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AMERICAN CAPPED CALL OPTIONS
ON DIVIDEND PAYING ASSETS’

Mark Broadie’, Jéréme Detemple’

Abstract / Résumé

This paper addresses the problem of valuing American call options with caps
on dividend paying assets. Since early exercise is allowed, the valuation problem
requires the determination of optimal exercise policies. Options with two types of
caps are analyzed: constant caps and caps with a constant growth rate. For constant
caps the optimal exercise policy is to exercise at the first time at which the
underlying asset’s price equals or exceeds the minimum of the cap and the optimal
exercise boundary for the corresponding uncapped option. For caps that grow at a
constant rate the optimal exercise strategy can be specified by three endogeneous
paramefters.

La présente étude a pour objet la valorisation des options d'achat américaines
avec plafonds sur les actifs générateurs de dividendes. Comme le détenteur de
I'option peut l'exercer avant l'expiration, la solution au probléme de valorisation exige
la détermination des politiques d'exercice optimales. Deux types de plafonds sont
envisagés : les plafonds constants et les plafonds dotés d'un taux de croissance
constant. Lorsque le plafond est constant, la politique optimale consiste & exercer
l'option des que le prix de l'actif sous-jacent est égal ou supérieur au minimum du
plafond et de la frontiére d'exercice optimale de I'option non plafonnée correspon-
dante. Lorsque le plafond croit a un taux constant, la stratégie d'exercice optimale
peut étre spécifiée a partir de trois paramétres endogénes.

" This paper has been presented at the 1993 Derivative Securities Symposium, 1993 Western Finance Association
Meetings, 1994 American Finance Association Meetings, Baruch College, and Université de Genéve. We thank the
participants of the seminars, Phelim Boyle, Bjorn Flesaker, and two anonymous referecs for their comments. We are
especially grateful to the editor, Chi-fu Huang, for detailed suggestions which have improved this paper. Please address
correspondance to Mark Broadie, 415 Uris Hall, Graduate School of Business, Columbia University, New York, NY
10027.

' Columbia University.
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The valuation of American capped call options is a problem of theoretical as well as practical
importance. Indeed, in the past few years several securities have been issued by financial institu-
tions which include cap features combined with standard American call options. One example is
the Mexican Index-Linked Euro Security, or “MILES”. The MILES is an American call option on the
dollar value of the Mexican stock index, the Bolsa Mexicana de Valores. The option is nonstandard
because it has both a cap and an exercise period that is less than the full life of the option. The
underlying asset is an index which involves dividend payments. The decision to exercise the option
is under the control of the holder of the security.

Other examples of options with caps are the capped call (and put) options on the S&P 100
and S&P 500 indices that were introduced by the Chicago Board of Options Fxchange (CBOE) in
November, 1991. These capped index options combine a Furopean exercise feature (the holder does
not have the right to exercise prior to maturity) and an automatic exercise feature. The automatic
exercise is triggered if the index value exceeds the cap at the close of the day. Flesaker (1992)
discusses the design and valuation of capped index options. These options differ from the MILES
because the holder of the option does not have any discretion in the exercise policy, i.e., they are
not American options. Other examples of European capped call options include the range forward
contract, collar loans, indexed notes, and index currency option notes [see Boyle and Turnbull
(1989) for a description of these contracts].

The motivation for introducing capped options is clear. Written uncapped call options are
inherently risky because of their unlimited liability. By way of contrast capped call options have
limited liability and are therefore attractive instruments to market for an issuer or to hold short
for an investor. Wide acceptance of these new securities in the marketplace, however, depends on
a thorough understanding of their features and properties. Understanding valuation principles is
important not only for pricing these new securities, but also for hedging the risks associated with
taking positions in the securities. Because early exercise (i.e., before the option’s maturity) may
be beneficial with American capped call options, it is also essential to understand the structure of
optimal exercise policies.

While these types of securities can be valued numerically by standard techniques, numerical
results alone offer little explanation why certain exercise strategies are optimal. When standard
binomial valuation procedures are applied to capped call options, the number of iterations required
to obtain a desired level of accuracy is greatly increased compared to uncapped options. In this
paper, optimal exercise policies and valuation formulas are derived.

Options with caps were studied by Boyle and Turnbull (1989). Their paper provides valuation



formulas for European capped options as well as insights about early exercise for American capped
options. The possibility of optimal early exercise with American capped call options was recognized
by Boyle and Turnbull. They point out that when the underlying asset price substantially exceeds
the cap, immediate exercise dominates a waiting policy.

