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Is Seasonal Adjustment a Linear

or Nonlinear Data Filtering Process?%

Eric Ghysels , Clive W. J. Granger , Pierre L. Siklos� � c

Abstract / Résumé

In this paper, we investigate whether seasonal adjustment procedures

are, at least approximately, linear data transformations. This question is

important with respect to many issues including estimation of regression models

with seasonally adjusted data. We focus on the X-11 program and first review the

features of the program that might be potential sources of nonlinearity. We rely

on simulation evidence, involving linear unobserved component ARIMA models,

to assess the adequacy of the linear approximation. We define a set of properties

for the adequacy of a linear approximation to a seasonal adjustment filter. These

properties are examined through statistical tests. Next, we study the effect of X-11

seasonal adjustment on regression statistics assessing the statistical significance

of the relationship between economic variables in the same spirit as Sims (1974)

and Wallis (1974). These findings are complemented with several empirical

examples involving economic data.

Nous examinons si la procédure d�ajustement X-11 est approximati-

vement linéaire. Il y a potentiellement plusieurs sources de non-linéarité dans cette

procédure. Le but de l�étude est de savoir si ces sources sont effectivement assez

importantes pour affecter, par exemple, des résultats d�estimation dans des modèles

de régression linéaire. La seule façon de répondre à cette question est par

estimation. Nous proposons plusieurs critères qu�on peut utiliser pour juger si une

procédure d�ajustement est approximativement linéaire. Nous examinons également

par simulation des propriétés de tests dans le modèle de régression dans le même

esprit que Sims (1974) et Wallis (1974).

Key Words: X-11 program, nonlinearity
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1. INTRODUCTION

The question whether seasonal adjustment procedures are, at least approximately,
linear data transformations is essential for several reasons. First, much of what
is known about seasonal adjustment and estimation of regression models rests
on the assumption that the process of removing seasonality can be adequately
presented as a linear (two-sided and symmetric) �lter applied to the raw
data. For instance, Sims (1974), Wallis (1974), Ghysels and Perron (1993),
Hansen and Sargent (1993), Sims (1993), among others examined the e�ect
of �ltering on estimating parameters or hypothesis testing. Naturally, the
linearity of the �lter is assumed, since any nonlinear �lter would make the
problem analytically intractable. Second, the theoretical discussions regarding
seasonal adjustment revolve around a linear representation. Indeed, for more
than three decades, seasonal adjustment has been portrayed in the context of
spectral domain representations. See, for instance, Hannan (1963), Granger and
Hatanaka (1964), Nerlove (1964), Godfrey and Karreman (1963), among others.
The frequency domain analysis led to the formulation of seasonal adjustment as a
signal extraction problem in a linear unobserved component ARIMA (henceforth
UCARIMA) framework, where the emerging optimal minimum mean-squared
error �lters are linear.

The theory of signal extraction involving nonstationary processes, which
will be the case covered here, was developed by Hannan (1967), Sobel (1967),
Cleveland and Tiao (1976), Pierce (1979), Bell (1984), Burridge and Wallis (1988)
and Maravall (1988). As a result, the widely used X-11 Census method, and its
later developments like X-11 ARIMA,X-12 and REGARIMA, have been examined
to determine which UCARIMA model would generate an optimal linear signal
extraction �lter similar to X-11 and its variants. Moreover, the few attempts
that were made to formally model the operations of a statistical agency on
the data-generating process of economic time series, as did Sargent (1989) for
example, adopted the linear-�ltering paradigm. Finally, whenever nonlinearities
in time series are discussed, the possibility that such nonlinearities may be (partly)
produced by seasonal adjustment is never seriously entertained.

Several authors have examined the linear representation of the X-11 program,
notably, Young (1968), Wallis (1974), Bell (1992) and Ghysels and Perron (1993).
Young (1968) investigated the question whether the linear �lter was an adequate



approximation and found it to be a reasonable proxy to the operations of the
actual program. This result was, to a certain extent, a basic motivation as
to why the linear �lter representation was extensively used in the literature.
The main objective of our paper is to reexamine the question posed by Young.
We come to quite the opposite conclusion, namely, that the standard seasonal
adjustment procedure is far from being a linear data-�ltering process. We reached
a di�erent conclusion, primarily because we took advantage of several advances in
the analysis of time series, developed over the last two decades, and the leaps in the
computational power of computers which enabled us to conduct simulations which
could not be easily implemented before. We rely both on arti�cially simulated
data as well as actual series published by the U.S. Census Bureau to address
the question of interest. In section 2, we �rst discuss the attributes of the X-11
program that might be the source of nonlinear features. In section 3, we propose
several properties that allow us to assess whether the actual program can be
adequately presented by a linear �lter. For instance, in the context of a linear
UCARIMA, we expect the nonseasonal I(1) component and its X-11 extraction to
be cointegrated and expect the extraction error to be a linear process. Finally, the
di�erence between the unadjusted series �ltered with the linear �lter and the X-11
adjusted series should not be nonlinearly predictable. Through a combination of
simulations and statistical hypotheses, we verify these properties for a large class of
model speci�cations. Finally, we propose to reexamine the e�ect of X-11 �ltering
in linear regression models and study whether spurious relationships are produced
by the nonlinearities.

In section 4, we report the results from the simulations and for a large class
of data published by the U.S. Census Bureau.

2. ON POTENTIAL SOURCES OF NONLINEARITY IN

THE X-11 PROGRAM

In this section, we will identify features contained in the X-11 program which
may be sources of nonlinearity. Since the program is almost exclusively applied to
monthly data, we cover exclusively that case and ignore the quarterly program.
In a �rst subsection, we describe the di�erent versions of the X-11 program. This
distinction is important since the operations potentially inducing nonlinearity in
the data transformations di�er from one version to another. Individual subsections

4



are devoted to the di�erent features we need to highlight: (1) Multiplicative
versus additive, (2) Outlier detection, (3) Moving Average Filter Selection and
(4) Aggregation.

