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Résumé: Nous appliquons la théorie de 'agence aux payes colligées &
partir des archives d’une mine de cuivre. Cette mine payait des équipes de
travailleurs avec un systéme de primes. Comme la plupart des systémes
d’incitation qui sont utilisés par les firmes, ce systéme de primes était plus
simple que le contrat optimal qui équilibre les incitations, l’assurance et le
“free-riding”. Pour expliquer ce désaccord, nous faisons I’hypothése que
les coiits de transactions associés avec I'implantation des contrats sont
importants pour la détermination de la forme des contrats implantés.
Nous utilisons les méthodes du maximum de vraisemblance pour estimer
I’importance des cofits de transactions pour le choix de la forme du con-
trat observé dans cette mine. Notre stratégie d’estimation incorpore les
restrictions impliquées par un modéle d’agence développé pour les salaires
payés par la mine. Nos résultats impliquent que les incitations et le
“free-riding” parmi les membres des équipes comptent pour deux-tiers
de 'inefficacité du systéme de primes par rapport aux profits atteignables
dans le cadre de information compléte. L’autre tiers de I'inefficacité du
systéme est attribuable & la forme du contrat choisi sous les contraintes
des colts de transactions. Nous discutons les explications alternatives
pour nos résultats et les implications empiriques générales de la théorie
de 'agence.

Abstract: We apply agency theory to the payroll records of a copper
mine that paid a production bonus to teams of workers. As with most in-
centive pay used by firms, the bonus was simpler in form than the optimal
contract that balances incentives, insurance, and free-riding. We explore
whether transactions costs help explain this discrepancy. We estimate an
agency model for the payroll data using the method of maximum likeli-
hood and find that incentives and free-riding within teams accounted for
two-thirds of the bonus system’s inefficiency relative to potential full in-
formation profits. The remaining one-third of the inefficiency is attributed
to the form of the incentive contract as constrained by transactions costs.
We discuss alternative explanations and the general empirical content of

agency theory.
JEL Classification: 12, D2, 13, C4

Keywords: Principal-Agent Models, Transactions Costs, Perfor-
mance Pay, Maximum Likelihood Estimation



1. Introduction

A growing literature uses firm-level data to study whether incentives
play an important role in the design and performance of contracts. Ex-
amples include Jensen and Murphy (1990), Margiotta and Miller (1993),
and the papers contained in Ehrenberg (1990) and Blinder (1990). A
discrepancy exists between the practice and theory of compensation that
requires no empirical analysis to uncover. Firms typically use compensa-
tion schemes that are simpler in form than the optimal contract arising
from principal-agent models. In agency models, the optimal contract
balances two elements of compensation: insurance and incentives. Team
production adds the third element of free-riding (Holmstrom 1982). Insur-
ance and incentive concerns lead to an optimal contract that is typically
non-linear and that rarely has a closed form (Grossman and Hart 1983,
Gibbons 1987). The optimal contract also involves all observable charac-

teristics that are informative about agent behavior (Holmstrom 1979).

Yet compensation schemes based upon mathematically complicated
formulas involving all relevant information are typically not observed
(Stiglitz 1991). To explain why firms use simple incentive schemes such as
piece rates or bonuses, factors other than incomplete information and risk
aversion must be introduced into the economic environment. The pay-
ment scheme could be supported by implicit arrangements that achieve
the same result as the optimal scheme in standard agency theory. Alter-
natively, transactions costs may limit the degree of complexity of payment
schemes. Holmstrom and Milgrom (1987) argue that linear rules are ro-
bust to variations in the productive environment. Linear rules may there-
fore require less costly tinkering than the “optimal” contract of standard

agency theory.



This paper considers whether a particular type of transaction cost,
namely the cost of implementing payment schemes, can explain why in-
centive contracts, whether linear or not, often are “too simple.” Allowing
for implementation costs can assume away the discrepancy between prac-
tice and theory unless a structure is imposed on implementation costs
based on observed features of contracts. We posit that mathematically
complicated contracts are more costly to implement than simpler con-
tracts. Examples of implementation costs include the resources required
to communicate the contract to agents, to keep track of the required in-
formation, and to compute payments under the contract. We measure
empirically the relative importance of incomplete information, implemen-
tation costs, and free riding within teams using the payroll records of a
copper mine. We also test for the presence of implicit arrangements which
the firm may have used to make the explicit pay system as efficient as the
optimal agency contract.

During the 1920s, the Britannia Mining and Smelting Company of
British Columbia paid teams of workers a production bonus. Teams whose
output exceeded a minimum standard received a bonus proportional to
output beyond the standard. If y is team output, z is the production
standard, and « is the bonus rate, then the bonus equals zero when y <
and a(y — z) when y > z. We call this contract a linear bonus. From
the payroll records we observe the payments made under the linear bonus,
but we do not observe the values of o and z used by the firm in any pay-
period.

We develop, solve, and estimate a principal-agent model that cap-
tures essential elements of technology and information inside a mine:
worker risk aversion, team production, and asymmetric information be-

tween workers and the firm about working conditions. Using Britan-

2



nia’s payroll records, we compute maximum likelihood estimates of the
model’s parameters. Our estimation strategy is similar to that of Pakes
(1986), Rust (1987), Eckstein and Wolpin (1990), and Margiotta and
Miller (1993) in the sense that estimating the model requires a nested
solution algorithm. There is no closed-form solution for optimal values of
« and z, let alone the fully optimal contract. The firm’s problem must
be solved numerically on each iteration of the estimation procedure. As
with Rust’s application of dynamic control theory, we use multiple real-
izations of production shocks within a single firm to identify the model.
As with the equilibrium search model estimated by Eckstein and Wolpin,
our algorithm solves the problems for two sides of the contract or market.
Margiotta and Miller estimate an agency model using data on execu-
tive compensation. Their model concerns incentives and dynamics. Our
model concerns incentives and transactions costs, which is perhaps a more
appropriate focus when studying production workers with no long-term

commitments to the firm.

One of our results concerns the empirical content gained by solving
the principal’s problem numerically. Intuitively, it is unlikely that tech-
nology and preference parameters can be disentangled unless the choices
of both the principal and agent are modeled. Without separately iden-
tifying the parameters of the agency model, little can be inferred about
the performance of the bonus system. We provide a proof that formal-
izes this intuition. By numerically maximizing the firm’s profit function,
we can identify parameters that determine the cost of incomplete infor-
mation and indirectly the implementation costs that rationalize the use
of the linear bonus system. Our identification results are specific to our
model, yet they illustrate that numerical methods are typically necessary

for analyzing payroll data in light of principal-agent theory.
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Our estimates indicate that there were larger costs associated with
incomplete information in the Britannia mine than a more casual analysis
might suggest. We estimate that the percentage of full information profits
lost under the linear bonus system was between 70 and 80 percent, even
though workers received less than 5 percent of their wages in the form
of incentive pay. Two thirds of the efficiency loss, or about 50 percent
of full information profits, would occur under the optimal contract with
incomplete information that ignores implementation costs. The remaining
25 percent of the inefficiency is due to the error in approximating the fully
optimal contract under incomplete information with the optimal linear

bonus.

In the next section we describe our notion of implementation costs.
In section 3 we describe the agency model, and as a baseline we char-
acterize the optimal contract under full information. Then we describe
the response of workers to the linear bonus system under asymmetric in-
formation, and we derive the firm’s objective function for choosing the
optimal linear bonus. Section 4 discusses identification of the model with
and without modeling firm behavior. Section 5 describes the data and
reports estimates of the model. Section 6 uses the estimates to consider
implications, limitations, and extensions of the results. Section 7 con-

cludes.

2. Preliminaries: Implementation Costs

Agency theory provides a framework for modeling the costs of in-
complete information, but we lack a good model of implementation costs.
We avoid the assumption that simple contracts are used because agents

or the firm act sub-optimally or that they incur costs to calculate opti-
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mal cholces. Instead we restrict our notion of implementation costs to
the time and effort required to communicate the contract to workers and
to the costs of calculating payments under the scheme. Some authors
have studied the choice between methods of pay by comparing contracts
with simple functional forms. Lazear (1986) and Brown (1990) compare
salaries to piece rates, while Lazear and Rosen (1981) and Green and
Stokey (1983) compare piece rates to tournaments. The restriction to
simple contracts can be based on the assumption that more complicated
payment schemes are very costly to implement.

We assume that implementation costs of paying workers according to
contracts of the same functional form are equal, and that mathematically
more complicated forms are more costly. For instance, the implementation
costs of a piece rate scheme do not depend on the piece rate itself. And
contracts that contain, say, logarithms are assumed to be more expensive
than piece rates, both to communicate to workers and to calculate on
a regular basis. Contracts that depend on more variables, such as both
past and current performance, require more bookkeeping and are therefore
more expensive to implement than contracts based on fewer variables.

Conceptually, we break the firm’s choice into two steps:

max [gén(?(i) (g, z)] — C(2).
Here Z denotes the family of all possible enforceable compensation con-
tracts. An element z € Z is a form of payment, with specific contracts
in z described by a set of parameters g. (G(z) denotes the set of possible
values of g. For example, if z is the linear bonus scheme used by our
firm, then an element of z is defined by the two parameters («, ), and
G(z) = {(a,2) : (o, 2) € Ri} C'(z) denotes the implementation costs of

contracts in z and 7(g, z) denotes the profits associated with a particu-
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lar fully specified contract, (g,z). By construction C(z) is a fixed cost
when choosing g € G(z). The profit function n(g, z) incorporates the
agency relationship with workers, namely incentive compatibility, indi-
vidual rationality, and free-riding within teams. The firm can be viewed
as choosing the optimal parameters g*(z) and then choosing the optimal
contract form z*. The classic principal-agent problem, in Grossman and
Hart (1983) for example, would be the case C(z) = 0 for all forms of
payment z. A prior restriction to piece rates would be the case that the
cost of implementing any non-linear contract outweighs any gain in the

profit function (g, z).

