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Abstract / Résumé

Asset returns exhibit clustering of volatility throughout the

year. This paper proposes a class of models featuring periodicity in

conditional heteroskedasticity. The periodic structures in GARCH

models share many properties with periodic ARMA processes studied by

Gladyshev (1961), Tiao and Grupe (1980) and others. We describe the

relation between periodic GARCH processes and time-invariant

(seasonal) GARCH processes. Besides the periodic GARCH or

P-GARCH process, we also discuss P-IGARCH, PI-GARCH, P-ARCH-M

and P-EGARCH processes. Extensions to multivariate ARCH processes

are studied as well. Moreover, we also consider periodicity in the

common persistence of volatility for several series. A quasi-maximum

likelihood estimator following Bollerslev and Wooldridge (1992) is

defined and a LM test for periodicity derived from it. The models are

applied to several asset pricing series.

Dans cette étude, nous proposons une classe de processus

ARCH périodiques. Cette structure est semblable à celle des processus

linéaires périodiques. Les procésus P-ARCH partagent beaucoup de

similarités avec les processus périodiques linéaires mais ont aussi, à cause

des non linéarités, des caractéristiques spécifiques. Nous étudions de

façon analytique les pertes d�efficacité en terme de prévisions dues à des

erreurs de spécifications lorsque les données suivent un processus P-

ARCH et qu�un modèle ARCG (saisonnier) est estimé. Le papier inclut

également une étude de Monte Carlo qui complémente les résultats

théoriques et une appliction au taux de change DM - livre Sterling.

Plusieurs extensions, telles que P-EGARCH et P-IGARCH, sont aussi

proposées.

Keywords: volatility clustering, seasonality, periodic structures, ARCH, GARCH, P-GARCH, exchange

rates

Mots clés : persistance dans la volatilité, structures périodiques, taux de change



Shiller defined a crash as a drop in stock market prices exceeding 6 % between successive trading days.1

This bears a relation to the periodic stochastic switching-regime models, i.e., models with season-dependent

hazard rates of regime switching, discussed in Ghysels (1992, 1993a, b).

This paper proposes a class of models featuring periodicity in conditional heteroskedasticity.2

An alternative approach, not pursued here, is that of stochastic switching-regime models with a different

Markov switching scheme throughout the year which also results in periodic conditional heteroskedasticity

as shown in Ghysels (1991, 1992, 1993a, b).

2

1. Introduction

Several authors have documented seasonal effects in means and standard deviations

of monthly stock market returns and dividends. The most recent empirical studies

documenting such effects include Schwert (1990), Gallant, Rossi and Tauchen (1992)

and Bollerslev and Hodrick (1992). Gallant, Rossi and Tauchen (1992, Table 1)

report, for instance, that the variance of the Standard and Poor composite price index

in October is almost a tenfold of the variance for, say, March. Moreover, the variance

in November is almost twice that of October and hence almost twenty times that of

March. Bollerslev and Hodrick found further corroborating evidence regarding

seasonalitiy in conditional heteroskedasticity for NYSE dividend yields. Indeed, they

found significant seasonal lags in ARCH models. In a similar spirit, it is worth noting

that Shiller (1992) observed that ten out of the twenty-five stock market crashes which

occurred in the U.S. since 1928 were concentrated in one month only, the month of

October.1

The fact that asset returns exhibit volatility clustering throughout the year is quite

interesting both from a theoretical point of view as well as a practical one. Indeed, the

intra-year predictability of stock market volatility raises many questions of theoretical

interest. For instance, one can think of seasonal habit persistence in preferences and

its effect on asset pricing, as documented in Hansen and Sargent (1990) or the fairly

regular and institutionalized rhythm of releasing information to the general public, like

annual corporate reports and dividend announcements or the calendar of releases of

economy-wide economic data by government agencies. Such factors, and many

others, contribute to the volatility being structured with month-specific patterns, and

many theoretical models could shed light on the dynamic pattern that should emerge.