2.1. The decompositions

One must distinguish between two versions of the X-11 program. One is called
the additive version and is based on the following decomposition:

Xt � TCt + St + TDt +Ht + It (2.1)

where Xt is the observed process, while TCt is the trend-cycle component, St the
seasonal, TDt and Ht are respectively the trading-day and holiday components.
Finally, It in (2.1) is the irregular component. The second version is called the
multiplicative version and is based on the decomposition:

Xt � TCt � St � TDt �Ht � It (2.2)

There would be no need to distinguish between the two versions if a logarithmic
transformation applied to (2.2) would amount to applying the additive version of
the program. Unfortunately, that is not the case as the multiplicative version has
features that are distinct from the additive one. These will be discussed shortly. It
may parenthetically be noted that one sometimes refers to the log-additive version
of X-11 when the additive version is applied to the logarithmic transformation of
the data.

The �rst of several parts in both procedures deals with trading-day and holiday
adjustments. Typically, one relies on regression-based methods involving the
number of days in a week, etc. as regressors. Since a linear regression model
is used, we will not explore this aspect of the program any further. Neither the
simulations nor the empirical investigation consider e�ects related to TDt or Ht:

In our empirical analysis, we were careful to select series where no trading-day and
holiday e�ects appear to be signi�cant. For further discussion of trading-day and
holiday adjustments, see, for instance, Bell and Hillmer (1984). The extraction of
the TCt, St and It components will be more of interest for our purposes. These
components are not estimated with regression-based methods, but instead are
extracted via a set of moving-average �lters. This is the most important part
of the X-11 program. While it consists of a series of moving-average �lters, it is
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important to note that the same set of �lters are not necessarily applied to a
series through time. Hence, the �lter weights may be viewed as time-varying.
In addition, both the additive and multiplicative X-11 procedures are designed
to identify extreme values, or so-called outliers, and replace them one by one
by attenuated replacement values. These two features, namely the scheme
determining the selection of moving-average �lters and the outlier corrections,
make the application of the additive procedure di�erent from the default option
linear variant of the program.

A third feature, speci�c to the multiplicative version, is also a potential source
of signi�cant nonlinearity. Indeed, despite the multiplicative structure of the
decomposition in (2.2), the program equates the 12-month sums of the seasonally
adjusted and unadjusted data rather than their products. Since the �lters in the
X-11 program are two-sided, one must also deal with the fact that, at each end of
the sample, the symmetric �lters need to be replaced by asymmetric ones due to
lack of observations. This feature is also a deviation from the default option linear
�lter, but it will not be considered in our simulaiton design, as will be discussed
in the next section.

2.2. Multiplicative versus additive

The bulk of economic time series handled by the U.S. Bureau of the Census and
the U.S. Bureau of Labor Statistics are adjusted with the multiplicative version of
the program. Only a small portion is treated with the additive version, apparently
around one percent of the 3000 series covered by the two aforementioned agencies.
The Federal Reserve uses the additive version more frequently, because of the
nature of the time series it treats. Roughly 20% of the 400 or so series it deals with
are additively adjusted. Young (1968) described the features of the multiplicative
version, emphasizing the complications and departures of (log-) linearity due to
the equating of the 12-month sums of the seasonally adjusted and unadjusted
data. If the equality of sums condition were dropped, then the logarithm of the
seasonal factors could be expressed as linear �lters of the raw data, just as in
the additive version. Young (1968, p. 446) justi�es the presence of the feature in
the multiplicative X-11 program arguing that \traditionally, economists have not
wanted to give up ...(the condition of equating sums)... just to obtain a linear
model... the desire to present seasonally adjusted series in which annual totals
rather than products are unchanged".
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In the remainder of the paper, we keep in mind the distinguishing features of
the additive and multiplicative X-11 programs.

2.3. Outlier detections

The treatment of extremes, or outliers, is a key element in seasonal adjustment
programs like X-11. Because this feature is similar for the additive and
multiplicative versions, we will discuss it using the former as example. The X-11
program produces a �rst estimate of the seasonal and irregular components St+It
via a twelve-term MA �lter trend-cycle estimator. Seasonal factors are obtained
from this preliminary estimate using a weighted �ve-termmoving average. At this
point, the program has obtained a �rst-pass estimate of the irregular component
process fItg. The scheme to detect outliers is activated at this stage. First,
a moving �ve-year standard deviation of the estimated It process is computed.
Hence, extractions of It will be evaluated against a standard-error estimate only
involving the past �ve years, i.e., sixty observations in a monthly setting. We
shall denote the standard error applicable to It as �

(1)
t , where the superscript

indicates that one has obtained a �rst estimate. The standard error is reestimated
after removing any observations on It such that jItj > 2:5 �

(1)
t , yielding a second

estimate �
(2)
t , where the number of observations entering the second estimate is

random. The second-round estimated standard error �(2)
t is used to clear the St+It

process from outlier or in
uential observations. The rules followed to purge the
process can be described as:

(1) A weighting function wt is de�ned as:

wt =

8>><
>>:

1 if 0 � It � 1:5 �(2)
t

2:5� It=�
(2)
t if 1:5 �

(2)
t < It � 2:5 �

(2)
t

0 It > 2:5 �(2)
t

(2.3)

(2) St + It is replaced by an average of two annual leads and lags plus the
contemporary observation weighted by wt if

wt < 1: (2.4)

The formula in (2.4) replaces any perceived outlier by the smoothed nearest
neighbor estimate. The 1.5 and 2.5 values in (2.3), setting the benchmarks of the
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weighting function play, of course, a key role besides the two-step standard-error
estimate �

(2)
t described earlier. The (2.3) - (2.4) schemes are, however, entirely

based on rules of thumb and not so easy to rationalize. The value of 1.5 �
(2)
t

in (2.3) which sets o� the correction scheme, since it determines whether wt < 1,
is quite tight.