We do not attempt to estimate C(z) directly. Rather, by estimating
g*(z*) given the firm’s payment scheme z*, we can potentially identify
the main parameters that determine the profit function w(g, z): worker
risk aversion, cost of effort, and the distribution of production shocks. We
then compare costs of incomplete information with the implementation
costs needed to rationalize the choice of z*. For our application, we com-
pute expected profits under simpler and more complicated compensation
schemes than the linear bonus used by the firm. We also approximate

numerically the optimal agency contract ignoring implementation costs.

3. Team Production and Incentives in Mining

Several aspects of mining make it an ideal industry to which to apply
agency theory. Productivity varies substantially due to working condi-
tions, space constraints make complete monitoring difficult, and the pro-
duction process is simple. Two primary occupations, miners and muckers,
were involved in ore extraction at Britannia. Miners drilled and blasted

rock from the face of the tunnel while muckers shoveled the blasted rock



(or muck) into ore carts. We assume that each team was composed of one
miner and two muckers, because the ratio of shifts worked by muckers to
miners varies between 1.5 and 2 in all pay periods. Let the subscript a
denote miners and let b denote muckers. Since muckers can only muck
rock blasted by the miner, output from a tunnel can be approximated by

a Leontief production function,
y = 0min{ds, Ap 1+ Ap 2} (1)

where y is the amount of ore produced, A, is the effort of the miner, Ay ;
is the effort of mucker 7, and @ is a random shock to productivity in the
tunnel lasting one pay period. Effort can be interpreted as the amount
of ore processed by the worker. Below we also account for permanent
differences in productivity across areas of the mine as well transitory
differences captured by 6.

Workers observe the realization of @ before choosing their level of

effort. Each worker has a utility function of the form
ki 2 .
U(W——Q—-/\) i € {a,b},

where W is the wage earned in a period, A is effort, and (k;/2)A? is the
quadratic cost of effort for workers in occupation ¢. U is a von Neumann-
Morgenstern utility function satisfying U’ > 0 and U” < 0; that is, work-
ers are risk averse and they are willing to pay for insurance against pro-
duction shocks. Since workers observe shocks before choosing effort, the
functional form of U does not affect the choice of effort or the firm’s prob-
lem with full information. U does, however, determine the firm’s choice

over incentive contracts, so later we specify its form.



Assumption Al.
(i) 6 is log-normally distributed: 6 ~ N(p,02).
(Zl) ko < ky.

We denote the density and cumulative distribution functions of 6 as
f(0) and F(0), respectively. From Ali, f(#) = —o—lgd)((lné — u)/o) and
F(0) = ®((In6 — p)/0) where ¢ and & are the standard normal density
and distribution functions. We assume that that miners have lower effort
costs than muckers (Al.ii), because most workers started as muckers, and
because miners were paid a higher base wage than muckers. These facts
suggest that workers assigned to mining were more skilled than muckers.
Furthermore, efficient production under (1) requires the miner to process
twice as much ore as each mucker, so within the model it is optimal to
assign the task of mining to higher skilled workers.

To establish a baseline, consider the case when the firm can also ob-
serve f before ); is chosen. The optimal full-information contract specifies

a wage and effort level for each occupation and each value of 6.

Definition D1. The optimal full information contract (when
0 can be observed) is described by two wage functions, W, and

Ws, and two effort functions, A\, and Xy, that solve:

max /OOO (a min {Aq(0), 225(0)} — Wa(0) — 2Wb(6)> F(0)d6

Wo ,Wh,Aa,Ap

subject to

for ic{ab} /OO U <W,-(0) - %i)\i(aﬁ)f(e)dﬁ = U;
0

where w; is the reservation utility level for members of occupa-

tion i.



Theorem T1. The optimal full information coniract takes the form

20
)‘d(g) = 2ka + kb
6
M) = Ma(0)/2 =
Wal0) = U™ (3) + 7o
a = a 2ka+kb y
ky

Wi(0) = U™ Y(a,) + e Y

Proof: All proofs are provided in the Appendizx.

With full information, optimal wages consist of a piece rate combined
with a base wage or, if the constant term U~1(#;) is negative, a base fee
to enter the mine. The contract does not have a constant wage because
production shocks affect the productivity of effort, so it is optimal for
worker effort to vary with 8. To provide insurance against this variation,
wages vary with output. The full insurance wage is linear in output
because the cost of effort is quadratic. This is an attractive feature of
the model, since we apply it to data generated by a wage contract that is
not linear but rather piecewise linear in output. A non-linear contract is
only useful if an incentive problem exists. A non-linear contract does not
approximate a more complicated full information contract which might

be costly to implement.

Corollary C1. Under Assumption Al, expected output and profits per

team under the full informalion oplimal coniract equal

Ely] = /0 0A(0)(0)d0 = k—“l—r,;; exp {2 + 202}

2
Elx] = E[yl/2 — U™ Nua) — 2U ™ ().

Corollary C1 shall be used to assess the costs of incomplete informa-

tion in terms of production efficiency.
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Asymmetric Information on ¢ and the Linear Bonus System

It is reasonable to assume that directly observing worker effort or
production conditions in each area of a mine requires significant moni-
toring costs. Now consider contracts when the firm only observes team
output, y, and therefore can only enforce wage payments that depend
on output and occupation. The optimal contract now respects incentive

compatibility constraints:

Definition D2. Under asymmetric information on 0, the op-

timal team contract solves

max /0 ” (0 min{ A4 (0), 2X6(0) } = Wa(0) — sz(e)) f(6)do

Wo , Wp, A, Ap

subject to
for i€ {a,b} Ai(f) € arg max U(W;(0) — %Az)
forie {a,b} /00 U <VVZ(6') - ]fiAi(ﬁ)z) f(O)do = w;
0 2

The form of the optimal wage contract is unknown, but the solution
is not a piece rate as with full information, nor is it the pay system
that the firm used. For one thing, the two occupations should be paid
different rates because their costs and productivities differ.! In section
6 we compute for purposes of comparison a numerical approximation to

the optimal contract.

I Early on, the firm experimented with different bonus rates for dif-
ferent occupations. There appears to have been resistance to this and
by 1926 the pay system was changed so that workers split a team bonus

equally. We return to this issue in section 6.
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The firm used what we call a linear bonus. Workers in each occupa-
tion were paid base wages, denoted 3, and 3,. A team working in some

area j of the mine split equally a bonus of the form

0 ifyj < Tj
w; = . 2
I {aj(yj——a:j) if y; > z; (2)

where z; is the standard and o; is the bonus rate for sector j. A team
member in occupation ¢ therefore received a total wage equal to f; +
w; /3. The production standards and piece rates differed across areas. The
standard was also adjusted for the number of shifts worked in the area
during the pay period.? It is straightforward to augment the production
function in (1) to take into account differences across sectors. That is, let

output in sector j take the form
Yy = djgj min{)\a, /\b,l + )\b’z} + vj (3)

where the d; and v; determine the observable rock quality and other
elements of production in sector j. Let d; and v; be the realization of two
random variables, d and v. We make three technical assumptions about

the productivity shocks.

Assumption A2.

(i) d, v and @ are independently distributed;
(i) Eld]=1;
(iii) E[v] > 0.

The firm can set the standards and piece rates to cancel out fixed

differences across sectors by choosing values @ and z such that
o
o = —
J .
d;

z; :djar:-H/j.

2 Workers might work in different areas during a pay period, and they
were rewarded a share of the bonus in each area in proportion to the

number of shifts they had worked in that area.
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This system of bonuses and standards equalizes opportunities across areas
of the mine prior to the realization of 8. Company reports suggest that
balancing outcomes across sectors was important to the firm, perhaps for
the following reason: If work in one area is especially difficult, because
of bad rock or equipment malfunctions, then the mine cannot easily shut
the area down and shift work to other areas. The marginal product of
placing extra workers in other tunnels is small due to space constraints,
and only by making progress in a bad area can miners reach better rock.
Risk averse workers should be sheltered from the risk associated with
placement within the mine. Given a system of equalizing bonuses defined
by (a, z), we drop for the time being the sector index j from equation (3)

and return to the simpler production function (1).

Effort Levels Within Teams

Figure 1 sketches the output of a team that arises from a Nash equi-
librium response to the linear bonus system (2). Each worker chooses
his effort level to maximize utility conditional on #, the parameters of
the bonus system (a,z), and the behavior of the other members of his
team. A bonus system gives workers no incentive to provide effort when
the value of 0 falls below some value 8%, For # < @*, all members of the
team set effort and output to zero, because working conditions make it
too difficult to earn a bonus. For # > 6* each worker wants to equate the
marginal return to effort to marginal cost. The nature of the production
function, however, implies that any effort one occupation supplies above
and beyond the effort of the other occupation is wasted. Therefore, in

equilibrium, miners will always supply twice the effort level of muckers.
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Theorem T2. Given a bonus system («a,z), there exists a continuum
of Nash equilibria effort funclions for miners and muckers, denoted Aq(9)
and My(0). In each case, Ay(0) = Ao(0)/2. Define 6% = \/6kaz/a and
05 = \/m, Then in the unique Pareto efficient Nash equilibrium, the

effort function for miners takes the form

:,fke if 0 > 6%
(i) if kg < kp < 2k, then Aa(0) = °
0 otherwise
20 . 32w
(il) if 2hy <y < 4kq then  Ag(0) =14 30 10>\ 5moE)
0 otherwise
o 38 if0 > 0}
(ii1) if 0 < 4kq < kp then Aq(0) =
0 otherwise.