Besides the theoretical questions, another research agenda arises, namely, how to

judiciously choose a parametric structure to capture the dynamics of seasonal

conditional heteroskedasticity.2

It will be helpful to first recall some commonly used time-series models to forecast

seasonality in the mean. The framework generally adopted is that of seasonal ARIMA

models, possibly involving an unobserved component structure, as discussed, for

instance, by Nerlove et al. (1979), Bell and Hillmer (1984), Hylleberg (1986),
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Ghysels (1990), among others. The basic idea of a linear time-invariant

autoregressive structure involving seasonal lags can easily be adopted as a possible

parameterizaton for the conditional variance. Such would lead to a seasonal ARCH

model, as used, for instance, by Bollerslev and Hodrick (1992). An alternative

approach to analyzing the mean behavior of seasonal parameter series is to employ

ARIMA models whose parameters change seasonally. Initially proposed by

Gladyshev (1961), such models have gained considerable interest in recent years.

These models, referred to as periodic models because of the seasonal parameter

variation, are now well documented both with respect to their theoretical properties

as well as their empirical relevance. Tiao and Grupe (1980), for instance, establish

the link between the former class of models, namely, seasonal ARIMA models, and

periodic ARIMA models. For economic time series, empirical evidence supporting

periodic linear structures was documented, for example, by Osborn (1988), Osborn

and Smith (1989) for the U.K. and Ghysels and Hall (1992a) for a large class of

U.S. macroeconomic seasonally unadjusted data. The periodic parameter variation to

capture the repetitive seasonal behavior can be used to construct conditional

heteroskedasticity analogues of periodic ARIMA models. In its simplest form, one can

consider a periodic ARCH or P-ARCH model. Such model is autoregressive in

conditional heteroskedasticity with seasonally varying autoregressive coefficients.

This is a first of several models introduced in the paper. One should expect a

relationship between P-ARCH models and seasonal GARCH processes whereby (1)

P-ARCH models outperform seasonal GARCH processes in terms of volatility

predictability and by the same token, (2) a seasonal GARCH representation entails an

information loss relative to P-ARCH structures. Both observations emerge as an

analogue to the results obtained by Tiao and Grupe (1980) for periodic ARIMA and

seasonal ARIMA models. Yet, the analogue between ARCH models and linear

structures in the mean only goes through for weak GARCH models, as defined by

Drost and Nijman (1993). Indeed, a strong ARCH structure, which is quite often

implicitly imposed through ML estimation, does not yield a direct correspondence

between a representation with seasonality in the laws and one with seasonality in the

lags. For there to be such a correspondence, we first need to weaken the periodic

ARCH representation by only considering the linear projections figuring in a weak

GARCH model. This means that the information loss alluded to before is more severe

with ARCH models than with linear structures.

Section 2 is devoted to P-GARCH models - with P-ARCH as a special case - with a

discussion of their stochastic properties and the relationship with seasonal GARCH

models. More specifically, a Tiao-Grupe-type formula is introduced for (weak)

ARCH structures. In section 3, the notion of periodicity in conditional

heteroskedasticity is extended to IGARCH and EGARCH models. Moreover,

periodically integrated GARCH or PI-GARCH are also discussed as well as



For a recent survey of the empirical literature, see Bollerslev, Chou and Kroner (1992). Theoretical3

developments, for instance, are surveyed in Bera and Higgins (1992) and Bollerslev, Engle and

Nelson (1993).
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P-ARCH-M models. This section also covers multivariate periodic ARCH models

and periodicity in common persistence. Estimation and hypothesis testing is covered

in section 4. Empirical models of periodic stock market volatility appear in section 5.