2.4. Moving average �lter selection

We will continue with the additive version of the program again for the sake of
discussion. The seasonal plus irregular components modi�ed through (2.3) - (2.4)
will be denoted (St + It). The series is used to compute a new set of seasonal
factors which are applied to the original raw series, yielding a �rst estimate of the
seasonally adjusted series, which we shall denote XSA

1t . Obviously, if the outlier
correction procedure were turned o�, then St + It would be used to compute
the seasonal factors and, as a result, di�erent estimates of seasonally adjusted
series would already be obtained at this stage. The X-11 procedure continues
with a second and �nal iteration of seasonal adjustment. As a �rst step in
this second stage, one extracts again the trend-cycle component by applying a
thirteen-term Henderson moving-average �lter to the seasonally adjusted XSA

1t

series [the design of Henderson MA �lters is described in the papers covering the
linear X-11 approximation, formulae for the Henderson �lter weights also appear in
Macauley (1931) or Gouri�eroux and Monfort (1990)]. The trend-cycle component

estimate obtained at this point will be denoted TC
(1)
t . The moving-average �lter

selection scheme now comes into play. To describe the scheme, let us de�ne two
annual average percentage changes: �1t is the average change of (XSA

1t � TC
(1)
t );

and �2t the average change of TC
(1)
t . The averages are updated as new raw data

are added to the sample and are therefore made time-varying. The �lter selection
scheme can then be formulated as follows:

(1) apply nine-term Henderson MA if

�1t < 0:99 �2t; (2.5)

(2) apply thirteen-term Henderson MA if

0.99 �2t � �1t < 3:5 �2t; (2.6)
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(3) apply twenty-three-term Henderson MA if

3.5 �2t � �1t: (2.7)

The Henderson MA �lter thus selected is reapplied to XSA
1t to yield a second

estimate TC
(2)
t . This yields a new estimate of the seasonal and irregular

component. The program then repeats the process of estimating a standard error
�
(i)
t i = 1, 2 and proceeds with a second application of the outlier correction process

described in (2.3) and (2.4).

2.5. Aggregation

So far, we have highlighted the two distinct features that represent the possible
causes of nonlinearity and/or time variation in the actual X-11 �ltering process.
However, another source of nonlinearity also needs to be highlighted. It is
not related to the intrinsic operational rules of the program but rather to the
modus operandi of its application to several series. Indeed, seasonal adjustment
procedures are quite often applied to disaggregated series, like narrowly de�ned
industrial sectors or components of monetary aggregates, and the output is
then aggregated to produce a seasonally adjusted aggregate. Obviously, the
separate decomposition (2.1) for two series, say Xt and Yt, is not the same as
the decomposition for a Zt process de�ned as Zt � Xt + Yt. The question
whether seasonal adjustment should precede or follow aggregation is discussed
in Geweke (1978) and was recently reexamined by Ghysels (1993). When the
seasonal-adjustment process is linear and uniform, then aggregation and seasonal
adjustments are interchangeable. Another potential source of nonlinearity
is introduced, however, when seasonal adjustment and aggregation are not
interchangeable, and one applies the procedure to disaggregated series with only
the aggregated series available to the public. In practice, this setup is quite
common. We therefore included in our simulation design a setup similar to
the e�ect of aggregation combined with seasonal adjustment. This issue was,
of course, studied separately. We �rst investigated the potential sources of
nonlinearity produced by the internal design of X-11:
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3. A SIMULATION STUDY

The e�ect of �ltering on the statistical properties of time series and properties
of estimators in linear regression models and cointegration tests are reasonably
well understood when the adjustments are performed with a linear �lter. The
seminal papers by Sims (1974) and Wallis (1974) justi�ed the routine use of
seasonally adjusted series in linear regression models. Their result, namely
that linear regressions with �ltered series yielded consistent estimators, together
with the more recent developments by Hansen and Sargent (1993), Ghysels and
Perron (1993), Sims (1993), Ericsson, Hendry and Tran (1994) and Ghysels and
Lieberman (1994) all rely on the key assumption that the �lter is linear and
uniformly applied to all series (and also in certain cases that it is two-sided and
symmetric like the linear X-11 �lter). In dealing with the question of potential
nonlinearities in the actual X-11 procedure, we have to give up the elegance of
econometric theory as there is no longer an explicit and easy characterization
of the operations of the �lter. The key question then is whether the features
described in the previous section intervene to a degree that the linear �lter can
no longer be viewed as an adequate representation of the adjustment procedure
in practice. A subsidiary question is to �nd out what e�ects are produced by the
actual procedure if in fact the linear approximation is inadequate. The only way
to address these questions is through simulations.

Unfortunately, the question of the simulation design is not simply one of a
judicious choice of data generating processes. It is �rst and foremost a question
about what we characterize as departures from a linear �lter and how these are
measured. We settled for a design centered around two broad topics which follow
certain established traditions in the literature. First, we de�ne a set of desirable
properties which any �ltering procedure should have to ensure that the linear
approximation is adequate. This part of the design follows a tradition in the
time series statistics literature concerned with de�ning properties that seasonal
adjustment procedures ought to have [see, for instance, Bell and Hillmer (1984)
for discussion and references]. Second, we also focus on questions which have a
tradition rooted in the econometrics literature, particularly as established since
Sims (1974) and Wallis (1974). Here we are not so much concerned with univariate
�ltering but rather with the measurement of relationships among economic time
series through linear regression analysis. It is perhaps worth noting that since
Young (1968) did not examine nonlinearities through simulated data we cannot

10



really make any comparison with his study. He took three test series, U.S.
imports from 1948 to 1965, Unemployed Men from 1950 to 1964 and Carbon
Steel production from 1947 until 1964, and reported a very detailed study of the
seasonal factors produced by the X-11 method and its linear version. We take
advantage of advances on two fronts: (1) an incredible leap in the computational
power of computers, and (2) progress in the theory of time series analysis. Like
Young, we will also study real data except that our analysis of actual series will
only be complementary to the simulation results to verify the similarities between
the two.

Examining (statistical) properties of adjustment procedures and studying
regression output will require, in both cases, generating data which subsequently
are �ltered with the linear �lter and the X-11 adjustment program. We will
therefore devote a �rst subsection to the description of the data generating
processes. A second subsection deals with the properties of linear approximation
while a third subsection covers seasonal adjustment and regression analysis. A
�nal and fourth subsection deals with technical notes regarding the simulations.