If workers cooperate with each other to mazimize total team
wages (net of effort costs), then the miner’s effort function

takes the form

20 jrg s g
(iv) Xy (0) = { e

0 otherwise

where 0% = 1/ Q’f%’i”—k

There are multiple Nash solutions because the effort levels of the two
muckers enter y additively, creating a range of 8 for which the two muckers
may stop shirking simultaneously. The range depends on the effort level
of the miners, but the lower bound equals 6. TFor 8 < 0§ each mucker
would set effort to zero in response to any effort level chosen by the miner
and the other mucker. In turn, 6% is the lowest value # for which miners
choose to shirk even if the muckers are willing to work hard enough to

earn a bonus. In each of the cases in Theorem T2, one of the occupations
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constrains the effort level of the whole team. Which occupation constrains
team effort depends on the utility parameters k, and ks, leading to the
cases T2.(1)-T2.(iii). Define #* to equal the value of # at which the team

stops shirking in the efficient Nash equilibrium:

A if ka < ky < 2k,
2
0= oty if 2ka < ks < 4k
o; if 0 < 4k, < k.

The equilibrium in which shirking stops at #* is Pareto efficient because
the utility of all team members is highest in this equilibrium, holding
constant the bonus system.

The cooperative effort function A%(6) given in T2.(iv) is the solution
when implicit aspects of compensation are somehow used to overcome the
problem of free-riding within teams. The firm or the workers themselves
may support the cooperative outcome by punishing workers in the future
who act in the non-cooperative fashion. We do not attempt to model the
mechanism that might support this cooperative solution, but presumably
the team could only be induced to consider the team’s share of output
under the explicit contract. Later we show that under certain cases this
cooperative outcome can be distinguished from the non-cooperative solu-
tion. This provides a test for the presence of implicit compensation that

supports the explicit bonus system.
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The Optimal Linear Bonus

Theorems T1 and T2 hold for any U that is concave and increasing.
To solve the firm’s problem, we specify U to have constant absolute risk

aversion equal to r > 0.2 For occupation i € {a, b},

U= —exp{—T(,Bi +w(y)/3 — k‘,x\?/?)} 4)

The firm chooses the bonus system (o, z) to maximize expected profit
per team, subject to individual rationality and incentive compatibility
constraints for each occupation embodied in the Nash effort functions
in Theorem T2. Normalizing the price of output to one, expected team

profit from the bonus is
E[x] = Elrevenue] — E[cost] = /OO[HAa(H) — w(D)]f(6)d8 — Ba — 20s.
0

With U there are no wealth effects in the choice of effort, so the firm can
set (; to solve the individual rationality constraints with equality:
1 In{—a;
Bi = 1 In(F () + Hifeo, ) = =2, )
where

Hi(a, ) = /Oo exp{——r(%(ﬁx\a(ﬂ) —z)— %A,-(&)Z’)}f(a)da, i€ {a,b}

o*

is the component of occupation #’s base wage that compensates for utility

generated when the team provides effort, that is when 6 > 6*.

3 From a computational standpoint, exponential utility is perhaps the
only feasible functional form when solving the principal’s problem. Mar-
giotta and Miller (1993) also maintain this assumption, and most of
the simulations of the Grossman and Hart (1983) model performed by

Haubrich (1994) use exponential utility.
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Corollary C2.1. The optimal linear bonus solves

max (1 — @) 6A.(0)f(0)do

@,T P

+ ozl — F(0")] — % {m (F (6 + Ha(o, a:))
42 (F(&*) + Hy(a, m))} (6)

where Ay (8) and 0% correspond to the appropriate case of ko and ky in

Theorem T2.

Corollary C2.2. Given Al and the production function (1), expected
oulpul under the linear bonus (w, ) expressed as a percentage of output

under the optimal full information coniract in T1, equals

1 —1ytgts, (7)

where
1 =«

Bhetbo) ik, < ky < 2kq

@hathe)  yrop < k.

3Fs
Ing* —

t3=1—¢(—"————fi—20).
g

Each of the three components in equation (7) has an economic inter-
pretation as a source of inefficiency under incomplete information. First,
output under the linear bonus is scaled by the bonus rate a because the
team sets effort in response to its share of output rather than to total
output.

The second term, to, captures the effects of free riding within teams.
That is, 1 — t3 is the proportion of output lost due to free riding. At

any value of 6, each team member chooses effort conditional on 8 while
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ignoring the effect it has on the productivity of the other team members.
The resulting loss in output relative to efficient full information output
is constant across values of #, however, the inefficiency is larger when
4k, < k;, the case of Theorem T2 when mucker effort constrains team
effort. Since muckers have higher costs of effort than miners, free riding
is larger when their effort is the binding constraint on team effort. It is
straight forward to show that ¢2 lies in the interval [—%—, %] ifky < kp < 2kg,
and it lies in [3, 3] if 4kq < ky.

The third term in (7) captures the effects of team shirking. That is,
1—t3 is the proportion of output lost due to teams completely shirking and
providing zero effort. Under the linear bonus, teams with § < 6* produce
nothing and fail to meet the production standard x, while under the full
information optimal contract they produce t —t3 = @ (ln 0% /o — 20') .

Because Corollary C2.2 is based on the production function (1), it
only compares output that is sensitive to incentives. In other words,
if output actually takes the form (3), the expression (7) only compares
the values of E[A0;]. The conditions under which (7) over-estimates the

expected productivity lead to:

Corollary C2.3. Given the production function (3) and assumptions
Al and A2, (7) over estimates the expected output lost under the linear

bonus relative to the full information oulput if:
Ev] > Var(d)

where
Ing*—p 20,)] o2p+20”

2
(PETRLL [1 - ‘I’< -
T =

1~at2[1—<1><li”§:ﬁ—mza)]
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The condition C2.3 holds when the average additive shock dominates

the variation in the multiplicative effect d, including the case Var(d) = 0.

4, Identification

In this section we discuss estimating the agency model using payroll
data generated by the model. We assume the data to consist of bonuses
received by a random sample of workers paid under the linear bonus. The
agency model contains five parameters of primary interest: (kq, kp,r, 1, 0).
These parameters determine worker effort levels and the firm’s choice of
the bonus parameters («, ). The reservation utilities u, and uy are of
secondary interest because they determine only the base wages £, and
By. First we consider the response of workers to the bonus parameters
which they take as given. To the econometrician, («, x) are unknown (and
unrestricted) parameters to be estimated. We call this the unrestricted
model. Next we add the restriction that through the maximization of
the profit function in Lemma 2 (o, ) are implicit functions of the struc-
tural parameters and call this the restricted or structural model. Finally,
we consider how data from several pay periods aids in identifying the

structural model.
Lemma 3. Define

He ifka < ky < 2ka

e if ky > 2k,

and
1 if kg < ky < 2k,

=4 Geshel rok, < by <k,
3 if 4ky < ky.
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Then, from assumption Al and the Nash equilibrium effort funclions in

Theorem T2, the distribution of realized bonuses satisfies the following

three properties:

(i) Positive bonuses are bounded away from zero with a lower bound
o) — QT

w(0*) = 3

(i) No bonus is received with probabilily

® [(1/0) (1/21n[¢(w(0*) +az/3)] - u)]

i) For w > w(0*) the density and cumulative disiribution functions
Y

equal:
Ju(w) = (2v270(w + ow:/3))n1 exp{—-é—(l;i [In (v (w + (—X;)) — 2p] }

Fy(w) = @[(1/0) (1/21n [Y(w + ax/3)] — u)]

The parameter n depends on which occupation is the binding con-
straint on team effort. The value of 7 is monotonically related to tg,
the free-riding component ¢y of lost output (7). Therefore, n measures
the free-riding within teams induced by differences in marginal costs of
effort. The bounds on 7 arise from the assumptions of Leontief technol-
ogy and quadratic costs of effort. In particular, the Nash equilibrium
effort functions are unaffected by the relative values of k, and k; when
ke < ky < 2k, and 4k, < kp. In the density function the parameter 1
scales positive bonuses. Its value determines how effective the bonus rate
is in providing team incentives.

All three statements in Lemma 3 follow from inserting the Nash equi-
librium effort functions into the bonus equation (2). The economic reason

for the first statement is that no team finds it worthwhile to earn small

19



bonuses. Instead, the team sets effort to zero for values of § < 6*. If not
for the lower bound on positive bonuses, the distribution of log bonuses
would essentially form a censored regression similar to a Tobit model. The
structural parameters determine the mean and variance of the disturbance
term. Unlike an ordinary Tobit, however, the support of positive bonus
also depends upon the model’s parameters. Identifying the parameters in
this circumstance is a non-standard problem since the maximum likeli-
hood estimator for the boundary, w(6*), is the smallest positive bonus in
the data. Flinn and Heckman (1982), Christensen and Kiefer (1991), and
Donald and Paarsch (1993) discuss the properties of boundary estimators.

Theorem T3. (i) The following four parameters can be identified
from the bonus distribulion defined in Lemma 3: the standard deviation
of production shocks o, the incentive parameter ¢ normalized by %#, the
minimum bonus w(0*), and the free-riding term 1. Using L3.(7), the value
az can be recovered from w(0*) and n, but o and © are not separately
tdentified. (ii) The cooperative solution lo team effort is observationally

equivalent to the non-cooperative solution when n = 1.

Theorem T3.(i) states that the bonus parameters are not separately
identified directly from the distribution of bonuses. At best, only their
product, ez, is identified. Furthermore, point estimates of k, and k; are
also not available based solely on the response of workers to the linear
bonus. Using Lemma 3, we can determine intervals in which k, and k;
must lie to be consistent with the estimate . Combined with Corollary
C2, Theorem T3 also shows that the bonus distribution contains limited
information about the linear bonus’s efficiency relative to the potential
full information case. The ratio of expected output under the bonus to

full information output is given in (7), and it contains the three terms
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t1, 12, and {3. The first component, {; = «, lies between 0 and 1 but is
unidentified without imposing profit maximization. The next, g, lies in
the interval [%, %] and is also unidentified because it is a function of k,
and k;. The estimate of 5 can be used to tighten the bounds on 3. Only
13 can be estimated from the distribution of bonuses without maximizing
the firm’s problem, because t3 can be calculated from the values listed in
T3.

