc. lags. In sharp contrast, the ACF’s involving
operational time scales with average quotes and p‘articularly with absolute returns,
indicate that the normalized squared returns are almost white noise series which do
not show any long memory properties. Judging on the basis of these ACF, it appears
that the model involving absolute returns is probably the most appealing to estimate

from the DEM/USD data.

9We are grateful to Michael Dacorogna for providing us with the ACF. It should be noted that
the sample used.in Miiller et al. (1993) and the one used here is not exactly the same. We ignore
this aspect here.
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5.2 The JPY/USD and JPY/DEM Foreign Exchange
Markets

We now turn our attention to tables 5.2 and 5.3, each covering empirical results from
one market. Again, we present model specifications involving two different measures
of average market activity, nga and ara, combined with three measures of deviations
introduced in the previous section.

There are several differences between the parameter estimates based on the DEM/
USD sample and those reported on the JPY/USD and JPY/DEM markets. In tables
5.2 and 5.3 we notice immediately positive as well as negative signs of ©;; and we
also see that some coefficients became insignificant. Exceptionally, the parameter
estimates of the JPY/USD model involving the nga variable (table 5.2, top panel)
have similar signs as the coefficients of the analogue specification estimated from the
DEM/USD data. Consequently, both models yield a similar interpretation of the
volatility behavior. The operational time slows down when the number of expected
quotes increases and it accelerates while the current number of quotes, the current
level of spread or returns exceeds the expected values. Thus, changes in the volatility
appear to be driven by the extent in which the actual market activity deviates from
the average level. The results presented in the bottom panel of table 5.2 indicate that
the surprise terms have the same effect in the specification invelving the ara variable.
A high level of expected returns, contrary to the average quote arrival, speeds up the
operational time and the volatility adjustments.

The results based on the JPY/DEM sample are difficult to interpret. In section
2 we have pointed out several distinct distributional properties of JPY/DEM quotes.
Some particular seasonal patterns of this series have also been discussed in section 4.
It appears that the only variable accelerating the operational time and, hence, changes
in the volatility process, is the instantaneous excess return. The coefficients on the
remaining variables are positive throughout both specifications indicating an opposite
effect. It may also be worth recalling from section 2 that the excess kurtosis statistics
for the tick-by-tick data in comparison to the equally sampled data were not conform
with a time deformation framework X{Ag(t)) were Ag(t) is independent of X, on
the JPY/DEM market. This fact may also help to explain the poor performance.
In conclusion, the JPY/DEM model yields results which are not plausible, and it
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seems appropriate to estimate volatility on this particular market within a different

framework.

22



Table 5.1
QML Estimates of Stochastic Volatility Models with Time Deformation
20 Minute Sampling Intervals — DEM/USD Market

Model: log[Alogy, — aiAlogye 1 — N? = =127+ he +; A
= [(1—exp(edg (@b + exp(afg(t))he1 + v

Ag(t) = exp{Ogngar1 + Ogi(ngas—1 — ng-1) + Osa(spar-1 — spr-1) + Orglaras-1 — are1)]
vy ~ N(0, —Z(1 — exp(2alyg(t)))/ 2a)
(1) 2) (3) e

Est. St. Er. Est. St. Br. Fst. St. Er. Est. St. Er.

B ~0.0106 0.0011 | -0.0107 0.0011 ~0.0114 0.0032 | -0.0148  0.0016

B, -0.0197  0.0029 | -0.0186  0.0029 0.0320  0.0057 — —

©,; -1.5040  0.0054 | ~1.4805  0.0053 - - -1.6044  0.0262
0.4 45236  0.0049 —= — — — -1.7899  0.0050
a ~0.4206  0.0050 | -0.3800  0.0053 | ~0.1357 0.0305 | ~0.6455  0.0226
z 1.1714  0.0049 1.0381  0.0049 0.3738  0.1050 1.7842  0.0114

b ~14.0361  0.0050 | -14.9369  0.0050 | ~14.9702  0.0773 | -14.8807  0.0375

Agl(t) = exp{Oreara;—) + Qa(ngar—1 ~ ngi—y) + Osulspar-1 — spr-1) + Orglarap.q — are-1)]

o {2) (3) {4)

Eist. St. Er. Est. St. Ior. Est. St. Er. Est. St. Er.