3.1. The data generating processes

We generated data from a set of linear UCARIMA models, with Gaussian
innovations. Each process consisted of two components, including one exhibiting
seasonal characteristics. Let the Xt process consist of two components:

Xt = XNS
t +XS

t (3.1)

where XNS
t represents a nonseasonal process and XS

t displays seasonal
characteristics. Obviously, equation (3.1) is adapted to the additive
decomposition (2.1). The multiplicative one will be discussed later. The �rst
component in (3.1) has the following structure:

(1 � L)XNS
t = (1 + �NSL)"

NS
t (3.2)

with "NS
t i.i.d. N(0, �2

NS) and where �NS is the moving-average parameter. The
process is chosen to be I(1) and invertible, determined only by two parameters,
namely, �NS and �2

NS. The (monthly) seasonal component has the following
structure:

(1 + L+ ::::+ L11)XS
t = (1 � �SL

12)"St (3.3)
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with "St again i:i:d. N(0, �2
S). Here also two parameters determine the process.

Obviously, the data generated have neither trading-day or holiday e�ects, nor is
there an explicit distinction made between the TCt and It components appearing
in (2.1). This simpli�cation was done purposely. Indeed, it is well known that
the decomposition of a time series into a trend cycle, a seasonal and irregular
components is not unique. Hence, it is not clear at the outset that if we were
to de�ne a structure for XNS

t as the sum of two components, TCt and It, the
X-11 program would select exactly that same decomposition. For similar reasons,
it is not clear that the X-11 procedure will identify St as exactly equal to XS

t .
Consequently, we must view our design as one where four parameters are selected
to form an Xt time series with the stochastic structure

(1� L12)Xt =  x(L)"t (3.4)

where "t is i:i:d. N(0, �2
x) and

�2
x x(z) x(z

�1) � �2
S[(1 + z + ::::+ z11)(1 + z�1 + ::::+ z�11)�

(1 � �Sz
12)(1 � �Sz

�12)] +

�2
NS[(1� z)(1� z�1)(1� �NSz)(1� �NSz

�1)]:

The additive version of the X-11 program will operate on the time seriesXt and
choose a decomposition TCt+St+It. Theoretically, this decomposition is de�ned
by taking the maximal variance of the irregular component [see for instance Bell
and Hillmer (1984) or Hotta (1989) for further discussion].

In section 3.4, we will provide further technical details regarding parameter
values and sample sizes. Before leaving the subject, however, we would like
to conclude with a few words regarding the multiplicative decomposition. The
same steps as described in (3.1) through (3.4) were followed except that the
generated series were viewed as the logarithmic transformation of the series of
interest. Hence, exp(Xt) = exp(XNS

t ) exp(XS
t ) was computed before applying the

multiplicative X-11 program.

3.2. Properties of linear approximations

The design of seasonal adjustment �lters is typically motivated on the basis of a set
of desirable properties which the procedure ideally should exhibit. Most often,
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these theoretical discussions revolve around a linear representation. In reality
however, as we noted in section 2, there are many potential sources of nonlinearity.
This raises the question which properties one would like to advance so that the
linear �lter approximation is reasonably adequate. The purpose of this section is
to exploit certain properties of the linear X-11 �lter which will allow us to predict
what will happen if the actual procedure were approximately linear. Let us denote
the seasonally adjusted series, using the linear X-11 �lter, as:

XLSA
t � 	L

X-11(L)Xt (3.5)

where the linear polynomial lag operator in (3.5) represents the X-11 �lter. It
has been shown that the linear �lter includes the (1 + L + :. +L11) operator
[see, e.g., Bell (1992) for further discussion]. Moreover, the �lter has the properties
that 	L

X-11(1) = 1 [see Ghysels and Perron (1993)] implying that it will leave the
zero frequency unit root in the Xt process una�ected when the process follows the
speci�cation described in section 3.1.

The purpose now is to identify a set of properties that would hold if X-11
were linear and to associate with those properties statistical tests which can be
conducted either with simulated data, with real data or both.

We will �rst consider a class of relatively weak conditions applicable to
simulated data, in particular we know that:

Property 1L: The XNS
t and XLSA

t processes are cointegrated.

Obviously, we would also like the actual X-11 procedure to yield an estimate
of the nonseasonal component which is cointegrated with XNS

t . Suppose that we
denote XSA

t as the seasonally adjusted series using the actual X-11 procedure.
Then the following property should also hold:

Property 1X: The XNS
t and XSA

t processes are cointegrated.

Failure of property 1X to hold is an indication of inconsistencies when the
actual X-11 program is applied to the data. Some caution is necessary, however,
with the use of cointegration arguments. In principle, one should not expect
cointegration properties possessed by the linear approximation to X-11 to translate
exactly to the X-11 program itself. Indeed, cointegration is de�ned as two series
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being exactly I(1) and for which there is an exact (though not necessarily unique)
linear relationship canceling the zero frequency unit roots. In our context, it is
perhaps more appropriate to interpret cointegration as a property we expect to
hold approximately for the X-11 adjusted data when the �lter approaches its linear
version.

A second property is much stronger as it is borrowed directly from the
theoretical linear signal extraction framework where we know that the extraction
error de�ned as:

�LSAt � XNS
t �XLSA

t � [1�	
L
X-11(L)]X

NS
t �	

L
X-11(L)X

S
t (3.6)

will also be a linear process. Moreover, as 	L
X-11 (1) and XS

t do not have a
zero-frequency unit root, it follows that �LSAt is stationary. This yields a second
property of interest, namely:

Property 2L: The extraction-error process �LSAt is linear and stationary.

It will be interesting, once again, to investigate whether a similar property
holds for the X-11 program. Let �SAt be the extraction-error process de�ned as
in (3.6) yet involving XSA

t instead of XLSA
t . We are then interested in:

Property 2X: The extraction-error process �SAt is linear and stationary.

Again, if this property fails to hold this is an indication that there are
signi�cant departures from linearity. So far, we examined properties which are
only applicable to simulated series since they involve the unobserved component
series. Clearly, instead of comparing XNS

t with XLSA
t and XSA

t , respectively, it
is also useful to analyze XLSA

t and XSA
t in terms of cointegration and linearity.