2. On The Periodic GARCH Model and Weak GARCH

Since the seminal paper by Engle (1982), the autoregressive model of conditional

heteroskedasticity and its generalizations are now widely applied. Consider first the3

ARCH process for , , namely:t

(2.1a)

(2.1b)

where S is the usual Borel field filtration based on the realization of the {, },

t!1 t

process up to t ! 1. Now, instead of having a fixed parameter structure, one may draw

on the similarity of the AR(p) model and periodic AR processes to consider a

time-varying coefficient model for conditional heteroskedasticity in the following

manner:

(2.2a)

(2.2b)

Note first that s appears in the conditioning set in (2.2b). This indicates that s is based

on an observable stage of a periodic cycle with length S. The coefficients vary

periodically as d = 1 if s is the stage of the periodic cycle at time t and zero otherwise.st

The most straightforward case is where the periodic cycle is purely repetitive, like

d = 1 if s = t mod S. In some cases though, s may be governed by a variablest

deterministic cycle with upper bound S. Daily data provide an excellent example.

Nontrading days usually take place after every fifth trading day, but some weeks have

holidays which interrupt the weekly pattern. In such a case, S = 5, but not all trading

day cycles attain five consecutive trading days. It should also parenthetically be noted

that the lag length p in (2.2b) is independent of S. Throughout the paper, this will be

assumed with loss of generality, as p may be set equal to the maximal order of lags
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across all periods. A generalization of (2.1) is the GARCH model, introduced by

Bollerslev (1986), which takes the form:

(2.3)

which can be rewritten as

(2.4)

where < = , ! F . By definition, < is serially uncorrelated with mean zero. Hence,t t t t
2 2

the representation in (2.4) of the GARCH (p,q) process can be interpreted as an

autoregressive moving average process in , of orders m = max{p,q) and p2
t

respectively. Suitable regularity conditions, as discussed for instance by

Bollerslev (1986), ensure that the {, } process is covariance stationary and hence has2
t

a Wold representation as well as spectral decomposition. The analogue of a

P-GARCH process defined as

(2.5)

where < = , ! E[, |S , s] becomes quite apparent. Similar to the periodic ARMAt t t t!1
2 2 ,

processes, as discussed for example by Tiao and Grupe (1980), which are

characterized by a time-varying correlation structure, one can interpret (2.5) as a

process with a time-varying but periodic correlation structure in {, } [see2
t

Bollerslev (1988) for an elaborate discussion of the autocorrelation structure of

GARCH (p,q) processes].

Yet, the similarities between periodic ARMA and periodic GARCH processes do not

carry through straightforwardly. Indeed, the class of GARCH processes is not closed

under temporal and cross-sectional aggregation, because the nonlinearities severely

complicate both forms of aggregation [see Drost and Nijman (1993)]. It is therefore

not possible without further qualifications to apply the formula presented by Tiao and

Grupe (1980) to characterize the relationship between periodic GARCH and seasonal

fixed parameter GARCH processes. This formula essentially amounts to averaging

out the autocorrelation structure across all seasons. Osborn (1991) notes that in some

cases, one can draw a direct comparison between the operation of averaging out

correlations and that of cross-sectional aggregation. Consequently, we need to weaken

the periodic GARCH structure in (2.5) to avoid the complications of nonlinearities

before applying Tiao and Grupe�s formula. To facilitate the discussion, let us first

rewrite equation (2.5) as:



It is worth parenthetically noting at this point that in many practical applications one may restrict4

the B (L) polynomial independent of s, resulting in a P-GARCH process with periodic patterns only
s

in the AR part.

We use the term annual here in analogy with common applications of periodic models to quarterly5

or monthly data. Yet, if we model ARCH processes for daily or intraday sampling frequences, then

J may correspond to a weekly time scale with a vector representation of daily series or even to daily

sampling of a vector of hourly processes, etc.