T3.(ii) states that it is possible to test for effective cooperation among
team members. In particular, if the restriction 7 = 1 can be rejected,
then the data provide evidence that the free-riding was not completely
eliminated by some implicit aspect of compensation.

By adding the restriction that the firm chooses («, ) to maximize
profits, these parameters become implicit functions (without closed forms)
of the structural parameters. From Theorem T3, only four parameters
are identified from the bonus distribution defined theoretically by five
structural parameters. One normalization that in principle identifies the
structural model is to fix the mean of log production shocks p for one pay
period. Since p does not enter (7), output under the linear bonus relative
to full information does not depend on yu, making it a natural parameter
to fix during estimation.?

Either k, or k; enters the firm’s objective function only through
H,(a,z) or Hy(ar, z) because on the margin team effort is determined by
the occupation with the higher relative cost of effort. The other occupa-
tion’s preferences only affect the level of pay required to compensate for

effort. If the value of the corresponding H;(w, ) is insensitive to struc-

4 If («, ) were known, numerical solutions to the firm’s problem would
still be useful for analyzing the data. Numerical solutions would be re-
quired to determine whether (or to impose the condition that) («, ) max-

imized profit.
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tural parameters near their estimated values, then k; has a small effect on
the firm’s choice of («, ¢). Therefore, one of the cost of effort parameters
may not be well identified in a given sample.

By using data from several pay periods during which the bonus
parameters were changed, we can identify relative movement in mean
production shocks. That is, we assume that the preference parameters,
(v, ka, kp), are constant over time periods and the firm changed the bonus
parameters (o, ) in response to changes in the technology parameters
(o, pt) over time as tunnels are extended. By re-solving the firm’s problem
in each period, a separate value of o can be estimated for each period
and a separate value of p can be estimated for all but one period. Three
parameters vary across periods in the unrestricted model: ¥, w(6*), and
o. Since it depends only upon preferences, 7 is constant across periods.
Each additional period of data therefore adds one degree of freedom in
the restricted model that imposes profit-maximizing behavior relative to

the unrestricted model based on team behavior alone.

5. Data and Results

Data

We have entered the payroll records of the Britannia mine for the
years 1927 and 1928.° For each pay period we observe the number of
shifts each employee worked, the job he performed (miner or mucker),

and the bonus he received. While there were two pay periods per month,

5 The records are located in the Special Collections section of the Uni-
versity of British Columbia Library. We transferred the records onto
;nicroﬁche and from the microfiche coded the data into machine-readable
Oormi.
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bonus rates were changed at most once per month. We therefore combine
the data into monthly periods.

Table 1 summarizes the data by month. The ratio of mucker shifts
to miner shifts is generally between 1.5 and 2. The proportion of workers
receiving a bonus in each month fluctuates between 0.4 and 0.7 with no
obvious trend across periods. Workers were paid bonuses according to the
number of shifts they worked during the pay period, so the Table reports
bonuses per shift. When estimating the model we restrict the sample to
workers who worked 25 or more shifts in the month. Base wages per shift
were $4.25 for miners and $4.00 for muckers, positive bonuses were on
average 4 or b percent of base wages. The maximum positive bonus per
shift fluctuates a fair amount across periods with outliers in months 7
and 16. On average it is $0.99, or over 23 percent of the base wage. The
minimum positive bonus per shift is less than $.02 with outliers in months
1 and 20.

In each period roughly 6 percent of workers received a total bonus
equaling $0.50. While the model predicts that positive bonuses are
bounded away from zero, it seems unlikely that the theoretical bound
was exactly $0.50. Furthermore, in periods where the smallest positive
bonus is below $0.50, bonuses of $0.50 still appear regularly. We have
found no explanation for this in company records. It appears that ei-
ther the firm guaranteed a minimum bonus of $0.50 for certain jobs, or it
may be that the firm usually rounded smaller bonuses up to $0.50. Our

formation of the likelihood function proceeds from the latter explanation.

Likelihood Function

Recall that the distribution of bonuses identifies the free-riding term 5

and three time-varying parameters: the standard deviation of production
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shocks ¢, the minimum observed bonus w(#*), and the effort coefficient
1 normalized by e2#. If the firm did not round small bonuses, it would
be possible to estimate w(f*) consistently using the the smallest observed
positive bonus per shift in each period, denoted wpin,. However, wmin
is not a consistent estimate of w(#*) when small bonuses are rounded.
With rounding, the probability of receiving a positive bonus is unchanged,
but all bonuses between nw(6*) and 0.50 are rounded to 0.50, where n
equals the number of shifts worked by an individual during the pay period.
The probability that a bonus equals 0.50 equals F, (62*) — F,,(6*), where
0% = \/9(0.50/n + az/3). The log-likelihood function for N workers

with (nq,ng, ..., ny) shifts worked and per-shift bonuses (wy, w3, ..., wn)
during one pay period equals
Lika, ky,ryp,0) = Y In(Fu(0%))
{i:w;=0}

+ > In (Fy (032%) — Fyu (6%))
{i:0<n,-w,-§0450}

+ ) n(fu(w). (8)

{i:nw;>0.50)
Whether or not rounding occurred, estimates based on maximizing (8)
are consistent. If rounding did not occur estimates based on (8) are not
efficient. We found parameter estimates based on estimating w(0*) with
Wymin 1O be very sensitive to changes in wpmi, across periods so we report
estimates based on (8).

To compute L under the restricted model, requires solving (6) nu-
merically for the optimal values of («,z) given current estimates of
(ka, ks, r, it,0).% To reduce the number of estimated parameters, we let

the technology parameters, (i, o), change at most every two months. We

6 The profit function was maximized using Newton’s method. The
convergence criterion was very tight since the results must be passed on
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tested this restriction by estimating the non-structural model over all 24
periods, with 5 free, and allowing o, and ¢ to change in each period.
We then estimated the model under the restriction that o,  and ¢ change
every two periods. The likelihood-ratio test statistic equals 58.4 with 36

degrees of freedom, which is not significant at the 1% level.

Unrestricted Estimates

Table 2A presents the estimates for the unrestricted model, allowing
7 to be estimated freely. The estimate of 7 of 10.49 lies beyond the region
defined by the model. We also estimated the unrestricted (i.e. without
profit maximization) model setting 7 = 3. These results are presented in
"able 2B. Table 2B also reports Chi-squared goodness of fit tests of the
unrestricted estimates. The details of the test statistic are given in the
Appendix. The distributional assumption appears satisfactory. Only in
period 4 (the period in which there are unusually large bonuses) is the fit
rejected at the .01 significance level.
The estimates of output lost by pure shirking under the bonus system,
1 — 13 in (7), are presented in the fourth row of Table 2B. In all periods
less than 10 percent of potential full information output was lost due to
workers shirking. The percentage of teams shirking is much higher than
10 percent, however, teams earning no bonus received poor draws of § so
their forgone output is well below average productivity. The estimated
proportion of output lost due to free riding on other team members, 1 —%9

in (7), lies in the range [%, %] Free riding within teams accounts for more

to the algorithm maximizing L. In particular, all elements of the gradient
vector for 7 had to have absolute values below 1.0e-7. Starting values
for L were found using the simplex method, as described in Press et
al. (1987), then Newton’s method was used to achieve convergence. All

numerical work was performed in Gauss.
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lost output than whole teams shirking.

The relatively large base wages paid to workers suggests that the
output produced in the absence of any incentives was quite large. Corol-
lary C2A suggests that Table 2B overestimates the percentage of expected
output lost under the bonus system. The numbers are merely suggestive,
since we are only estimating one part of (7), and Corollary C2A pertains
to the whole expression. Measuring the complete expression requires sep-
arate identification of & and z, which is accomplished by imposing profit

maxinnzation on the bonus parameters.

Structural Estimates

Since 7 is pushed past its theoretical bound of 3, we estimate the
structural model for case T2.(iii), 4k, < kp. Team effort is determined by
the muckers so k, only enters the profit maximization problem through
the expected utility constraint for the miners. We found that %k, was
poorly identified in the data, so we estimated the model for two extreme
cases: (A) kg = 0.24kp and (B) k, = 0.01k;. The results are presented in
Table 3. The results are not sensitive to the normalization.

The estimated values of the standard deviation o are quite close
to the values reported in Table 2. The values of p are generally not
significantly different from zero, indicating little movement in the average
production shock across periods. Most of the variation in the pay system
across periods is through the production standard z. The value of «
varies between 0.55 and 0.62, while the value of :L" varles between 11.01
and 20.29. The risk aversion parameter was estimated on a monthly basis
and then converted to a per shift value by dividing by 25, the number of
shifts worked in a month.

The goodness of fit test was also performed on the structural model.
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Since certain parameters are constant across periods, we report the sum
of the statistics for each period. There are 71 degrees of freedom-the
number of cells in each period minus the number of estimated parameters
minus one. The results are significant at the .01 significant level (row 5
of Tables 3A and 3B). The rejection is caused almost entirely by period
4, the same period for which the unrestricted model fit poorly. The test
statistic excluding period 4 equals 84.0 in both cases which with 65 degrees

of freedom has a p-value of 0.06.