Barrier options are related contracts which were studied in Cox and Rubinstein (1985) and
more recently in Rubinstein and Reiner (1991). Barrier options combine a European-style exercise
feature (the holder does not have the right to exercise prior to maturity) and an automatic exercise
feature. The automatic exercise is triggered if the price of the underlying asset reaches the barrier
(cap). The automatic exercise feature is slightly different than for CBOE’s capped index options,
where exercise can only occur at the close of a trading day. The combination of exercise features
of barrier options places them between Furopean options and American options.

The presence of a cap on a call option complicates the valuation procedure. The floor on an
option (i.e., the strike price) gives an incentive to exercise as late as possible. This is the source
of the classical result that early exercise is suboptimal for American uncapped call options on
non-dividend paying stocks. The American feature is worthless in this case, and American and
Furopean options have the same value. When the underlying asset pays dividends an incentive to
exercise early is introduced. The optimal exercise boundary arises from the conflict between these
two incentives. For standard American options without caps, the optimal exercise boundary can be
written as the solution to an integral equation [see, e.g., Kim (1990) and Carr, Jarrow, and Myneni
(1992)].

The introduction of a cap adds a further incentive to exercise early. On the surface, it seems
that the cap could interact with the previous incentives to completely alter the form of the optimal
exercise region. However, we show that the optimal exercise region is changed in a straightforward
way. We show that the optimal exercise policy is to exercise at the first time at which the underlying
asset’s price equals or exceeds the minimum of the cap and of the optimal exercise boundary for the
corresponding uncapped call option. For low and non-dividend paying assets the optimal exercise
policy simplifies to exercising at the cap. When the underlying asset price follows a geometric
Brownian motion process with constant proportional dividends an explicit valuation formula is
given,

The valuation formula is then generalized to options with delayed exercise periods, i.e., Amer-
ican options that cannot be exercised before a prespecified future date. The MILES contract has a
delayed exercise period, which can be viewed as a time varying or growing cap. In this case, the

growing cap is a step function with a single jump. Growing caps may be preferred by investors since
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the upside potential increases over time. These caps may also be attractive to issuers who can ac-
cept a larger potential liability as time passes. A step function is an extreme form of a growing cap.
We proceed to analyze caps that grow at a constant rate. For these caps we derive optimal exercise
strategies and show that they can be completely characterized in terms of only three endogenous
parameters.

The paper is organized as follows. American capped call options with constant caps are an-
alyzed in the next section. Results are given for finite and infinite maturity options. In Section 2
the analysis is extended to capped call options that have delayed exercise periods and to the MILES
contract, i.e., a capped call option on the dollar value of an index with a delayed exercise period.
The case of caps that grow at a constant rate is considered in detail in Section 3. Section 4 provides
numerical results comparing European capped calls to their American counterparts. A comparison
of hedge ratios is also given. Conclusions and remarks on possible extensions of the model are
given in Section 5. Proofs of results and some of the more lengthy formulas are collected in the

Appendix.

1. Valuation of American Capped Call Options
We consider a class of derivative securities written on a dividend paying underlying asset
which may be interpreted as a stock or an index. The price of the underlying asset, S;, satisfies the

stochastic differential equation
dsy = S (u — d)dt + odW], (1)

where W = {W;, Fr : t € [0,T]} is a Brownian motion process and the coefficients u, 6, and
o are constants. Equation (1) implies that the stock price follows a geometric Brownian motion
(lognormal) process with a constant dividend rate of §. We also assume that funds can be invested
in a riskless money market account bearing a constant positive rate of interest denoted 7.

Let C! represent the value of an American capped call option at time ¢t. The option has a strike
price of K, a cap of L, and a maturity of T. Throughout the paper, we assume that L > K > 0.
Exercise may take place, at the discretion of the owner of the security, at any date during the life
of the option [0, T]. The payoff of the capped option when exercised at time t is ((S; AL) —K)™,
where the operator x A v denotes min(x, v) and x* denotes max(x,0).!

Let B; denote the optimal exercise boundary for an uncapped call option with the same maturity
and strike price as the capped call option. That is, immediate exercise is optimal at time t € [0, T]
for all prices Sy > B;. Integral equations which implicitly define B; are given in Kim (1990) and Carr,

Jarrow, and Myneni (1992).
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Theorem 1: Consider an American call option with exercise price K, cap equal to L, and maturity

T. Let B denote the optimal exercise boundary of the capped option. Then, fort € [0, T],
Bt = [ A By.
That is, immediate exercise is optimal for the capped option if Sy > B; and suboptimal if S; < B;.