., 22065 0.0050 | -2.3450 0.0050 | -2.2099  0.6004 | ~1.8602 0.0049

O, -0.0270  0.0028 | -0.0270  0.0028 -0.0268  0.0047 — —

O, ~1.7471  0.0161 | ~1.7464  0.0157 — — -1.8360  0.0142
O, -3.0309 0.0049 — - — — -2.6463  0.0049
a ~0.7601  0.0269 | ~0.7418  0.0245 | -0.1257  0.01890 { -0.8759  0.0276
= 20766  0.0115 2.0260 0.0106 0.3382  0.0629 2.2712  0.0120
b ~14.8200  0.0060 | ~14.8193  0.0119 | -14.8360  0.0614 | -14.6385  0.0106
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Table 3.2
QML Estimates of Stochastic Volatility Models with Time Deformation
20 Minute Sampling Intervals — JPY/USD Market

Model: loglAlogy — a;Alogyr-1 — A2 = 12T+ h +a; It
[(1 - exp(aAg(t)))]b -+ eXP(ﬂAg(t))ht_l + vt

i

Ag(t) = exp[Oungay—1 + Ou(ngai_1 — gy 1) + Osa(spac-1 — spt-1) + Cralaras—; — arey)]
vy~ N(0, - 2(1 — exp(2aAg(t)))/2a)
( (@) (3) {4)

Est. St. Er. Est. St. Er. Est. St Er. Est. St. Er.

6, -0.0153 0.0043 | -0.0167  0.0066 ~0.0070  0.0021 | -0.0070  0.0042

0,0 -0.0239 0.0036 | -0.0243 0.0083 — — — —

0,y 02002 0.0049 - — 0.2970 0.1401 — —

0. -0.8204 0.0049 — — — - -0.5879  0.0049
a ~02180  0.0053 | -0.2132 0.0411 | ~0.1943 0.0069 | -0.1983  0.0399
> 0.6899 0.0111 0.6777  0.1736 0.5801  0.0239 0.5951  0.0079
b ~14.0240  0.0050 | -14.9306  0.0596 | ~14.7899  0.0212 | -14.7950  0.0030

Ag(t) = exp[@,qaras1 + Og(ngar-y — ngr-1) + Oualspac-1 — spt—1) + @, 4(ara,.1 —arg_1))
(1) (2) {3) &)

Est. St. Fir. BEst. St. Er. Est. St. Er. Est. St. Er.

O 6.2526  0.0049 6.2884  2.6309 6.0877  3.8863 52324  0.0049

G, -0.0178  0.0041 | -0.0181 0.0054 — — — -—

G -0.2864  0.0050 — — -0.3251  0.1398 — —

0,4 -0.7404 0.0040 — — — - -0.5565  0.0049
a 02063 0.0161 | -0.2063  0.0202 | -0.1921  0.0068 | -0.1943  0.0154
z 0.6357  0.0643 0.6354  0.0804 0.5702 0.0234 0.5777  0.0596
b -14.8784  0.0339 | -14.8860  0.0388 —14.7786‘ 0.0213 | -14.7838  0.0024
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Model:

Ag() = exp[©yangas-1 + Ogu(ngas-1 ~ ng-1) + Osu(spac-1 — spi-1) + Oralaras-y — are-1)]

QML Estimates of Stochastic Volatility Models with Time Deformation

log[Alogy, — a1 A logys—1 — A}

Table

5.3

20 Minute Sampling Intervals — JPY/DEM Market

I

[(1 ~ exp(adg(O)] + exp(alg())he-1 + v,

vy ~ N{0, ~Z(1 — exp(2a A g(t)))/ 2a)

0 @) ® @)
Est. St. Er. Est. St. Er. Est. St. Er. Est. St. Er.
O, 0.0273 0.0074 0.0022  0.0132 0.0186 0.0134 | -0.0050 0.0131
G, ~0.0204  0.0097 0.0201  ©€.0111 — - — —
O4a 0.4924  0.0054 — — 0.4822 0.0800 — —
8,; -0.2240  0.0052 - - - - 0.1387  0.5881
o —0.17T3  0.0008{ -0.1743 0.0088 | -0.1781  0.0091 { -0.1767  ©0.0089
b 0.3195  0.0272 0.3163  0.0212 0.3232  0.0215 0.3241  0.0216
5 ~14.3993  0.0022 | —14.3674  0.0202 | -14.4061  0.0199 | -14.3817  ©.0196
Ag(t) = exp[@rqarac-1 + Ogi{ngas_| — nge—1) + Ouu(spai_y — spi—1) + Orglaras-1 — are1)]
1 (2) (3) 4
Est. St. Er. Est St. Er. Est. St. Er. Est. St. Er.
Oy 6.6248 5.4780 7.7326 5.6690 6.4390 3.0797 7.6165 0.0052
O -0.0214  0.0116 0.0195  0.0111 - — —_— —
Q,y 04577 0.0787 — — -0.4573  0.0978 — —
O -02292  0.6664 - — - — | -0.1180  0.0054
a -0.1805  0.0093 | -0.1748 0.0088 | -0.1812 0.0171 -0.1730  0.0147
b)) 0.3276  0.0220 0.3178  0.0212 0.3309  0.0417 0.3199  0.0358
b ~14.4100  0.0108 | ~14.3696  0.0196 | -14.4160  0.0252 | -14.3790 0.0133




6. Conclusions

In this paper we discussed the dynamics of three exchange markets: DEM/USD,
JPY/USD and JPY/DEM, and we proposed a stochastic volatility model for exchange
rates sampled at high frequencies.