The structural model restricts the cost of effort parameters and the
risk aversion parameter to be constant across periods; changes in the
bonus distribution are attributed to changes in the profit-maximizing
choice of the («, ) due to varying conditions in the mine. These restric-
tions are tested by performing a likelihood ratio test. The total likelihood
in the unrestricted model is 7310.44. The likelihood for the structural
model is 7329.21. The model is estimated over 12 periods, implying 11
degrees of freedom (36 parameters in the unrestricted model, 25 param-
eters in the structural model). The likelihood ratio of 38 rejects the
restrictions placed on the unrestricted model. When period 4 is ignored,
the ratio falls to 26 with 10 degrees of freedom but the hypothesis can still
be rejected (p-value equals 0.003). The problem appears not to originate
with the assumptions of exponential utility and profit maximization re-
quired to solve the firm’s problem, which still fit the data reasonably well.
Rather, the major problem in applying the model to the data is that the
unrestricted estimate of n lies above its theoretical range based upon the
production function (2) and the quadratic cost of effort. Other convex
cost functions do not alter the basic form of the effort function illustrated
in Figure 1, but they generate implicit solutions for either * or the effort

functions themselves, creating a third level of numerical solutions required
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to estimate the model (beyond maximizing the profit and likelihood func-
tions). Alternative cost functions were therefore deemed impractical, and
the quadratic cost function should be considered a feasible approximation.

The large value of 77 leads us to reject the hypothesis that the explicit
linear bonus was supported by implicit arrangements that eliminated the
inefficiency inherent in the form of compensation. Recall from Theorem
T3.(i1) that cooperation within teams is empirically equivalent to the non-
cooperative case with n = 1, which is strongly rejected by the data. This
result. does not rest upon any assumptions about what mechanism was
used to enforce cooperation, but rather tests for the presence of coopera-

tion in the distribution of bonuses.

6. Implications

Output Relative to Full Information

Using the parameter estimates in Table 3, we compare the expected
output and profits under the linear bonus scheme with alternatives that
the firm may have used. Since the structural parameters are estimated
conditional on the normalization of k,, we present two measures of the
profits and output available under alternative schemes. The extent to
which the normalization affects the estimates depends upon the manner
in which k, enters these expressions.

With estimates of the structural parameters we can calculate all
terms in (7), subject to the normalization on k,. We average across the
twelve two-month periods and present the results in Table 4. We estimate
the output loss under the linear bonus to be in the range 73 to 81 percent.

The major source of output lost was free riding within teams (column 3).
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This is consistent with the results from the unrestricted model. We esti-
mate the loss of teams with low 8’s shirking to be small — on average only
4 percent of full information output is lost in this way, even though the
percentage of teams not earning a bonus is on average 35 percent. The
pattern in the data that accounts for this is the large variation in positive
bonuses. Truncating the lowest 35% of output values is much less costly
than losing 35% of average output when production has high variance.
We have already argued that these estimates of productivity lost are
likely to be overestimates of the true loss of productivity since we so far we
have not taken account of productivity from effort that can be enforced
by the level of monitoring used in the mine. To get an idea of how much
production was independent of incentives, we draw on some additional
information contained in the payroll records. In the late 1920s, Britannia
linked the base wage of its workers to the price of copper, which was then
fluctuating much more than in the two years our data covers. We combine

the size of the copper bonus with three additional assumptions:

Assumption A3.
(i) Varld] =o0;
(it) ~In(—t;) = r(PEW]/3 + s;), where P is the price per unit
of copper.
(%i) sa > 0,5, <0, and s, +2s, = 0.

Assumption A3.(1) strengthens Assumption A2 by forcing all the vari-
ation in average productivity across areas of the mine to be additive.
A3.(i1) specifies that certainty equivalent income outside the mine is a
function of the price of copper and occupation. That is, if w; is occupa-

tion 7’s certainty equivalent income, then



Taking logs gives, —In(—u;) = rw;. We then let w; = PE[V]/3 + s;. In
effect A3.(i1) assumes that worker productivity at Britannia was typical of
the industry. Assumption A3.(iii) allows reservation utility to vary across
occupations.

A3.(i1) and (5) imply —g—% = EW]/3 or Ev] = 3%‘%. With fluctuat-
ing copper prices, the copper bonus adjusts compensation to solve the
individual rationality constraints. Under the copper bonus, every $0.01
increase in the price of copper per ton increased base wages by $0.25 per-
shift. We therefore approximate —g—% by %% = g—:?ﬁ = 25 tons per shift,
and leads us to estimate E[v] = 75 tons per shift.” The percentage loss
in expected output now equals

1—tylots
14 75(kq + ky /2)e=2(n+7?)

(9)

and decreases to between 58 and 69 percent (column 5 of Table 4). After
correcting for productivity that is insensitive to incentives, the estimates

of productivity lost relative to full information remain substantial.

Comparisons with Other Incentive Contracts

Comparing output under full information and the linear bonus is only
a partial comparison because it does not include the wage costs associated
with producing the output. Furthermore, the costs of incomplete infor-
mation would have increased or decreased if the firm had paid workers
using a contract other than the linear bonus. We now compare profits
per-team under several different contracts, listed in descending order of
expected profits before taking into account the cost of implementing the

contract.

7 Production levels recorded in the company reports suggest that this
estimate is reasonable. For example, in June 1925 the average tons broken

per miner shift was 20.5.
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1. Full Information Optimal Contract: Profits under the contract
described in Theorem T1, averaged over all pay periods at the estimated

parameter values.

2. Incomplete Information Optimal Contract: Profits computed
using a discrete approximation to the production shock # and a flexible-
form contract defined by 240 parameters. The parameter values for period
12 were used to form the profit function. The details are described in the

Appendix.

3. Incomplete Information Two-Rate Linear Bonus: Profits
computed when separate bonus rates a, and «p are paid to each occupa-
tion. The parameters are chosen to maximize
*© 1
Eln] = (1—as—2a3) . 0)\a(6)f(0)d0——; [Ha(3aa, ;L')+2Hb(3ab,x)] (10)
for all 12 periods where 6* is determined by the solution by the efficient

Nash equilibrium within the team.

4. Incomplete Information Linear Bonus: Profits computed for

the parameters estimates and the contract actually used by the firm.

5. Incomplete Information Simple Piece Rate: Profits computed

under a simple piece rate « that maximizes
o0 1
Elx]=(1- a)/ A, (8)f(0)dO — ;[Ha(a, 0) + 2Hp(ox, 0)]. (11)
0

As with the two-rate system, (11) was maximized numerically for each

pay period.

In terms of implementation costs as we defined them in section 2,

the incomplete information optimal contract is the most costly. Next in

31



order of implementation costs is the two-bonus rate system, then the lin-
ear bonus, and finally the simple piece rate and full information optimal
contract, which is also a piece rate. To implement the full information
contract would presumably require other costly measures including hiring
more foremen, collecting more data about local conditions, and so forth.
These fall under the costs of having incomplete information on worker
action rather than the costs of implementing the contract given the in-
formation available. Before comparing profits under these contracts, we

state and discuss two results concerning their performance.

Theorem T4. Under assumptions AI-A3, estimates of expected prof-
its do not depend upon E[v), average team productivily without incentives,

under full informaiion or any contract that nests the linear bonus system.

Assumption A4. v~ N(u,,02).

Theorem T5. Under assumptions Al-A{, estimated profits under a

piece rate are overestimated by the factor %rcﬁo‘f.

Theorem T4 says that the correction for the level of team productiv-
ity required when comparing output levels is not necessary when compar-
ing profits as long as reservation utilities reflect average productivity and
the payment scheme is flexible enough to control for variation in produc-
tivity across areas in the mine. In the case of a simple piece rate, the mine
cannot use z; to cancel out fixed productivity differences v; across areas
of the mine. The productivity differences do not cancel out of expected
profits (11). A simple piece rate creates a lottery across areas of the mine,
and the expression in T5 is the worker’s risk premium associated with this
lottery. Without knowing how variable the observable component of pro-
ductivity was across areas, expected profits under the simple piece rate

overstate actual profits.
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Table 5 summarizes the performance of the five different contracts.
The percentage of full information profits lost under the linear bonus is
estimated to be between 72 and 81 percent on average across periods. We
estimate a large inefficiency in the incomplete information outcomes even
though only about 5% of compensation was in the form of incentive pay.
(Standard errors on the estimates of expected profit computed based on
the delta method were found to be quite small relative to the magnitude of
the estimates.) A difference between casual and structural estimates of the
cost of moral hazard has been noted elsewhere, in particular for executives
of U. S. corporations. Using the sensitivity of executive pay to shareholder
wealth as a measure of the importance of incentives, Jensen and Murphy
(1990) find a sensitivity of less than 1 percent. Using estimates of a
dynamic agency model, Margiotta and Miller (1993) estimate the effect
of moral hazard to be of the same order as total assets controlled by the
firm. (See also Haubrich 1994).

The key to both ours results and those of Miller and Margiotta is
risk aversion. With risk averse agents, the cost to the principal of incom-
plete information is not proportional to the amount of variation in pay
generated by the optimal incentive scheme. To obtain a measure of the
economic impact of incomplete information requires an estimate of risk
aversion as well as other aspects of technology and preferences.

We divide the loss in profits associated with the linear bonus into a
part attributed to incomplete information and a part attributed to imple-
mentation costs using the profits under the approximate optimal contract
with incomplete information (row 2 of Table 5). Profits under this con-
tract are about 50% of that with complete information, accounting for
two-thirds of the inefficiency of the linear bonus. The remaining one-

third is due to the inefficiency in producing incentives under the linear
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bonus compared to optimal incentive contract.

Now we consider marginal changes in the form of the incentive con-
tract away from the linear bonus, in particular the two-rate and sim-
ple piece rate schemes that maximize (10) and (11). Net profits under
the two-rate system increase between 16 and 40 percent compared to
the single-rate system actually used. Paying miners and muckers differ-
ent piece rates would have increased efficiency substantially. Profits are
smaller under the simple piece rate than under the linear bonus system,
since the bonus system nests the piece rate. The average increase in
profits under the linear bonus is small. On average, profits increased by
a minimum of about 2.3 percent with a production standard. The fact
that the estimated difference in profits (ignoring productivity differences
across areas of the mine) is small suggests that the main benefit to the
firm in introducing the production standard was its ability to cancel out

observable productivity differences.