Because of the conflicting exercise incentives provided by a floor, cap, and dividends, the
optimal exercise boundary might seem to be quite complicated. However, Theorem 1 shows that
the optimal exercise boundary for a capped option has a simple relationship to the optimal exercise
boundary for the corresponding uncapped option. It says that the optimal exercise time for the
capped option is the minimum of the first time at which the price of the underlying asset attains or
exceeds the value of the cap and the first time at which exercise of the uncapped option is optimal.
The shaded area in Figure 1 illustrates an optimal exercise region, i.e., the set of times and asset

prices (t, S;) where it is optimal to exercise the capped call option.
Figure 1 ABOUT HERE

In the case of no dividends, a simple arbitrage argument shows that a stronger result holds.
Namely, for a continuous time varying cap denoted L;, it is not optimal to exercise at any time ¢
for which S; < L;.? This result holds even if the cap declines precipitously shortly after time t.

For small dividend rates with a constant cap the optimal exercise policy simplifies. Recall that
By is decreasing in t and By = max{(7/0)K,K}. Hence for dividend rates 6 < v¥K/L, By = L for all
t € [0, T]. In this case By = L, and the optimal exercise policy for the capped option is to exercise
at the first time at which the price of the underlying asset equals or exceeds the value of the cap.

Once the optimal exercise policy is known it is straightforward to derive a valuation formula for
the American capped call option. We first consider the special case of an infinite maturity option.
Recall that the optimal exercise boundary for an infinite maturity uncapped option is a constant,

which we denote B,.3

Corollary 1 (American capped call with infinite maturity): Consider an American capped call
option with infinite maturity and payoff ((S; A L) — K)* if exercised at time t. Then the optimal
exercise boundary of the capped option is the constant L A B.. That is, the optimal exercise time

isT =inf{v € [t, ) : S, = L A Bw}. The value of the option at time t for S; < L A B, is

St >2(x/02

L _ B
CHSt, K, o0) = (LA Bo = K) (5

(2)
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where o is defined in (9) below. Furthermore, if the underlying asset pays no dividends, i.e., § = 0,

then the option value simplifies to*
I St
Cy (St,K,00) = (L~K)'L—- (3)
In both cases, for Sy = L A B, the option value is (St AL) — K.

When the option has an infinite maturity, the valuation formulas have especially simple forms.
Equations (2) and (3) square with intuition in several senses. They show that the value of the infinite
option is an increasing function of the cap, a decreasing function of the strike price, and is bounded
above by the exercise payoff L — K and bounded below by zero.

Valuation formulas for finite maturity capped options are given next. Let 7; = inf{v € [f, o) :
Sy = L} represent the first hitting time of the set [L, o), i.e., the first time at which the value of
the underlying dividend paying asset equals or exceeds L. Let t* be defined by the solution to the
equation B, = L,, for v € [0, T] if a solution exists.” If B, < L for all v € [0,T] set t* = 0 and if
B, > Lforally € [0,T] sett* = T. Also, let C;(S;) denote the value of an American uncapped
call option with maturity T on the same dividend paying underlying asset . Throughout the paper,
n(z) represents the density function of a standard normal random variable and N(z) denotes the

cumulative distribution function of a standard normal random variable.

Theorem 2: Consider an American call option with exercise price K, cap equal to L, and maturity
T. For S; = L A B; the option value is (Sy AL) — K. For St <L AB; andt = t* the option value is

Ci(Sy). For S < L A By and t < t* the option value is given by
CH(St, K, T —t) = EF[e D (Sy, = K) Lizy<ery] + Ef [ D o (Spe) Limpzeny 1. (4)
The valuation formula for CtL(St, K, T —t) can be written more explicitly as

. L
(L~ K)[AFP7N(do)) + AT N(do + 2V — £10) ] + e D] Con () ulx, £, %) dix

x=0
(5)
where

1 -2(r-8)/o? +

Ul 6,67 = e (A7 (0) = AT d] () (6)
1 ¥

do = ﬁ[log(i\t) - f@t* -1 (7)
di(x) = m[ilog()\t) —log(L) + log(x) + b(t* — 1)] (8)

b=6-r+30% f=Vb2+2r02, =1~ f), a=3(b+f), and A; = S;/L. 9)
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In Theorem 2 and elsewhere in the paper, E;* denotes the expectation operator with respect to
the equivalent (risk neutral) martingale measure and the subscript ¢ denotes conditioning on the
information at date . The risk neutral representation formula in equation (4) is standard [see, for
instance, Harrison and Kreps (1979)].