6

(2.6)

where and s = t mod S. Following Drost and

Nijman (1993), we consider a weak P-GARCH process when F in (2.6) corresponds2
t

to the best linear projection of , on the space spanned by {1, , , , , ..., , , , , ...}2 2 2
t t!1 t!2 t!1 t!2

given period s. More specifically,

E[, ! F | s] = E[(, ! F ) , | s] = E[(, ! F ), | s] = 0 (2.7)2 2 2 2 2 2 2
t t t t t!i t t t!i

yielding the following alternative representation for (2.6):

, = T + (A (L) + B (L)), + B (L)< + < (2.8)2 2
t 0s s s t!1 s t!1 t

where s = t mod S and < = , ! P(, | , , ..., , , ..., s) with P(@) the lineart t t t!1 t!1
2 2 2

projection.4

Note that the projections in (2.7) still involve seasonal conditioning and therefore

produce a periodic autocorrelation structure. The specification of weak P-GARCH

obviously entails an information loss, since the conventional P-GARCH process

defines F as the conditional expectation of , based on the full information set implied2 2
t t

by the Borel F-field filtration of {, } augmented with seasonal conditioning. Thet

Tiao-Grupe formula amounts to the removal of the seasonal conditioning in (2.7) and

results in a process which is a member of the class of weak GARCH processes

introduced by Drost and Nijman (1993). Once we restrict ourselves to the class of

weak GARCH processes, we can carry out the mechanics of the Tiao-Grupe formula.

Such operation begins with constructing a skip-sampled vector representation of the

squared residuals collecting all observations over a single periodic cycle. Since there

are S such squared residuals, let us define , / (, , ..., , , , ) where J is an2 2 2 2
t SJ S(J!1)+2 S(J!1)+1

�annual� time index. Likewise, we can define < as a S × 1 vector over an entire5
J

periodic cycle of innovations appearing in the weak P-GARCH (p,q) model (2.8).

Since the vectors obtained this way cover an entire periodic cycle, they encompare all

possible parameter variations and therefore yield a time invariant vector system.

It may be useful to consider a simple case where S = 2 with alternating periods which



An important distinction has to be made here between the usual multivariate ARCH processes,6

as studied in various forms by Baba, Engle, Kraft and Kroner (1990), Bollerslev, Engle and

Wooldridge (1988), Diebold and Nerlove (1989), among others. Indeed, unlike the usual multivariate

ARCH process, the vector of ARCH processes in (2.8) does not involve any conditional cross-covariances

as components of the vector. This is a consequence of the fact that each component of the vector represents

the same process sampled at a different time.
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each have a GARCH (1,1) structure. This illustrative example will also be used later

for numerical computations. Then one can construct, using equation (2.7), the

following bivariate representation:

(2.9)

which can also be written as:

(2.10)

Hence, we obtain a bivariate time invariant representation of the , process.2
J

Under suitable regularity conditions regarding the largest eigenvalue of det(I ! A8),

where A is the first-order lag matrix of coefficients in (2.10), there is a Wold

decomposition and spectral representation of the , process. This analysis is not2
J

constrained, of course, to P-GARCH(1,1) processes. For any weak P-GARCH(p,q)

process, as specified in (2.8), we can derive a fundamental MA representation:

(2.11)

The elements of Ā are determined by the polynomials of the period GARCH modelj

in (2.8), similar to (2.10) and its resulting MA representation. From (2.11), we can

obtain a multivariate covariance generating function and spectral representation:

F(e ) = Ā(e ) Q Ā(e )N ! B # T $ B (2.12)-iT -iT iT

where Q is the covariance matrix of the {< }.
J

6
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Following Tiao and Grupe (1980), one can establish that

(2.13)

where R(e ) = p$S (1 e ... e ). Equation (2.13) establishes a computable!iT !iT !(S!1)iT

formula linking the parameters " and $ for s = 1, ..., S i = 1, ..., p, j = 1, ..., q and ais js

weak GARCH (P,Q) process with parameters " , $ , for i = 1, ..., P and j = 1, ..., Q.i j

It also implicitly establishes a relationship between p, q and P, Q, i.e., the order of the

GARCH process. In general, this relationship is not trivial, as discussed in detail

by Osborn (1991), yet one knows that P $ Swhenever p � 0. Unfortunately, the Tiao-

Grupe formula does not yield an analytical characterization of the correspondence

between the weak GARCH(P,Q) parameters and the S parameter vectors of the weak

P-GARCH(p,q). Therefore, we have to rely on numerical computations.