Extensions and Limitations

Our estimates are based on the assumption that workers know the
conditions in the area they work before choosing effort. More realistically,
workers only receive a signal of productivity when choosing effort. The
opposite extreme would be the case of symmetric incomplete information:
neither workers nor firms know the value of 4. In this case, team effort is
constant relative to the realization of #. At any set of model parameters,
expected profits are smaller when workers do not see and respond to 6
than when they do, because there is less information about the production
process. In this sense, our estimates of the cost of incomplete information
are conservative. However, our estimates of the model’s parameters are

biased in some unknown way if workers do not observe 8 and we assume

34



they do.

To gauge the effect of the bias, we used the parameter estimates for
period 12 to re-solve the model when workers also do not observe . We
calculated the Nash equilibrium within teams, re-maximized the firm’s
profit function, and generated an artificial data set on bonuses based
on 1000 draws of 6. Using this data, we then re-estimated the model
under our original assumption that workers know 6. As expected, the
parameter estimates were quite different than the estimates we started
with, illustrating the bias in assuming the wrong amount of information
in the mine. The computed values for expected profits, however, were
54% of the full information result under the (incorrect) assumption that
workers know 6, a value similar in magnitude to the 75% figure from the
estimates. This suggests that the effect of misspecifying the amount of
information available to workers may not have a qualitative effect upon
the estimated cost of incomplete information

The comparison of profits in Table 5 suggests that paying two rates
would have cut inefficiency considerably. Britannia’s Annual Reports in-
dicate that prior to 1926 the firm experimented with separate piece rates
for different members of the team. The reports made at the time indi-
cate that the two-rate system was dropped in favor of the team bonus
primarily to improve harmony within teams. While the reduced-form es-
timates reject the presence of cooperative behavior, we have assumed that
teams operate at the Pareto efficient Nash equilibria defined in Theorem

T2. Each team member, however, can move the team into another Nash

8 It would be preferable to re-estimate the model parameters under
the assumption of symmetric incomplete information. This was deemed
impractical. [t requires three levels of numerical solutions (worker, firm,
econometrician) since worker effort must maximize expected utility rather

than state-contingent (f-contingent) utility.
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equilibria by simply shirking for some values of 6 greater than 6*. In
effect, this raises the value of 0* appearing in the firm’s objective (6). So
while we use a non-cooperative solution to the team’s problem, we can
approximate the notion of cooperation by considering the firm’s interest
in getling teams to select the efficient Nash equilibrium. Differentiating

(6) with respect to 6*

E
%9—} —— f() <(1 — )0 X (0%) + ax
N 1 1 )
r(F(0*) + Hqla, 0%)) + r(F(6*) + Hy(o, %))
1 9H(a,07) 8Hy(a,8%)
- _( 26* + X > (12)
r\ F(0*)+ Ho(c,0*) ' F(0%)+ Hy(or, 0% )’
where
8Hl 10* * * ki * *
———é{%—) = —exp{~7‘(—3—(9 Ael07) —2) — 5-/\?(0 ))} f(0") <o.

The second term of (12) is positive. It represents the amount the firm
could adjust the base wage to offset change in the amount of shirking. As
long as the effect of the first term outweighs the second, profits are max-
imized at the Nash equilibrium where shirking stops at 6 = 6*. Indeed,
this holds at each set of parameter estimates, because H, and Hy are not
responsive to @*. Contracts in which workers receive different bonuses
may have caused envy that resulted in break downs in the coordination
required to reach the efficient Nash equilibrium. Equation (12) demon-
strates that the firm has a vested interest in avoiding these break downs.
Workers ultimately receive their reservation utility of @; and occupations
were paid different base wages, so this argument requires that utility func-
tions be augmented with some element of envy or peer pressure. At the

least, our results suggest that applying models of endogenous cooperative
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behavior in teams (e.g. Kandel and Lazear 1992) to payroll data may be
fruitful.

While we control for heterogeneity in tasks and skills across occupa-
tions, skills may differ within occupations as well. In particular, workers
may develop skills on the job. Shearer (1994) has matched the payroll
data from Britannia with personnel files that include when the worker
joined the firm. Using the same framework, he estimates the return to
tenure within the firm controlling for the incentives induced by the bonus
system.

We specify the environment as a static principal-agent problem. An
important issue in the dynamics of incentive pay is the ratchet effect (Gib-
bons 1987 and Kanemoto and MacLeod 1990). The ratchet effect arises
when a firm uses a worker’s past performance to determine the parame-
ters of the compensation scheme, and workers recognize this feedback. We
ignore the ratchet effect for two reasons. Workers at Britannia changed
location within the mine, and as tunnels progress rock conditions evolve
over time. Both these facts reduce the extent to which a worker’s past per-
formance affects his future compensation even if past performance is used
to rate an area relative to other areas. Ickes and Samuelson (1987) argue
that worker rotation mitigates the ratchet effect because it reduces the
correlation between a worker’s performance today and the compensation
scheme he expects to face in the future.

Despite opening in late 1800s, Britannia did not begin experimenting
with productivity-based pay until 1923. The system remained in effect
until 1930. The agency model can help explain the timing of these changes
in the compensation system. First, we estimate substantial variation in
average conditions over the sample period. Conditions before our sam-

ple period may have made monitoring cheaper and random elements of
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production less important. Second, the firm abandoned the system when
world copper prices and labor costs declined in the early 1930s. These
trends may have made both direct monitoring of workers using cheaper
foremen and termination contracts (Macleod and Malcomson 1989) more
cost-effective than incentive contracts. When other costs such as imple-
mentation costs are considered, trends in forms of compensation may be

better understood.

7. Conclusions

This paper has explored the empirical content of agency theory in
a case-study of the Britannia copper mine which used a simple incentive
scheme during the 1920s. Firms use simple incentive systems even though
agency theory does not sanction them as optimal. We have explored a
transactions cost explanation for this discrepancy between practice and
theory. We estimate that up to one-third of the loss in profits in the mine
was due to such costs limiting the shape of the pay contract. The remain-
ing two-thirds of the loss is associated with incentives and free-riding
within teams. We test and reject the possibility that implicit aspects
of compensation enforced the outcome under the optimal contract that

ignores the cost of implementing complicated contracts.

Our results demonstrate that payroll data are informative about
agency theory, in the sense that an agency model serves as the data-
generating process for an estimation procedure using payroll data. We
also demonstrate the reverse: agency models are informative about pay-
roll data, in the sense that casual estimates of the cost of incomplete
information differ considerably from estimates arising from the model it-

self. The non-standard nature of the principal’s objective function with
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risk averse agents requires numerical solutions, but in return a better

understanding is gained of both the data and the theory.
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Appendix

Proof of Theorem T1

We first note that maximizing (2) implies A, = 2X;. With risk averse
workers and a risk neutral firm, the optimal wage contract provides com-

plete insurance. Using this condition to invert U/ for occupation ¢
k; 2 ~1,.
Wi (0) = ?(,\i(e)) + U7 Nw). (1.1)

Productive efficiency requires that the marginal product of team effort

equal the sum of worker marginal effort costs

0= ka/\a + @')\a:
2
or,
20 0
Ag = e A= ————,
(ka+ ko) 07 (2ka+ky)

Subsitituting these expressions back into (1.1)

ky

-1/ k -

ko + kY QED

Proof of Corollary C1

In general, if In(8) ~ N(,0?), and @ is the standard cumulative

normal distribution, then

/oo 02£(0)d0 = e2u+2o" [1 - @(M)] '

P o

. 2 pr 1 9 -z (lnf)—u)z .
To see this note that §°f/'(6) = VTt 2,2 . Using the change of

variables y = Inf — p, it is straightforward to show that

021 (0) = 2" (L0 "02"2),
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where ¢ is the standard normal density function. See for example Olkin,

Gleser and Derman (1980, p.300). It follows directly that

® *© 1 1 2
E =/ Oa (0 0d0=/ — 02 F(0)d(0) = ————ePF2",
(vl A (&) f(0) o Fat 1k f(6)d(6) bt 1h
Therefore
Ely]

Elr] = Ely] — E[Wo] — 2E[W3] = . Ua_l(ﬂa) — 2U{1(ﬂb). QED

Proof of Theorem T2

(1) Utility of mucker Z, conditional on both the miner’s effort, A,, and

mucker j's effort, Ap ;, is
(47 .
Upi(0)Xa, s j) = g(armm;,\a, P P e —2—)\3’1-.

Mucker 7 equates the marginal cost of his effort to the marginal return at
effort level
af

= 2
b 3ky

)

which is independent of mucker j's actions. This defines the maximum
level of effort that the mucker will supply for each value of 6.
Define 6 ; to be that value of § at which mucker i is just indifferent

between supplying effort and shirking. Then 02"1. solves
Ub,i(g\l};’i|/\a; /\b,j) = 0.

Since mucker effort enters the production function additively, there are a

continuum of possible values 05 ; € [05; ;.08 ; mas]- Noting that

af
Ap i 0, —
b € [ ’3k,,]’
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%
0% i min sOlves

o of kp 2
—l0min{ds, Api + =1} — — —(Xe3) =0,
3 ( min{Aa, Ao+ 35} w) o (X)

and 07

bi mas solves

%(Bmin{/\a, Abi}— -73) - %(’\byiy =0.