When the dividend rate is sufficiently small the optimal exercise boundary for the uncapped
option lies above the cap. In particular, when 6 < *K/L, B, > L for all v € [0, T]. In this case,
t* = T, the optimal exercise policy is to exercise at the cap, and equation (5) can be written more
explicitly. The resulting expression for the option value is given next in Corollary 2. Equation (10)
was stated in Rubinstein and Reiner (1991) for the value of a capped option with automatic exercise

at the cap.

Corollary 2 (American capped call valuation with low dividends): Suppose that the underlying
asset’s price follows the geometric Brownian motion process specified in equation (1). Also, suppose

that 6 < vK/L. Then the value of an American capped call option, for S; <L andt < [0,T], is
CH(Se, K, T~ 1) = (L~ KA N(do)) + ¥ N(do + 2fVT — t/0)]
+ 8T D[N(d; (L) — oVT — ) ~ N(d7 (K) = 0T = 1)]
— AN o8 TDIN(dF (L) — 0T = 1) = N(d} (K) = 0VT = )]
- Ke" 0[N (d; (1) - N(di (K) - A 2O [N(d] (1)) = N(@f (K))]]. (10)

In (10) the expressions for dy and di (x) are the same as in (7) and (8) but with T — t replacing

t* —t. The expressions for b, f, ¢, «, and A; are the same as in (9).

Corollary 3 (Furopean capped call valuation): Let Cf (S¢, L, K, T—t) represent the value of an option
at time t that has a strike price of K, a cap of L, a maturity of T, and which cannot be exercised

until maturity. Then the value of this European capped call is given by
CE(St, LK, T —t) = Ste PT-D[Nd[ (L) — VT —t) ~ N(d[(K) — 0T — t)]
~Ke " TD[1 - N(d7 (K))] + Le " T7D[1 -~ N(d7 (L)]. (11)

The expression for d; (x) is the same as in (8) but with T — t replacing t* —t.

Since the European capped call does not allow for early exercise, its price is a lower bound on

the price of the American capped call option. That is, Cf < CtL. If L t « in equation (11) then

CE(St,00,K, T —t) = SeT=[1 - N(d; (K) —oJT —t)] = Ke"T-9[1 - N(d] (K))], (12)
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which is the Black-Scholes European option formula adjusted for dividends [Black and Scholes

(1973)].

2. American Capped Calls with Delayed Exercise Periods
Some American capped call options, such as the MILES contract, involve restrictions on the
time period in which exercise is allowed. If the underlying stock price follows a geometric Brownian

motion process, Theorem 2 can be generalized to handle the delayed exercise period.

Theorem 3 (American capped call with delayed exercise period): Suppose that the underlying
asset’s price follows a geometric Brownian motion process and consider an American capped call

option with exercise period equal to [t., T]. The value at timet < {, is

CESe, T —t,te) = (L —K)e " DE 15, w31 + e T EVEF[CE (S, T — te)ls,, <131

= (L -K)e "% D1 - N(di (L, t, - t))]

di (Lte-b)
+ T ltemD) j

Z=—00

1 .
Ch(Se 0720 ozl Tt yn(z)dz. (13)

In (13), C{; (St,, T —t,) denotes the value of the American capped call option from equation (5) with
T —t, replacing T —t and max(t*,t,) replacing t* and where dy (x,t, —t) is given in (8) with t, —t

replacing t* —t.

The optimal exercise policy is to exercise at time t, if S;, = L A B;,. Otherwise, exercise at the
first time after t, that S; reaches L A B; and if this does not occur then exercise at time T. The

formula given in (13) simplifies when the maturity of the contract is infinite.

Capped Call Options on the Dollar Value of an Index
The MILES security is an American capped call option on the dollar value of the Mexican stock
index with a delayed exercise period. The previous analysis is applied to this type of security next.
Let S; = e;M; represent the dollar value of the Mexican stock index, where ¢; is the dollar-
peso ($/peso) exchange rate and M; is the value in pesos of the Mexican stock index (all at time t).
Suppose that e; and M; follow the geometric Brownian motion processes
de; = ei[pedt + 0o, dW1t + T, AW ]
dM; = M[(um — dm)dt + o, AWt + oM, dWoi 1.
where the volatility coefficients o, 0¢,, Om,, and o, are constant, the drifts y, and pu are con-
stant, o is the constant dividend rate of the Mexican index, and Wi; and Wy; are independent

Brownian motion processes.
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With these assumptions, It6’s lemma implies that the dollar value of the Mexican index satisfies
dS; = Sel(pe + uy — O + C)dt + (Tp, + OuM) AWt + (Oe, + Or, ) AW ],

where ¢ = 0., Oum, + 0., 0p, is the (local) correlation between the processes e and M.