This yields two additional properties, namely,

Property 3: The XLSA
t and XSA

t processes are cointegrated.

Property 4: The (XLSA
t �XSA

t ) process is linear and stationary.

The latter is simply a combination of Properties 2L and 2X, since XLSA
t �

XSA
t � �LSAt � �SAt . Likewise, the former is a consequence of Properties 1X

and 1L. Properties 3 and 4 are relatively straightforward to implement both with
actual and simulated series.
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The properties discussed so far pertain to the possible sources of nonlinearity
associated with the internal operations of the program discussed in the previous
section. At the end of section 2, it was noted that the combination of seasonal
adjustment and aggregation can also be a source of nonlinear features. To
investigate this aspect of the problem, we included in the simulation design a
second process, called Yt, with the same stochastic properties as the Xt process.
It should be noted though that while Yt is a replica of Xt in terms of laws
of motion, its path generated by an independent realization of the innovation
processes for the unobserved components, which will be denoted by analogy, Y NS

t

and Y S
t . We also de�ne the Y LSA

t and Y SA
t processes to describe extractions.

The process of ultimate interest for our purposes will be the Zt process de�ned
as Zt � Xt + Yt. Given the nature of aggregation, we restrict our attention to
the additive version of the X-11 program. Hence, Zt consists of two components,
namely, ZS

t � XS
t + Y S

t . For the linear X-11 �lter, one can unambiguously de�ne
the ZLSA

t process since summation and linear �ltering are interchangeable. For the
X-11 procedure, however, one must distinguish between two potentially di�erent
outcomes. If seasonal adjustment is performed on the Zt process using the X-11
program, then the outcome will be denoted ZSAA

t . The superscript A indicates
that the aggregated series was adjusted. Conversely, if Xt and Yt are adjusted
separately, then ZSAD

t � XSA
t +Y SA

t . We could investigate Properties 1 through 4,
again, using the Zt process and its extractions. This, to a certain extent, would
be repetitive, except for the fact that the stochastic properties of the Zt process
would di�er from those of Xt in each case. Instead of repeating such analysis, we
will instead focus exclusively on the aggregation e�ects. In particular, we will be
interested in:

Property 5: The ZSAA
t and ZSAD

t processes are cointegrated.

Property 6: The (ZSAA
t � ZSAD

t ) process is linear and stationary.

Both properties follow naturally from arguments similar to those used to
formulate Properties 3 and 4.

3.3. Linear regression and �ltering

Ultimately, economists are interested in understanding the comovements between
economic time series. Until the work of Sims (1974) and Wallis (1974) discussions
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regarding seasonal adjustment were mostly centered on a single economic series.
We now have some strong results regarding (linear) �ltering and seasonality in
(linear) regression models. To date there has been no attempt to assess how fragile
this �nding is when faced with the practical and routine application of the X-11
procedure. In this section, we describe how our simulation design attempts to
shed light on this relatively simple and fundamental question.

We propose to look at the linear regression model

yit = �0 + �1x
i
t + "it (3.7)

for i = NS;LSA and SA and where yNS
t and xNS

t are independently generated
processes mean zero, so that �0 = �1 = 0 in our simulations. For the additive
version of the X-11 program, the processes appearing in the regression model (3.7)
were de�ned as follows:

yit = (1� L) Y i
t and xit = (1 � L)X i

t (3.8)

for i = NS;LSA and SA while for the multiplicative version it was:

yit = (1� L) log Y i
t and xit = (1 � L) logX i

t : (3.9)

To tackle immediately on the most practical question, we focus on testing
the null hypothesis �1 = 0, i.e., examine how spurious relationships can emerge
from departures from linear �ltering in a linear regression model. Obviously,
since the error process in equation (3.7) will not be i.i.d. we need to correct for
the serial dependence. This will be done in the nowadays established tradition
among econometricians by using nonparametric procedures often referred to as
heteroscedastic and autocorrelation consistent estimators for the variance of the
residual process. The details are described in the next section. To conclude, we
would like to note that to simplify the design, we will adopt a strategy similar
to the one used in the construction of the aggregate process Zt described in the
previous section. In particular, the series Xt and Yt used to run the regression
in (3.7) will be independent draws from the same process structure.

3.4. Technical details

Several technical details need to be explained regarding the actual simulation
setup. We will, in particular, describe the choice of parameter values to generate
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the data. Next, we will explain how we conducted the statistical inference
regarding the properties described in section 3.2. Then, we turn our attention to
the speci�cs about the linear regression model of section 3.3. Finally, we conclude
with some information of the software used in the computations.

(a) Parameters and DGP's

We have tried to cover a reasonably wide class of processes. A total of
forty eight cases were considered, that is, sixteen model con�gurations with three
di�erent settings for the innovation variances �2

NS and �
2
S . The parameter settings

appear in Table 3.1. All data series were generated independently.

We �rst considered what will be called small-variance cases which correspond
to �2

NS = �2
S = 1. The \large" standard error was chosen three times larger and

hence a nine-times larger variance, i.e., �2
NS = �2

S = 9. Cases 1 through 16 have a
small variance, while cases 17 through 32 cover the large-variance con�guration.
Obviously, it is often the case that the seasonal component has a much larger
innovation variance than the nonseasonal. This lead us to consider an intermediate
case �NS = 1 and �S = 3:

Table 3.1: Data Generating Processes

Cases �NS �S Cases �NS �S
1=17=33 0.0 0.0 9=25=41 0.0 0.5
2=18=34 -0.5 0.0 10=26=42 -0.5 0.5
3=19=35 0.5 0.0 11=27=43 0.5 0.5
4=20=36 0.9 0.0 12=28=44 0.9 0.5
5=21=37 0.0 -0.5 13=29=45 0.0 0.9
6=22=38 -0.5 -0.5 14=30=46 -0.5 0.9
7=23=39 0.5 -0.5 15=31=47 0.5 0.9
8=24=40 0.9 -0.5 16=32=48 0.9 0.9