We first examined the complexity of market dynamics emphasizing the seasonal
patterns in return, bid, and ask series. The analysis has been based both on unequally
spaced data as well as on series sampled at fixed 20 minute intervals. We have pointed
out that the choice of the time scale is crucial for the accuracy and the informational
content of the results. In the tick-by-tick records, we observed some interesting shifts
in the entire distributions from one month to the other and even throughout the
week. The equally spaced data exhibit similar radical changes in the behavior of
the empirical distributions through time. The complexity of the seasonals in high
frequency records requires, thus, a more scphisticated framework than simple mean
shift models of standard adjustment techniques developed in the (macro) time series
analysis, which are transplanted to volatility models {(i.e. adding mean shifts to
GARCH type models, etc.) Finally, we presented evidence that the nisual geometric
average of bids and asks is an appropriate measure of returns on the 20 minute time
scale but is an unreliable indicator of mean price changes in the tick-by-tick records.

Next, we investigated a new approach to deal with the seasonal effects in high
frequency data and proposed a time deformation framework of stochastic volatility.
It is worth emphasizing that it is the first attempt to fit this type of model to high
frequency exchange rate series. We examined two specifications of the relationship
between the volatility of quotes and the expected values of some relevant variables
approximating the market activity as well as the instantaneous deviations from their
average behavior. In general, the models successfully explained the market dynamics

at least in two out of three data sets.
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Figure 2.2
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Figure 2.3

JPY_USD infask(t)} - in{ask(t-1)) 20min

1500

0010 -5.00% o0 aL08 0010

JPY_USD Infbid(t) - Inibid(t-1)) 20min . JPY_USD df in{aek) dif In{bid) 20min

29

1500
ag 0.002

FREQ
100G
b

-0.004

0519 £0.005 00 $.005 aato 0.004 +0.002 0g 0.002 0.004
ank




4

ure 2.

g

F

ate Monthly Histograms of JP

Y JUSD Quotes (Real Time)

ivarl

B

5000

freq

o 2000 4000

freq
0 200800800@0080CC0

january

treq
o 5000 10000 15!

000

maich

octobar

december




Figure 2.5
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Figure 2.6
Bivariate Monthly Histograms of DEM/USD Quotes (Real Time)
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Figure 2.7
Bivariate Monthly Histograms of JPY/USD Quotes (20 Minutes)
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Figure 2.9
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Figure 4.1
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Figure 4.2

M-Pa

20012 Q0008

Q0012

208 -0.02

2.10

230 <Sm 008

an

Waekly Average Bid-Ask Spreads at 5 Min, Intervals
DEM_USD Markat

Weskly Average Bid-Ask Spreads al 20 Min. Inlervals
DEM_USD Market

N

-0.0008

£
&
§
L4
Moritey Tuasosy Wenesdxy Thuredsy Frday Manday Tuoesaay Wenesday Thursday Friday
JPY_DEM Market JPY_DEM Market
1
3 \ Z
“ 9
Py b
3 -
Morxizy Tuesciay Wenesdsy Thursday Felday Monday Tuasday Waenesday Thursiay Faday
JPY_USD Market JPY_USD Market
g
5
PO o {/}%{j?
& 9

-6.10

Mondey Tuewisy Weneaday * Trwrsdsy Fridsy

Whonday Tuesdry Werssday wTHursdsy Framy




Absoaze 0XX

00002 QX8 QU9

Wuukly Aveiaye Absolule Hetutiis al 8 M, iteivuls Wagkly Averayas Alisclute Retums al 20 Min, lnlervals

DEM_USD Market DEM_USD Market
. . 5 §
M . i .,
by o N M (L
Mandry y Tuescay Vanescey Trumozy Fridey “ Twemdey ! Friday

JPY_DEM Market JPY_DEM Market

Figure 4.3
Absobag QX2
0029

QWG

ag

3 ) ﬂ % |
ZS el 1 % { < e | _
b étrf I%,é » zé 1
JPY_USD Market JPY_USD Market

Adsoaie DXL

Absouae O
Qaccos
———

20004

g %%%%%%%

Werwadey Rt Fritay Moowtey Tussday Wenenday . Thuredsy Friduy

38




Figure 4.4
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Figure 4.5
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Figure 4.6
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Appendix 3

Figure 5.1
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Figure 5.2
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