Since the volatility coefficients are assumed to be constant, the only risk which matters is

1

V(O + Owy)? + (T, + O, )2

aw; = [ (G2, + oM)AW1, + (0, + Ousy ) AW ],

which is a Brownian motion process. This risk can be hedged away by trading in the dollar value

of the index. Hence formula (13) of Theorem 3 applies with o = \/ (Oe; + OM, )2 + (O, + Oup, )2,

3. Caps with a Constant Growth Rate

The MILES option contract has a delayed exercise period which can be viewed as a time varying
cap. In this case, the cap is a step function with a single jump. Options with time varying caps,
more specifically, growing caps, may be preferred by investors over constant caps. Increasing caps
enable investors to capture more upside potential and so may increase the attractiveness of the
contract from their point of view. Also issuers may be prepared to accept an increasing potential
liability as time passes in return for a higher premium today. In this section we analyze time varying

caps that grow at a constant rate g = 0.6 That is, the cap as a function of time is
Lt = L()egt, (14)

where we assume Ly > K.

For time varying caps given by equation (14), the optimal exercise policy depends on three
parameters. To define the policy, recall that B; denotes the optimal exercise boundary for an
uncapped call option with the same maturity and strike price as the capped call option. Let t* be
defined by the solution to the equation B, = L, for v € [0, T'] if a solution exists. If B, < L,, for all

vel[o,T]sett* =0andif B, > L, forallv e [t,T] sett* =T.

Definition 1 ((f., t*,fy) Exercise Policy): Lett, and fy satisfy 0 <t, <ty < Tand i, <t* <T.
Define the stopping time 1y by inf{v € [t.,tf] : S, = Ly} or if no such v exists set T, = T. Set
the stopping time 7, equal to fy if S, > L, otherwise set T, = T. Define the stopping time 73 by
inf{v € [t*,T]:Sy = By} orif no such v exists set T3 = T. An exercise policyis a (t.,t*,ty) policy

if the option is exercised at the stopping time min{ty, T2, T3}.
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A typical exercise region corresponding to a (£, t*, ty) exercise policy is illustrated in Figure 2.
The exercise region is indicated by the shaded area together with the darker line segment joining
L, to Ly«. If @ (te, t*,ty) policy is optimal, then it is not optimal to exercise prior to t, even if the
underlying asset’s price equals the cap. Prior to ty it is not optimal to exercise if the underlying
asset’s price is strictly above the cap. The shaded region from t; to T collapses to a vertical line
when ty = T. In the case of a constant cap, t. = {y = 0, and the optimal policy simplifies to the one

described in Theorem 1.
Figure 2 ABOUT HERE

The main results are given next. The optimal exercise policy is characterized in Theorem 4. A
formula for valuing a capped call option for any (t.,t*,ty) policy is given in Theorem 5. Finally,

equations characterizing the optimal values of t. and t; are given in Theorem 6.

Theorem 4: Consider an American call option with exercise price K, cap given by equation (14),

and maturity T. Then the optimal exercise policy is a (t.,t*,ts) policy.

In the absence of dividends, B; = o for all t and t* = T. In this case, Theorem 4 shows that
the optimal exercise policy reduces to a two parameter (t., ty) policy where exercise below the cap
is not optimal.

Some intuition behind Theorem 4 follows. It is shown in the proof of Theorem 6 that the
present value at time ¢ of L, — K is strictly increasing with respect to v up to some time t}‘ (defined
in equation (18) below) and strictly decreasing thereafter. Hence a waiting strategy is optimal if
Se>Liandt < t;‘é while immediate exercise is optimal if S; > L; and t = t;‘:. Ift* <t < T and
B; < S¢ < L; then immediate exercise is optimal. This follows since immediate exercise is optimal
for an uncapped option and since the holder of the capped option can attain (but cannot improve
upon) this value by exercising immediately. If S; < L; A B; then immediate exercise is suboptimal
by an argument similar to the one in the proof of Theorem 1.

Theorem 5 gives a valuation formula for a capped call option for a given (t.,t*,ty) exercise

policy.