Cases 1-16: �NS = �S = 1 = Cases 17-32: �NS = �S = 3 =
Cases 33-48: �NS = 1; �S = 3:

For the regression model (3.7), we conducted an extensive Monte Carlo
study to examine the distribution of the t statistic for �1 = 0 when the actual

17



(unobserved component) series are used versus the linear and X-11 �ltered series.
The number of replications was 500, which is low by the usual standards, but
the X-11 program was not available to us in a convenient format to construct
a computationally e�cient simulation setup. Even a stripped down version of
the X-11 program would still be very demanding in terms of CPU time. At the
end of the section, we will provide more details regarding software use. For the
regression model, we investigated both a \small" sample which amounted to ten
years of monthly data, i.e., 120 observations, in fact, 83 years or 996 data points
to be more precise. The properties 1 through 6 were not studied via Monte Carlo,
but instead for a single large sample. Conducting all the tests associated with
the properties, which will be discussed in just a moment, in association with the
X-11 program in a Monte Carlo experiment was simply beyond our human and
computational resources.

(b) Test statistics

In the section 3.2, we formulated several properties which we expect to hold if
no signi�cant nonlinearities occur in the X-11 program. We now turn our attention
to the analysis of these properties via statistical hypothesis testing. The null
hypothesis of the test statistics will correspond to a situation where a property
of interest holds whenever it relates to linearity and stationarity conditions, i.e.,
Properties 2L, 2X, 4 and 5. Because of the structure of cointegration tests, the
situation will be slightly di�erent with such tests. Indeed, the null hypothesis
will correspond to a lack of cointegration and hence Properties 1L, 1X, 3 and 5
will be violated. The testing procedure proposed by Engle and Granger (1987)
and Johansen (1991) were used to test the cointegration hypothesis. Since both
procedures are by now widely known and applied, we refrain here from formally
representing the tests. Instead, in the remainder of this section, we shall focus on
the tests for nonlinearity in time series and conclude with observations regarding
the t statistics in the linear regression model.

Obviously, there are many tests for nonlinearity in time series. The size and
power properties against speci�c alternatives have been the subject of several
Monte Carlo studies, including, most recently, Lee, White and Granger (1993).
With 48 series and several properties to investigate, we were forced to make a
very restrained and selective choice. Tests proposed by Tsay (1986), Luukkonen,
Saikkonan and Ter�asvirta (1988), and Tsay (1988) were used in our investigation.
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Tests in this class are all designed according to a unifying principle, namely, they
are all of the same form and yield an F -test.

The �rst step in all F -type tests consists of extracting a linear structure
via an AR(p) model. Let the �tted value be denoted x̂t and the residual ât,
while the original series is denoted xt. Obviously, xt will be a stand-in series
for any of the series involved in testing the properties of interest formulated
in the preceding section. The second step consists of regressing ât onto p lags
of xt, a constant and a set of nonlinear functions of past realizations of the
xt process. This operation yields a residual denoted êt. Finally, a F -test is
computed from the sum of squared residuals obtained from both regressions.
The tests di�er in terms of the choice of nonlinear functionals used to form the
regression producing the êt residuals. Tsay (1986) proposed to use the fx2t�1,
xt�1xt�2, ..., xt�1xt�p, x2t�2, xt�2xt�3, ..., x

2
t�pg regressors. Luukkonen, Saikkonan

and Ter�asvirta added cubic terms to Tsay's test, namely, fx3t�1, ..., x
3
t�pg. Finally,

the second test proposed by Tsay (1988) is designed to test linearity against
threshold nonlinearity, exponential nonlinearity and bilinearity. The fact that the
test is designed against threshold nonlinearity may be of value, as the outlier
detection schemes described in section 2 may result in threshold behavior of the
linearly �ltered versus X-11 �ltered series. To conduct the test, one selects a
threshold lag, say, xt�d. Again, an AR(p) regression is �t to compute normalized
predictive residuals êt similar to a CUSUM test. Then one regresses êt onto p
lags of xt, a constant, the regressor sets fxt�1êt�1, .. .., xt�pêt�pg, fêt�1êt�2,
..., êt�pêt�p�1g, fxt�1 exp(�x

2
t�1=
), G(zt�d), xt�1G(zt�d)g where 
 = max jxt�1j

and zt�d = (xt�d � xd)=Sd with xd and Sd being the sample mean and standard
deviation of xt�d while G(�) is the CDF of the standard normal distribution. One
proceeds in the same manner as in the other two F -tests. In all our computations,
we let p = 12 and d = 1 and 2.

We now turn our attention to the regression model. Since the series in
equation (3.7) were generated independently, we are interested in testing the
null hypothesis �1 = 0 knowing that the errors are not i.i.d. We followed the
customary practice in econometrics of dealing with the temporal dependence in the
residuals via a nonparametric estimator. The weights were those of the Bartlett
window using 12 lags in the small sample and 24 in the large one [see for instance
Andrews (1992) for a more elaborate discussion].
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(c) The Monte Carlo simulations and X-11 procedure

The original creators of the X-11 procedure probably never meant it to be
inserted in a Monte Carlo simulation. The program is structured to be used on
a case by case basis leaving many choices open to the discretion of the user. It
would be impossible to simulate this elaborate day to day implementation of the
procedure in dozens of statistical agencies around the globe. Such \judgemental
corrections" are omnipresent, but they are most likely going to aggravate rather
than attenuate the nonlinearities we will investigate. In our paper, we aimed
co-apply the X-11 procedure without any active intervention on the part of
the user. Doing otherwise, at least in a Monte Carlo setup, would simply be
impossible. All calculations were done with the SAS version 6.01 PROC X-11
procedure. While we created samples of 120 monthly observations and 996 data
points, we actually simulated longer samples which were shortened at both ends.
This was done primarily for two reasons: (1) to be able to compute the two
sided linear �lter estimates requiring data points beyond the actual sample, and
(2) because we wanted to a certain degree reduce the e�ect of starting values.
Since all the time series generated are nonstationary, we have to be careful
regarding the e�ect of starting value. (3) In a sense, the question of starting
values is quite closely related to many of the questions regarding nonlinearities
in X-11. There is, however, no obvious choice for these values. This implies a
certain degree of arbitrariness in dealing with the problem. In our simulations,
we took ten years of pre-sample data points while all components started at zero
initial values. This can be criticized, but any other choice could be subjected to
criticism as well because of the arbitrariness of the issue.