It follows directly that for @ < 64 ; min, mucker i’s dominant strategy

is to shirk. Alternatively, for @ > 65, . mucker i’s dominant strategy is
6*

¥ i maz)» Mucker 7 will either

to provide positive effort. For 8 € (Hjjyi mins
provide effort or shirk, depending on his belief over mucker j’s actions.
Conditional on A;, we can characterize the symmetric best response

function for the muckers

2
0 otherwise,

A = {mm{%, Al if 0> 0Fand A, > z/0
where 0% solves: Up(Ap(0F)|As) = 0. Similarly, the best response function
of the miner can be written
A, = {mm{f,%,zx,,} if § > 0% and 2X, > /0
0 otherwise,
where 0% solves: Ug(A.(6%)|Ay) = 0.

Solving for an intersection of best response functions will give a sym-
metric Nash equilibrium. There are a continuum of these equilibria, due
to the continuum of possible values of §}. We now show that the Nash
equilibrium with 8§ = 63 ; ., Pareto dominates all other symmetric Nash
equilibria, Let

O} = {010 € 105 min, O mas}

Furthermore, let
6; €0y and 6 —c€OF; €>0.
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Finally, define
D(6F,€:0) = Us(Ml6] — :0) = Us(165;6).

D(05, €;0) is the difference in mucker utility between the two Nash equi-
libria conditional on €.
We divide states of nature into 3 possible cases and sign D(},¢;8)
in each state.
=0 ifd>40;
D(03,¢0) is >0 if —e<0< 0.
=0 iffy—e>0
The first case follows since the value of 8* does not affect the level of effort
chosen for @ > 6*. The second case follows directly from the definition of
67, and in the third case D(8F, ¢;6) = 0 since shirking will be the optimal
strategy for whenever § < 0y — ¢,
Since this holds for all values of 6* > 6}, ., it follows that the Nash

equilibrium with 0} = 65 ;,, dominates all other Nash equilibria for the

muckers. Miners cannot be made worse off by reducing 6 since these
reductions broaden the range of @ over which the miner can supply effort
with positive utility. It therefore follows that the Nash equilibrium with
0y = Gz’min Pareto dominates all other Nash equilibria.

To complete the proof we use the following Lemma.

Lemma. Conditional on 8, the miner’s equilibrium utility
level is {97°2'"} than the utility level of the muckers whenever

less
k’b{g}llka‘

Proof: First note that in equilibrium miner effort will
be twice mucker effort. Since costs are quadratic, it follows
that

k k(A2 k
Co) = 20w = (5 = el
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Therefore

> > <
kbz4ka = Cb(’\b)zca(’\a) == U;,;Ua QED.

Consider now case (i) of the Nash equilibrium. If k, < ky < 2k,, then
22 < 288 Solying for Uy(0) = 0 gives 6* = \/6kaz/a. Up(0*) > Ua(0%)
follows from the Lemma.

Next consider case (i1). If 2k, < kj < 4k,, then %%g < 30% It is clear
from the Lemma, that the binding minimum level of utility will be the

miner’s. Solving for §* from the miner’s indirect utility function gives

o* — 3kix
TV 2a(ky — ko)

Finally consider case (iii). If ky > 4k,, then %%—f < f{i— Solving
for Up(0*) = 0 gives 0* = y/2kyz /. From the Lemma, Uq(6*) > Uy(6*)

QED.

(ii) If team members cooperate with each other, they choose Agc and

Ap . to maximize
Wy + 2wy — Ca()\a,c) — 2Cb()\b,c)-

As before, the Leontief production function function requires Ag c = 2Ap ..
Subsitituting this expression and the form of payment into the objective
function gives

k ky
a()‘d»cg - aj) - _g)‘?x c ——AZ cr
2 7 4
Maximizing this with respect to A, . gives an interior solution A, ., =

%zofkb. It is straightforward to solve for the value of # for which net

team compensation is zero, which results in 6% in the text. QED
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Proof of Corollary C2.1

Normalizing the price of output to one, the expected profit per team

from the bonus scheme is E[r] = E[revenue] — E[cost]
= [ 020 ~ 3o s0)d0 - 5. 25 =
o0}
[ 020 = 202 - 2)£0)d0 - B~ 2.
Using (3), the individual rationality constraints can be written
TA—— [F(G*) + Hi(ar, m)} .

Solving for 3; and ignoring that part of §; that depends on @; gives the
expression for expected profits. QED

Proof of Corollary C2.2

Substituting the Nash equilibrium effort functions from Theorem 3
into the equation for expected output and using the properties of the log

normal distribution gives the following.

awzéwwwv@w=

a

S e2(nto?) [1 - @(l’i@g:ﬁ —~ 20)] if ko < ky < 2kq;
32,3762(”“2) [1 - @(1”—";—-4& - 20)] if 2ky < ks,

Dividing this expression by full information expected output, derived

in Corollary C1, gives {1t5t3 as defined in the text.
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Proof of Corollary C2.3

We present the proof for the case k, < ky < 2kq; extension to the
other cases are straightforward. We estimate the percent difference in
expected output between full information and the bonus system by

[1 ~ q><—(—2——'" )k 20)]

1
(katks/2) 3k

1
(ka +kb/2)

If instead the production function was as in (3), let y* denote the expected
output under a linear bonus

yb - E[d]_?:%;eZﬂ"i'-Qaz [1 _ (D(Inf*) . 20,)] + E[I/]

Under full information, the firm does not use a piece rate to cancel out
fixed differences d;. The marginal benefit of effort to the firm is therefore
d;0;, and the sum of the marginal costs to workers is kqAg + kp/2X4. Let
y/ denote expected output

f_ Bl

T (kat &]z) #4 Blv)
2

The percentage difference in expected outputs is

B prae |y — o m@)=s _
Sl EMB,%[l q>( . z)]

Gﬂ% + Bly] e=2(sto?)

Agebraic manipulation shows that we overestimate the percentage de-

crease 1f

s [1 - o ()= 5 )] et
E[v] > (E1d*)
1— (ka + %) 52 [1~<I><’—”1%L“ﬂ —20)]

— E[d).
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Under Assumption A2, E[d] = 1, so that

E[d"] - E[d) = E[d*) ~ (Ed))* = Var(d). QED

Proof of Lemma L3

Direct substitution of the Nash equilibrium effort functions into the
bonus equation (2) gives
92 ar *
w(9)={7—3- it 0> 0
0 otherwise
L3.(i) follows from direct substitution of the expression for 6* into the

bonus equation. L3.(ii) follows from the fact that

Pr(w =0) = Pr(w < w(6*)) = Pr (9 <2 /Y(w(0*) + %?‘))

and the log-normality of 6. To derive the density function in L3.(iii) note
that since In() ~ N(p,02), In(0%) ~ N(2u,40?%) and
1 1
Jp2(0%) = =

~1
02 \/—8—7{'—0—2‘(3“:1){%—2—(1”(62) - 2”)2}

Using the change of variables from 02 to w gives

P N oz 10
o) = grmenn g it + 50 -l

The expression for the cumulative distribution function follows the same

steps as in part two. QED

Proof Theorem T3

(1) The contribution to the likelihood of a limit observation is

(D(ln(\/«ﬁ%”um -u>_

o
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Similarly, the contribution to the likelihood of a non limit observation is

! 1 az 2
memp{—gﬁ [In((w; + ) - 2y }

As a function of structural parameters, the lower bound on the wage
distribution is w(6*) = §Z. Using results in Donald and Paarsch (1993)
on boundary estimators, consistency follows from the fact that w(6*) is

monotonic and invertible in %7, and that the inverted equation

ar
‘? = NWmin

is a smooth function of n and wyin, where wp;, equals the minimum
observed positive bonus in the sample.

The parameters ¢ and p are not separately identified, because the
contributions of both limit and non limit observations depend only on the

ratio /e?#. For limit observations:

(D(ln({w/e?"}%%(l/m 1>)>,

(o4

and similarly for non limit observations:

1 1 ar 42
T e e I

Replacing w(6*) by its estimate wy,;, we can consider the concen-

trated likelithood function

=Y in [q,(’"(%b/e?“v;:m(l + n)))]

w ;=0

2
+ Z —In(6) — In(w; + QWmin) — §§3 [ln(ib/e?"(wi + nwmm))] )
w; >0

The values %/e**,  and o enter [ independently and can be consistently

estimated by maximizing [.
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(i) Define ¢, = ﬂ%ﬁﬁl Positive wages are then of the form

The minimum observed wage will then be

" or

Thus when workers cooperate with each other the unrestricted distribu-

tion of wages in identical to that for the Nash solution when 7 = 1. QED

The Chi-squared test Statistic

The Chi-squared test is based on the comparison between the pre-
dicted and actual proportion of workers receiving different values of
bonuses. To conduct the test, the bonus distribution was partitioned
on the basis of bonus received and the number of shifts worked. For each

period the partitions are

Wi = {wjw=0} Wy ={wlo<w<$50} Ws={w|$50< w < $1.50}
Wy = {w|$1.50 < w < $2.50} W5 = {w|$2.50 < w}

and

S1={s]25 <s <21} Sy ={s]27 < s},

creating 10 cells each period. The test statistic is calculated for each

period as

f"S.,WJ'

Q- 3y s = Ps)
w; i

where
ns, w; equals the observed number of workers with w € W; and

shifts € S;;
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s, w, equals the predicted number of workers with w € W; and

shifts € S;.

is, w, =nPr(w € Wj,s € S)=nY_ Pr(we Wj,s)

SES;
=n Z Pr(w € W;|s)Pr(s) = Z Pr(w € Wj|s)n,,
$ES; $€S;

where n, equals the number of workers working s shifts. In each
period there are 10 cells but only 8 are estimated freely since the
conditional probabilities must sum to one. Furthermore, there are
three parameters estimated in each period resulting in 5 degrees of

freedom for the test.