The numerical tool provided by Tiao-Grupe�s formula can be put to use to evaluate

the loss of prediction accuracy foregone from ignoring seasonal conditioning in the

information sets used to formulate F . We will focus exclusively on the weak2
t

P-GARCH model and its relationship with weak GARCH. Hence, the information

loss associated with the relaxation from strong P-GARCH to weak P-GARCH will not

be assessed here. Obviously, evaluating the prediction accuracy of ARCH models is

not very straightforward, as the prediction error distribution is generally complex,

involves higher moments and is leptokurtic. Despite its drawbacks, we will use the

minimum MSE prediction criterion to assess the information loss attributable to

foregoing periodicity in the stochastic structure. Although, it is worth stressing the

limitations of the MSE criterion, as it puts equal weight to forecast errors in a

heteroskedastic environment. Following Kolmogorov (1941) and Janacek (1975), one

can compute the minimum MSE from a linear predictor for a process with known

spectral density f(T). Namely,

(2.14)

This result can be directly applied to equation (2.13), yielding the MSE of the weak

GARCH representation of the periodic process:
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(2.15)

where the WG index refers to the weak GARCH representation. The MSE for the

weak P-GARCH process on the other hand is the sum of the MSE�s for each season

separately. Therefore,

(2.16)

where F (@) are the diagonal elements of the spectral density matrix defined in (2.12).ii

[Numerical computations to be included.]

3. Conditional Heteroskedasticity Models and Periodicity

The idea to use periodic structures in formulating models of conditional

heteroskedasticity is not only limited to the GARCH process. It can be exploited in

other models, both univariate and multivariate. Here, we will introduce several

extensions of the basic structure developed in section 2, hoping that they may lead us

to a better understanding and/or prediction of the observed volatility clustering. It

would be easy to simply take all classes of processes suggested so far and define a

periodic version for each of them. Hence, EGARCH would lead to P-EGARCH,

IGARCH to P-IGARCH, TARCH to P-TARCH, STARCH to P-STARCH and so on.

Obviously, such an unguided generalization is not very useful. Instead, let us focus on

a few cases which might be the most interesting to consider.

Let us first return to equation (2.8) which represented the general (weak) P-GARCH

process. In many applications where the conventional GARCH model is fitted to high

frequency data, one finds the parameter estimates of the AR and MA polynomials sum

to approximately one. This has led to the so-called Integrated GARCH(p,q) or

IGARCH(p,q) model proposed by Engle and Bollerslev (1986). For periodic

heteroskedasticity, it may be useful to extend this to the P-IGARCH process, based on

equation (2.8) with the restriction that:

" (1) + $ (1) = 1 �s = 1, ..., S. (3.1)s s

This restriction is the ARCH analogue of the I(1) restriction in linear periodic ARMA

processes considered by Ghysels and Hall (1993a) who developed tests for the null

hypothesis of an integrated process. A special case of (3.1) is where $ (1) = $(1) �s.s
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This restricts the periodic pattern to the AR part, which as noted in the previous

section is of practical use.

It is well known that GARCH processes capture the thick tailed distribution of stock

market returns and exchange rate data and are able to mimic the observed volatility

clustering. Yet, they are not well suited for capturing leverage effects, i.e., asymmetric

responses in the conditional variance function. The exponential GARCH model

proposed by Nelson (1991) has {ln(F )} follow an ARMA process. In addition, the2
t

innovation process is constructed such that positive and negative shocks have a

distinct effect. The unconstrained P-EGARCH model would then be written as

(3.2)