4. SIMULATION AND EMPIRICAL RESULTS

We have identi�ed a set of properties and regression statistics. In this section, we
summarize the �ndings of the simulation study and we complement them with
empirical evidence drawn from actual economic time series. In a �rst subsection,
we describe the results pertaining to the properties of a linear approximation
described in section 3.2. The results reported in section 4.1 relate to the simulated
data while the next section contains the empirical results. Section 4.3 concludes
with a summary of the regression evidence.
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4.1. Simulation evidence on properties of linear approximation

We shall �rst report the results regarding cointegration tests and then proceed
with the tests for nonlinearity. We report only the cases of the additive
decomposition. The multiplicative decomposition yielded essentially the same
results. Table 4.1 summarizes the cointegration test for the 48 model speci�cations
for each of the four properties of interest. A lag length of 21 was selected and
a constant and trend were included in all the test regressions. The top panel
of Table 4.1 covers all \small" variance cases, while the middle part covers the
equivalent parameter settings but with a larger innovation variance. The mixed
variance cases, small for NS and large for S, appear in the bottom part. Whenever
the null hypothesis is rejected, we �nd supporting evidence for the property of
interest. For instance, Property 1L holds, regardless of the model speci�cation.
This is reassuring, of course, as we expect the linear �lter to yield an extracted
series which is cointegrated with the unobserved component process. The situation
is quite di�erent though for Property 1X. Indeed, with a small innovation variance,
most cases yielded cointegrated processes. Two exceptions are models 11 and 12.
The situation is completely di�erent though when we increase the innovation
variance either for both components together or for the seasonal only. Here, the
extracted series and the target process are never cointegrated. This is obviously
quite problematic and can only be attributed to the nonlinear properties of the
X-11 program which come seriously into play. Since the mixed variance case
is probably the most relevant for practical purpose, it appears from the results
in Table 4.1 that what was identi�ed as a weak property regarding the linear
approximation does not seem to hold. Before turning to the stronger properties
of linearity, let us brie
y look at the aggregation results and property 3. The
latter property only involves observed processes, namely XLSA

t and XSA
t ; and is

therefore more useful as it can be veri�ed empirically. Generally speaking, the
results in Table 4.1 show the same pattern as with properties 1X and 1L. This
should not come as a surprise, since Property 3 is essentially a combination of
the two. The results do not exactly conform with the combination of properties
1X and 1L, but the minor di�erences which occur can be attributed to statistical
arguments about the sampling properties of tests. Finally, we turn our attention
to the last property of interest. Here, as noted in section 2, we no longer
investigate the internal modus operandi of the program, but we also consider
the combined e�ects of seasonal adjustment and aggregation. Property 5 yields
rather strong results and shows that aggregation adds a potentially important
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source of nonlinearity to the data-adjustment process. Only less than a third of
all cases yield a cointegration relationship between ZSAA

t and ZSAD
t . Clearly, all

the potential sources of nonlinearity in ZSA
t , XSA

t and Y SA
t combined make it

quite likely that the linear approximation will not be adequate in the sense that
seasonal adjustment and aggregation are not interchangeable.

Next, we turn our attention to tests for nonlinearity. Strictly speaking, the
distribution theory for such tests applies to stationary time series only. Therefore,
we have limited our analysis to the cases where cointegrating relationships were
found and ignored all other cases. To keep matters simple, however, we focused
on all the small-variance cases, i.e., models 1 through 16, and deleted individual
cases which, according to Table 4.1, did not support the cointegration hypothesis
from the selection of models. Consequently, Tables 4.2 through 4.4 contain some
missing values which correspond to the position in Table 4.1 where the hypothesis
of no cointegration could not be rejected. Hence, conditional on having found
cointegration, we investigate the stronger nonlinear properties.

For sake of simplicity, we use Ori-F for Tsay's original test, Aug-F for
Luukkonen et al. test and New-F for Tsay's threshold test. The null hypothesis
of linearity is almost always rejected for properties 4 and 6, regardless of the test
statistic and model speci�cation. Both properties are quite important since they
have an empirical content, i:e:, involve series that can be constructed from data.
The results for properties 2L and 2X are mixed and depend on the test being used.
For property 2L, we should not �nd nonlinearity and indeed most often we don't,
but size distortions seem to be present in quite a few cases. For property 2X, we
also �nd a mixture of results. It is interesting to note, however, that whenever we
do not reject the null for property 2L, hence there is no size distortion, we tend
to reject the null of linearity for property 2X.

4.2. An empirical investigation

The empirical investigation reported in this section is meant to match the
simulations of the previous section. In particular, we investigated the properties 3,
4, 5 and 6 with actual data. The data do not involve corrections for trading-day
variations and holidays. Hence, we tried to have the data conform with some
of the assumptions made in the simulation experiments. A total of 39 series
were investigated with some of the series being aggregates of several series.
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According to our information, they are all treated with the multiplicative X-11
program. Such aggregate series were included to address the empirical evidence
regarding properties 4 and 6. To construct XLSA

t in each case, we used the
two-sided symmetric �lter applied to the logs of unadjusted data. Obviously,
because of the number of leads and lags, a fair number of data points were lost at
each end of the sample of unadjusted data. In all cases, data covered ten to �fteen
years of monthly time series. Obviously, such sample sizes were much smaller than
the simulated series. For XSA

t , we took the o�cially adjusted series provided by
the US Census Bureau or Federal Reserve (for monetary data). This may also be
considered as a deviation from the simulation where the SAS X-11 procedure was
used.