Theorem 5: Consider an American call option with exercise price K, cap given by equation (14),
and maturity T. Suppose that a (t.,t*,ty) exercise policy is followed for some fixed values of t,

and ty. The value at time t < t, corresponding to this policy is given by

Ch(te,t*,tp) = Ef[e e 0(CH 15,510y + CF e L (51, <Lit}]
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=g "itD) f N Cl 4, (Lyy, Ape Pl ro2Vtet e — g yn(z)dz
z=—d} (Ar,Lte—t)

~dj (At be~t)

+ e-“te—ﬂf Cl i (Ly, Ape PUlemtrO2 Vet 1ty (2)dz, (15)

Z=—00
where Ay = S¢/Li, b = g+ 8 —7 + 302, d3 (A, te — t) = [log(Ay) — b(t. — )1/ (0/t, — ), and Cit s,
and Cg,t* are defined below.

At time t, with S;, > Ly,, the value corresponding to the (t.,t*,ty) policy is independent of t*

and is given by Cy; ;. where
ity (Li gy b — o) = L, [AZYO N (=do) + MY N(~do — 2ty — te/0)]
~K[APTN(=do) + NN (=do — 2ty — te/0) |
+ [Li, 09t — Kl "Gt [N(d]) - AL29 " N(47)] (16)

and where Ay, = Si, /L, b = g+ — 7 + 302, do = [log(Ar,) — f(ty — L)1/ (0If = E), do =
[log(Ar,) — f(ty — t)1/(0+Ef =), f = (B% + 2027)12, f = (B2 + 202(r — g2, p = 3(b - f),
$=3b-f),a=3b+f),a=3b+f),andds = [+log(A,) — bty — o)1/ (0\if = o).

At time t, with S;, < L;,, the value corresponding to the (t.,t*,ty) policy is given by Ctde,t*

where
C o (Liy Ar,, t* — L) = Ly, [Afj’/UZN(do) + A2EN (d + 2 t/0) |
~K[APP N (do) + AT N (do + 2fVEF — T/ ) ]

Lyx N
+ J e "Wt oy ()i (2, Lo, tF)dx (17)
x=0

and where L (x, to, t*) = [n(dj (x))=AL 2717 (df (x)) 1/ (xoTF = E,), di (x) = [+log(Ar,)—
log(Le,) +1og(x) + (b — g)(t* ~ t)1/(0T¥ = L), do = [log(As,) — fF(t* — t)1/ (0T = L,), and
do = [log(Ar,) — F(L* — )1/ (0JTF — Lo).

The value at time ¢ < t, under the (t.,t*,t,) policy is the present value of the corresponding
policy at time t,. This present value is the risk-neutral probability weighted average of the possible
values on the event {S;, > L;,} and the event {S;, < L;,}. This observation leads to equation (15).

Theorem 6 characterizes the optimal values of t, and ty in a (t.,t*, ;) exercise policy.

Theorem 6: Consider an American call option with exercise price K, cap given by equation (14),

and maturity T. Let t}" denote the optimal value of ty in a (t.,t*,ty) policy. Then t}k is given by

t}‘ = aggmax e " [Lped’ - K]. (18)
<s<T
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In particular, if

(g-7)Loe?T +¥K =0 (19)

then t}“ =T. Also, if

(g-7)Lo+7K <0 (20)

thent} = 0. Otherwise, 0 <ty < T andt} is given by

% rK
—— 1
= 5 u (G grme) &0
Let t} denote the optimal value of t, in a (te,L*, f) exercise policy. The following conditions
are satisfied by t}. First, if 0 <t} < t*A t , then t} is a solution to equation (22):
® 6C}‘ ocH o0CY 1+

102 e, Le 7
JH_[ rCig v ol — By Mt - sy,

)]n(z)dz

*———([J

o ocy, gz oCc . oce ..
+J‘°° [=rcien + ot 5Et IJ_)Ate a;(t a(t*tc_'tte)

Second, if t} = t*A t; then the lefthand side of (22) is nonnegative. Third, if t7 = 0, the lefthand

]n(z)dz =0 (22)

side of equation (22) has a nonpositive limit as t, | 0.8
The value of the American option at time t < t} is then given by equation (15) evaluated at

te =t and ty = t}.