Obviously, the process (3.2) as such is easily overparameterized. Suppose we restrict

ourselves to the periodicity due to nontrading day effects, i.e., S = 2, but with a

variable though perfectly predictable periodic pattern. Then for a P-EGARCH (1,1)

model, one has eight parameters to fit. For higher order and for a more complicated

periodic cycle, this rapidly increases at a rate S [(p+q) + 3]. The case where

A (L) = A(L) and B (L) = B(L) �s = 1, ..., S corresponds to processes with periodics s

asymmetries. Hence, a negative shock after, say a nontrading day, has a different

impact than on any other day. Conversely, with 2 = 2, ( = ( �s = 1, ..., S, ands s

periodic polynomials, then dynamic responses differ, similar to the P-GARCH model

studied in the previous section.

Nelson (1990) shows that the EGARCH model approximates in discrete time a

diffusion of the type:

d[ln(y )] = 2F dt + F dW (3.3a)t t t 1t
2

d[ln(F )] = !"[ln(F ) ! $] dt + dW , (3.3b)2 2
t t 2t

where W and W are independent standard Wiener processes. This result prompts1t 2t

the question whether there is a diffusion limit to a P-EGARCH process. Ghysels and

Jasiak (1993) introduced stochastic volatility models with time deformation,

i.e., the Ornstein-Uhlenbeck process (3.3b) evolves in an operational time r which

differs from calendar time t. There is a functional relationship r = g(t) between the

operational and calendar time scales. The changes in operational time, denoted )g(t),

between two consecutive discrete sample points t ! 1 and t are assumed to be

measurable with respect to the usual time filtration F-algebra in calendar time.

Ghysels and Jasiak (1993) adapt a logistic function suggested by Stock (1998):



See Ghysels and Jasiak (1993) for details.7

See Anderson (1993) for a discussion of ARCH-type versus SVM characterizations.8
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(3.4)

where z is a vector containing variables known at t ! 1. Candidate processes whicht!1

set the pace of the operational clock suggested by Ghysels and Jasiak include past

volume and price changes and their absolute value. Such parameters relate to the flow

of information arriving on the floor of the stock market. The stochastic volatility

model (3.3) with the second equation replaced by

d[ln F ] = !"[ln(F ) ! $] dr + dW (3.5)2 2
r r 2r

where )g(t) is determined by (3.4) has a discrete time representation

log[(log y ! log y )] = log F + . (3.6a)t t!1 t t
2 2

log F = e log F + , (3.6b)2 A)g(t) 2
t t!1 t

with E. = !1.27, E(. + 1.27) = B2/2, E, = 0 and E. = f()g(t)). If the timet t t t
2 2 7

deformation is taken to be purely deterministic, i.e.,

then the stochastic volatility model (denoted SVM) appearing in (3.6) becomes a

periodic ! SVM:

log F = " log F + , (3.7)2 2
t s t!1 st

the latter replacing (3.6b). Note that both the AR coefficient and the innovation

variance take on different values each period. The P-SVM and P-EGARCH models

both represent processes with a continuous time SVM with periodic time

deformation.8

We conclude this section with a brief discussion of multivariate ARCH models.

Obviously, conditional ARCH models lead to multivariate extensions which are easily

overparameterized. Periodic multivariate extensions surely will not make it easier, on

the contrary. There is, however, one direction of extension that may be feasible and

useful at the same time. Bollerslev and Engle (1993) consider a multivariate ARCH

process:
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, =S Z (3.8)t t t
1/2

where , is a m × 1 vector process, Z is i.i.d. with EZ = 0 and EZ = I, whileSt t t t t

is a matrix conditional covariance function measurable with respect to the usual t ! 1

filtration. They define the process (3.8) to be copersistent in variance if at least one

element of E S is nonconvergent a.s. for increasing k, yet there exists a nontrivial0 k

linear combination , with finite limit E ( S () < 4. This notion can easilyt 0 k

be extended to periodic copersistence. Such a process would satisfy the condition that:

E S ( < 4 �s = 1, ..., S (3.9)0 s+Sk s

and independent of the initial time 0. The definition of periodic copersistence amounts

to saying, of course, that the stacked process , , containing all periods, in analogy with
J

the discussion in section 2, has a nontrivial linear combination ( / ( , ..., )N

which is copersistent, as defined by Bollerslev and Engle.