Table 4.5 summarizes the results of the Engle-Granger cointegration tests
applied to XSA

t and XLSA
t for each of the 39 series listed. The BR, NBR and TR

series are borrowed, nonborrowed and total reserve series of the US money supply.
The BA extension is a break adjusted version of those series. All other series
are drawn from the US Census manufacturing data bank, including industrial
production IP, �nished goods inventories FI, work in progress, WI for several
two-digit SIC classi�cation industries, and �nally, total inventories TI for �ve
subcategories of the SIC 20 sector (food). In all cases, the aggregate or TOT
was also considered. In quite many cases, we do not reject the null hypothesis,
implying that XLSA

t and XSA
t are not cointegrated. In 17 out of the 39 cases, or

almost 50%, we �nd no cointegration at 10%, and in 21 out of the 39 cases, we
�nd no cointegration at 5%. Obviously, the sample sizes are smaller compared to
the results reported in Table 4.2, but still more than half of the series con�rm the
results found by simulation.

The empirical evidence with respect to the other properties, i.e., nonlinearity of
XLSA
t �XSA

t and properties regarding ZSAD
t and ZSAA

t are not reported via tables,
as they are relatively easy to summarize. All XLSA

t � XSA
t series were found to

have nonlinearities. The rejections of the null hypothesis were very strong without
any exception. Of course, unlike the simulated data which are by construction
linear, an important caveat must be made regarding the interpretation of this
kind of nonlinearity. Indeed, the individual series may very well be nonlinear,
and we therefore �nd their di�erence to be nonlinear as well. For the TRBA, TR,
FITOT, IPTOT, WITOT and TI20TOT series, we analyzed the nonlinearities via
cointegration properties 5 and 6, since they involved a combination of aggregation
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and seasonal adjustment. We found no cointegration and evidence of nonlinearity,
though evidence regarding the latter is di�cult to interpret because of lack of
cointegration, of course.

4.3. Seasonal �ltering and linear regression

We now turn our attention to a �nal question, which without any doubt is the most
relevant for econometric practitioners: Are there spurious statistical relationships
in linear regression models due to the nonlinear features in seasonal adjustment?
We have computed a Monte Carlo simulation of the distribution of the t statistic
in regression (3.7). There are 48 cases for the DGP and for each case, two �lters
(additive and multiplicative), as well as a large and small sample distribution for
three regression t statistics with the true unobserved components and with the
linearly �ltered data and with X-11. Hence, we have a total 576 distributions.
Reporting them all would of course be impossible. Fortunately, it was not very
hard to select or choose some to report as there were remarkable similarities across
the di�erent cases. To illustrate this, we provide graphs of the distribution for
cases 1 through 3 for \mixed" innovation variances both for a multiplicative and
an additive X-11 �lter setup. Each graph contains three plots of t distributions
for the �1 coe�cient simulated by Monte Carlo. The �rst is labeled \True" when
the unobserved component series are used, a second is labeled \Linear" when the
series are linearly �ltered and a third is labeled \X-11".

Before discussing the relative position of the three plots in each graph, we need
to make some general observations. Because of the nonparametric correction of
the residual variance estimator, the statistic is distributed as �2(1). There are
clearly some minor size distortions since the 5% critical value does not yield a
5% rejection rate but instead a higher one in many cases, as will be reported
later. The size distortion issue is not our main concern here, of course. In
particular, it is interesting that while the \true" and \linear" regressions have
very di�erent dependences across their residuals, one observes that they have
quite similar tail behavior for the t distribution. In contrast, the tail behavior
of the \X-11" distribution in small samples almost always dominates that of
the two other ones. This means that �ltering with X-11 has spurious e�ects
on �nding signi�cant relationships among independent series. To continue with
the small sample case, we also notice that the multiplicative �lter often causes
more rejections in comparison to the additive decomposition though this is not
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always the case. We will report this more explicitly with numerical results in
Table 4.6. Before we do so, however, let us �rst turn our attention to the large
sample cases. Here, we notice quite often a shift in the distribution of the \X-11"
case relative to the others. It should parenthetically be noted that some caution is
necessary when visually comparing the large and small sample plots as the scales
of the two plots often are quite di�erent. Moreover, when the peaks of the two
distributions of the �ltered cases coincide in large sample we still observe fatter
tails for the X-11 case.

We turn our attention now to Table 4.6 where we report rejection rates
obtained from the Monte Carlo simulations. Again, to avoid reporting 576 �gures,
we will focus on all DGP's with a mixed variance covering both the additive and
multiplicative �lters in small and large samples. The �gures reported in Table 4.6
con�rm the size distortion issue which was already noted. In the large sample
case with the \true" unobserved components, the distortions are minor, however.
The results in the table quantify what the plot already revealed, namely that the
rejections in the X columns are far higher than in the two other columns and that
the \true" and \linear" cases are often very close. Moreover, the multiplicative
�lter often, though not always, leads to a higher rejection rate than the additive
linear decomposition �lter. For the X column, in large samples and using the
multiplicative �lter, the rejection rates range from 43.8% to 64.2%, while the
T column ranges from 5.2% to 8.8% and the L column 6.8% to 13%. The results
for the additive �lter are equally dramatic for the X column, as rejection rates
range from 47.8% to 63.2%. Finally, the rejection rates drop signi�cantly from
small to large samples in the T and L cases, but often they do not drop much in
comparison with the X-11 �lter.

It was noted in the previous section that we only can assess the e�ect
of potential nonlinearities through simulation. Many more simulations were
performed than are actually reported here. They clearly revealed the reccurring
pattern which was displayed Figures 4.1 and 4.2 and Table 4.6. There indeed
appear to be departures from linearity that have serious e�ects on statistical
inference in the practical circumstances which were simulated here.
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Figure 4.1: Density Plots Cases 1-3 for Additive X-11

with Mixed Innovation Variances
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Figure 4.2: Density Plots Cases 1-3 for Multiplicative X-11

with Mixed Innovation Variances
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5. CONCLUSION

This paper probably raises more questions that it actually answers. There is
indeed more research to be done on the topics which were discussed here. The
issue of seasonality will never really easily be resolved and keeps intriguing
generations of time series econometricians and statisticians. A quarter of a century
after Young's paper was written with serious questions regarding the linearity of
adjustment procedures, we �nd ourselves with the same question, but a di�erent
answer.
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