Theorem 6 specifies a three step procedure for valuing American capped call options where the
cap has a constant growth rate. First, t}‘ is found, then t} is found, and finally the option value is
determined. The optimal value t}‘ solves (18). Note that if g = » then condition (19) holds and t; =
T. The optimal £/} is the time that maximizes the option value given in equation (15) when ¢ = t;?.
For interior solutions, i.e., when 0 < tf < t*A t , the optimal ¢ solves 0Ck (t,, t*, tf)/atelte x = 0.
This optimal time balances the marginal benefit (or loss) of increasing t, on the event {S;, > L;,}
with the marginal loss (or benefit) on the event {S;, < L, }. For boundary solutions, i.e., when
t¥ =0ort} =t*A t}‘, the equality of the marginal benefit to the marginal loss is replaced by the
appropriate inequality. Once t} and t}" are determined, the option value is given by equation (15).

Equation (21) reveals how t}'.‘ depends on the parameters v, g, K, and Ly. First, the optimal
time t}‘ is independent of o and §. Also, a decrease in the riskless rate ¥ or an increase in the ratio
K /Lo will increase t§. An increase in the rate of growth g increases ¢ if and only if t} < g/(v —g).

Numerical results are given in the next section. These results indicate that the magnitude of
the loss when following the policy of exercising at the cap instead of the optimal (£}, t*, t}‘) policy

can be substantial. Additional results illustrate how t; varies with g and o.
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4. Computational Results

In this section we provide computational results using the valuation formulas derived in this
paper. The results are used to qualitatively compare the behavior of capped versus uncapped and
American versus European option values.

In the presence of dividends, the valuation formulas (5), (13), and (17) can be difficult to eval-
uate. Broadie and Detemple (1993b) give a fast way to approximate the American option values
which appear in (5), (13), and (17). However, since the valuation equations involve integrals of
American option values, a standard binomial, multinomial, or finite difference procedure might be
more effective for computing certain capped option values. Thus, to simplify the computations

and presentation, we consider the case of no dividends (i.e., 6 = 0) throughout this section.

Comparison of Option Prices and the Early Exercise Premium

Figure 3 shows a comparison between: (i) standard Furopean uncapped call option, (ii) Amer-
ican capped call option, (iii) American capped call option with delayed exercise period, and (iv)
Furopean capped call option. The option values are computed from equations (12), (10), (13), and
(11) for options (i) - (iv), respectively. The parameters for the comparison are r = 0.05, o = 0.2,
T=1t=0,K=30,L =60, and t, = 0.5 (for option (iii)). The option values are plotted versus Sy,

where Sy ranges from 35 to 75.

Figure 3 ABOUT HERE

Since option values are increasing functions of the cap, it must be that the option values satisfy
(i) = (i) = (iii) = (iv). This ordering of option values is illustrated in Figure 3. For stock values well
below the cap, i.e., for Sy < L, the four option values are nearly identical. This makes sense, since
the probability of the stock price exceeding the cap by maturity approaches zero as Sg | 0.

The early exercise premium is the difference between the American and European option values.
For uncapped call options on non-dividend paying assets the early exercise premium is zero, i.e.,
early exercise is not optimal. For capped call options, the early exercise premium is positive, i.e., the
value of an American option exceeds its Furopean counterpart. Table 1 illustrates the magnitude
of the early exercise premium for the previous parameter values. As shown in the last two columns
of Table 1, the early exercise premium first increases and then decreases as the initial stock price
rises. When the stock price is near the cap, the early exercise premium is nearly 20% of the value

of the Furopean option.

Table 1 ABOUT HERE
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Hedging American Capped Call Options

The valuation formulas derived in the paper are important to the issuers and holders of capped
call options not only for pricing but also for hedging. The valuation formulas permit a straightfor-
ward and efficient computation of hedging strategies designed to eliminate the risk inherent in a
position in these contracts.

Table 2 illustrates how the hedge ratios, 0C/0S, depend on the current stock price, Sg. The
hedge ratios of all four options are similar for So <« L. For So > L, the hedge ratio of option (i)

approaches one, (ii) is zero and (iii) and (iv) approach zero.
Table 2 ABOUT HERE

The hedge ratios in Table 2 for the American contract (column (ii)) may differ quite significantly
from those for the Furopean contract (column (iv)). For example, when the stock price is $50 the
respective hedge ratios are 0.94 and 0.71. If the stock price increases to $65, the hedge ratios fall to 0
and 0.23, respectively. Hence, using hedge ratios based on European formulas as an approximation
would leave the hedger exposed to significant risk associated with the fluctuation in the underlying

asset value.