4. Estimation and Hypothesis Testing

A variety of estimation procedures have been suggested for ARCH models.

Estimation, hypothesis testing and model selection of ARCH models for univariate as

well as multivariate processes are very well covered in the survey articles by Bera and

Higgins (1992), and Bollerslev, Engle and Nelson (1993). It is an area of active

ongoing research with still many unresolved issues as both articles clearly emphasize.

The scope of this section is not to contribute the basic theory of estimation and

hypothesis testing as such. Instead, our aim is to discuss issues pertaining to the

estimation and testing of periodic ARCH processes. In particular, we propose a LM

test for periodicity in ARCH processes.



Many aspects regarding MLE of the general class of ARCH processes still remain unresolved.9

See, e.g., Bollerslev, Engle and Nelson (1993) for further discussion.

13

Suppose we would like to test the null of an aperiodic or conventional ARCH structure

against a periodic alternative. A test strategy which is particularly suitable for this

purpose is that of the Lagrangian Multiplier test, which was adopted for linear

structures by Ghysels and Hall (1992). It is convenient since the periodic alternative

involves many more parameters relative to the nonperiodic null, which is easy to

estimate, as it corresponds to the usual GARCH, EGARCH, etc. specifications. By

a standard prediction error decomposition argument, let the log likelihood function for

the periodic model equal the sum of the conditional log likelihoods:

L (y , ..., y ; ( , ..., )N) = (y ; R ) (4.1)T T 1 t s

whereRN / ( , ..., ) is the parameter vector of the periodic specification and Rst

is the log likelihood pertaining to periods s involving R . It should parenthetically bes

noted that the vector may consist of / ( , ) where 0 is a vector of nuisances

parameters used, for instance, to determine the distribution of the conditional

heteroskedasticity process innovations. Of course, 0 may be absent when, fors

example, the distribution is N(0,1) or 0 may be independent of s. If the conditional

density in (4.1) is correctly specified, then under appropriate regularity conditions a

central limit theorem argument yields that:

T ( ) 6 N(0, A ) (4.2)1/2 !1
0

where 6 denotes convergence in distribution and A is the information matrix. Let us0
9

denote S (y ,R ) as the score function of the t observation which belongs to season s.st t s
th

Then the null hypothesis of interest is:

H : R = R �s, s = 1, ..., S (4.3)0 s 0

against the alternative that for at least one s the equality in (4.3) does not hold. The

scores, when evaluated under the null (4.3) and R being the true parameter vector,0

will satisfy a martingale central limit theorem, and therefore yielding a LM test with

standard asymptotic distribution:
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(4.4)

where:

(4.5)

is the MLE under the null (4.3), denotes a consistent estimator of the square

submatrix [A ] with l = dim(R). Finally, the degrees of freedom equal d = (S ! 1)l.0 1:l

The score test in (4.4) is easy to implement as it only involves estimating the

nonperiodic specification and then checking whether the score function evaluated with

data from each period s separately is still close to zero. The score test in (4.4) can also

be robustified to fit the context of QMLE, as shown by Wooldridge (1990), Bollerslev

and Wooldridge (1992). To accommodate the possibility of a misspecified likelihood

function, one must modify the matrix V in (4.4), since the outerproduct of gradients

and Hessian do not cancel out in the QMLE context. For further details, see, for

instance, Bollerslev and Woodridge (1992). Obviously, one can also formulate a

Wald and/or LR-type test for the null hypothesis (4.3). Both would involve estimating

the unconstrained, i.e., periodic, ARCH process. Here, also, one can allow for the

possibility of a QMLE framework. Bollerslev, Engle and Nelson (1993) provide

details of such tests.
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