Approximation to the Optimal Incomplete
Information Contract

The continuous distribution of production shocks is discretized into

80 points of the form:

F=1((j — 1)/80) + F~1(j/80)
2

0]':

for j =1,2,...80. These are midpoints of intervals defined by percentiles

of the true distribution. The probability of 6; is set to a constant 1/80.
Next, we posit a flexible-form contract defined by 240 values

{(yz, af, a?)}?ﬁl and two base wages 3, and §, such that the wage paid

to workers in occupation ¢ is a step function:
Wi(y) = Bi + ajy when yi < y < yit1

where ygq1 = 0o. The values of y; are points at which wage payments
jurmap to new values, and af are the shares of output paid to workers in

occupation 7 at step [. Given that the base wages can be chosen to meet
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the individual rationality constraints, three of the contract’s parameters
are normalized: y; = af = o} = 0. This contract uses the fact that
with 80 values of @ there are at most 80 different values of output in
equilibrium. As the number of discrete values is increased, the distribution
of § converges to the actual distribution and the step-function converges
to a completely flexible wage contract.

In equilibrium, teams only compute the utility of producing values of
output conditional on the draw 6;. The team effort required to produce

yr given 0; is Ajy = y1/0;. The utility to miners in doing this is
k
%mJ=a%P"f*ﬁ

Since muckers each process half the output their utility is

2
ks (A1
Ww=#m~7(%>-

The efficient Nash equilibrium within the team is defined as the greatest
value of y; such that both occupations receive higher utility from produc-

ing y; than any lower output:
l*(]) =max{l: fori=a,b Uiji > Uijm, m= 1,2,...,1}.

This definition of equilibrium uses the symmetry of the muckers and the
perfect complementary of effort across occupations, since each occupa-
tion’s effort determines the maximum amount of output. In equilibrium,

the probability of y; being produced equals

80 1
mzzkgwwm
]2

where Ij43 is the indicator function for event A.
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The firm’s objective function can now be written:

80 80

1 1
{( I‘fla); 80 Zpl(l — g — 20 — ;ln Z —SEEXP{—TU“J’“(J')}
yuo ""1)}:—_-2 =1 Jj=1
80 1
+21n z m eXp{"‘T’UbJ"I*(]‘)}
J=1

This function was maximized using the NMSIMP algorithm described in
Press et al. (1987). Experiments were done raising the number of points
from 80 to several thousands. These experiments confirmed that expected
profits under the full information contract converged in the number of
points to the theoretical value given in Corollary C1. For 80 points, which
was near the limit of computational possibilities for maximizing the firm’s

profit function, the difference in full information profits was less than 5%.

52



Proof of Theorem T4

(i) Bonus System:
The bonus system uses z; to cancel out fixed differences vj, le. z; =
z + vj. Expected output is Ely] = E[6A,(9)] + E[v] and expected profits

per team are
E[r] = E[0Aq(0)] + Elv] — E{wa(0) + 2wy(0)] = Ba ~ 205,
Under assumptions A1-A3

l 0* i 3 1
3 n(F(0*) + Hi(e -'L'))+E:£V]+Si fori €a,b

; =

and expected profits reduce to
Elr] =E[0)q(0)] — Elwa(0) + 2wy (6)]-
In(F(0*) + Ha(e, z)) _ 21n(F(9*) + Hu(a, 2))

r r

(ii) Full Information
Under full information #,» and A are observable. The firm chooses
effort, X;(0,v) and wages, w;(6,v) to maximize expected profits subject

to the workers expected utility constraint. Expected profits per team are

// A0, v) + v — wa(0, v) — 2wp(8, v) f(0)g(v)dBdy.
9 Jv

Expected utility for occupation 7 is

/9 / u(wi(0,v) — ci(\0,v)) f(8)g(v)dfdv.

As in Theorem T1 the optimal contract implies that A, = 2X;, and is
characterized by the optimal risk sharing and efficiency conditions. Be-
cause the marginal benefit of worker effort is independent of fixed effects,

v does not affect the efficiency of effort condition. That is

Aa
A and & = 2.

_ ¢
- ka-{—k'b/?

53



Optimal risk sharing implies full insurance for the worker, that is
U(wi(O, v)— cz(/\,(()))) =a; or wi(f,v)=c(N(0)+ Uﬁl(ﬂi).

Assumptions A1-A3 imply

2k .02 N E[v] s
Wq = a
(Qka + k‘b)2 3
wr — ky0? EW
O ket dZ s T

and expected profits are independent of fixed effects v

92
E[’}T]Z/emf(a)dg QED

Proof of Theorem T5

Expected profits of the firm are

/ /9 [OA(0) + V](1 — a) F(0)g(v)d0dy — By — 205,

where 3, and f; solve the participation constraints of the miners and

muckers respectively. To solve for 3,

/ / ——e:vp{——r[,@a + %(0)\4 +v)— %‘1)\2] }f(@)g(l/)dﬂdy = flg.
vJo

Using the independence of § and v gives

Ba =%{1n [/ e""%"g(y)du]+

In [/ e‘r(%“a“%’\z)f(ﬂ)dﬁ} —ln(——ﬁa)}

[

Given the normality of ¥ we use the result
E[e™*] = e—kuu+%k%3
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Furthermore, using
/e*r(%“a"%‘*f)f(a)da = Ha(a,0)
0

and — In(—;) = r(E[V]/3 + s4)

gives
2
w + %(1 — a)E[v] + ff'_.gz + g,

ﬂaz 29

The same procedure for 3, gives

_ In[Hy(, 0)]
- r

1 rao?
By +=(1-a)EM + 5—9—03 + Sb.

=5

Actual expected profits are

In[Hq(e,0)] _ 2n[Hy(e,0)]] ,ro? 4
r T 29 7

E[r] = /9 OA(0)(1 — ) f(0)dO —

but we estimate profits under the piece rate as

[Ha(, 0)] _ 20n[Hy(e, 0l
r r

Efr] = /9 OA0)(1 — ) f(O)d0 — ™

Clearly this over—estimates profits under the piece rate by the amount

Lra2s2 QED
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FIGURE 1:
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TABLE 1.

BONUS PAYMENTS TO MINERS AND MUCKERS: 1927-1928

SHIFTS WORKED TOTAL BONUS POSITIVE BONUSES PER SHIFT
MINER MUCKER PROP PROP=
MONTH | TOTAL TOTAL RATIO | RECD  $050 AVG  STDEV MIN MAX
1 1422 2389 1.68 048 004 016 019 0.0 1.04
2 1349 2241 1.66 0.59 0.08 0.09 010 0.02 Q.46
3 1462 2236 153 o 006 012 01 0.02 Q.51
4 991 1768 179 0.67 004 012 014 0.02 0.60
5 1120 1852  1.66 070 aig c13 0156 0.02 0.59
6 1432 2098 1.46 072 0.05 013 014 0.02 0.64
7 1212 2091 1.73 a.79 0.06 022 042 0.02 238
8 1127 1996 1.77 0.82 a.08 012 012 0.02 052
9 1169 1961 1.68 0.68 0.056 019 0.23 0.02 095
10 1414 1874 133 0.74 0.06 011 012 0.02 0.61
i 1082 1824 169 0.56 0.04 ais 020 0.02 074
12 946 1500  1.59 053 0.04 (R 1] 017 0.02 063
13 1103 1886 1.7 0.61 0.02 019 0.21 0.02 084
t4 838 1833 219 o8t 004 023 0.28 0.02 1.40
i5 872 1749 201 0.68 o.08 0.20 0.24 0.02 1.43
16 788 1503 1.98 0.68 0.09 019 0.38 002 206
17 923 1616 1.76 0.59 007 017 022 0.02 1.02
18 850 1823 214 0.61 co9 014 0186 0.02 083
19 569 1327 233 0.67 007 017 023 0.02 1.03
20 790 1492  1.89 0.61 0.0t 017 019 0.00 070
21 779 1648 212 0.52 0.06 0.23 031 0.02 1.16
22 1090 1783 164 0.65 0.07 020 027 0.02 1.03
23 1288 1882 146 0.59 0.06 022 026 0.02 1.52
24 885 1490 168 0.64 0.08 023 028 0.02 1.14
AVG 1061 1828 1.77 0.65 006 017 0.21 0.02 099

Notes: Morth 1 = January, 1927. Borues are expressed in dokars, and are
based onworkers wikh 26 or more shifts i each mornth.
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TABLE 4.
EXPECTED QUTPUT UNDER LINEAR BONUS RELATIVE TO FULL INFORMATION
FREE RETURN TO  TOTAL
TOTAL  SHRKING  RIDING EFFORT  ADJUSTED

(t1vtety) (119 e (1) FORE[V]
Case A (K_a=0.24k_b) 0.73 0.04 0.8 0.42 0.58
Case B {K_a=0.0 K_b) 0.81 0.04 0.66 0.42 0.69

Note: Output under full information optimal contract equals 1.
Values are averages over twelve two-month periods. t1, t2, and t3 defined in
Corollary 2. Adjustment in final columnn defined in Equation (9).



TABLE 5.
EXPECTED PROFITS UNDER ALTERNATIVE COMPENSATION SCHEMES

PROFITS CASEA  PROFITS CASE B

ENVIRONMENT/METHOD [ ACTUAL RELATVE] ACTUAL RELATIVE ]
(1) F.l. Optimal Contract 134.96 1.00 197.68 1.00
(2 Ll Optimal Contract 72.80 0.54 7824 0.40
(3 1L Two Bonus Rates 44,14 033 53.52 027
(4) 1l Linear Bonus 37.86 028 3811 019
(5) 1l Piece Rate 37.01 027 37.31 019

Note: F.L=Full Information, 1.|.=Incomplete Information. Values
are averages over twelve two month perlods, except row (2) is computed
using period 12 estimates. Case A and B defined in Table 3.
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