Valuing Caps with a Constant Growth Rate

We consider an option with parameter values: g = v = 0.10, 0 = 0.05, T = 1,1 = 0, K = 30,
So = 60, and Lg = 60. Since g = 7, condition (19) in Theorem 4 implies that t}‘ = T. Figure 4 plots
ckt,, t*, t}‘) for t, ranging from 0 to T. Since § = 0, t* = T. For t, = 0, C} (t,, t*, t}") = 30 because
the exercise policy calls for immediate exercise. Fort, = T, C{;(te, t*, t}‘) is the value of a European
capped call option with cap L7 = Lged”. For these parameters, this gives Cé(l, 1) = 31.66. The
optimal value of t, is t} = 0.88 and the option value is C; = C§(t},t*, t¥) = 31.68. The policy of

exercising immediately would result in a loss of over 5% of the value of the option.

Figure 4 ABOUT HERE

Figure 5 ABOUT HERE

Figure 5 shows how t} varies with the growth rate of the cap, g, and with volatility ¢. The
parameter values are the same as in the previous example, except for g which ranges from 0.05
to 0.195, and o which ranges from 0.03 to 0.09. In this example, tF = 0 for low growth rates and

¢t increases as g increases. The volatility of the underlying asset has the opposite effect, i.e., t}
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decreases as o increases. For all of these parameter values, t;? = T. The parameter t}k becomes
less than T for smaller values of g. For example, suppose that » = 0.05, Lo = 60, K = 30, T = 1.
Then for g = 0.0255, t}" = 0.79. As g decreases, t}.k decreases to zero. As g increases, t}‘ increases

toT.

5. Conclusions

This paper focused on the problem of valuing American call options with caps. Since early
exercise is allowed, the valuation problem requires the determination of optimal exercise policies.
The proof of Theorem 2 showed that early exercise is not optimal whenever the underlying asset’s
value is below the minimum of the cap and the optimal exercise boundary for the corresponding
uncapped option. When the cap is constant and the dividend rate satisfies & < vK/L, it is optimal
to exercise at the first time that the price equals or exceeds the cap.

Once the form of the optimal exercise policy is known, a valuation formula for options with
delayed exercise periods can be derived. In Section 2, a valuation formula was given for the MILES
option contract. A delayed exercise period is one example of a time varying cap. In Section 3
time varying caps with constant growth rates were analyzed. For these caps, the optimal exercise
strategy is given by three endogenous parameters. The exact form of the optimal policy was given
in Theorem 4. In part, it says that it is not optimal to exercise prior to time t} no matter what is the
value of the underlying asset. This differs from uncapped call options on dividend paying assets
which should be exercised when the value of the underlying asset is sufficiently large.

Computational results were given in Section 4. A comparison of hedge ratios in Table 2 showed
similar hedge ratios for capped and uncapped call options when the underlying asset’s price is well
below the cap. However, as the price increases toward the cap, the hedge ratios differ significantly.
For caps with a constant growth rate, optimal exercise parameters tf and t}‘ were computed. The
dependence of tf on g and o was also illustrated.

One issue for future analysis is the incorporation of stochastic volatilities into the valuation
equations. This may be important in view of the empirical evidence which suggests that volatilities
are time varying. Another interesting question is the optimality of caps and the design of capped

option contracts taking into consideration the interests of the owner and the issuer.
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Appendix: Proofs of Theorems

This Appendix gives proofs of all of the results in the paper. In addition, some of the more

lengthy formulas not given in the main text are stated here. We begin by proving Theorem 1.

Proof of Theorem 1: Clearly when S; > L A By immediate exercise is optimal. Now suppose S; <
L AB;and L = (¥/3)K. In this case there always exists an (uncapped) American option with a

shorter maturity T, with t < Ty < T, such that its optimal exercise boundary B° satisfies
St <BY <L AB. (23)

See Figure 6 for an illustration. Since early exercise is suboptimal for this Ty maturity option, its
value strictly exceeds S; — K. From equation (23), this exercise policy is admissible for the capped

option. Hence C} > S; — K and early exercise is suboptimal for the capped option.
Figure 6 ABOUT HERE

Suppose now that Sy < LAB; and L < (v/6)K. In this case, an investor could purchase one call,
short one share of stock, and invest the proceeds, i.e., lend K, in the money market account which
accrues interest at a rate v. If immediate exercise were optimal, then the total cash flow from these
transactions at date t would be zero. Now suppose that the call is exercised at time T defined by

11 A T, where 77 is the hitting time of the cap. Then the net cash flow at time T would be

T

(K —Se) s, <y + J (rK - 8S,)e" TV dv.
=t

v

Clearly (K — St)1s,<x} = 0. Since S, < L < (r/d)K for v < T, we have ¥K — 6§, > 0 for
v < 7. Hence the integral [;_,(¥K — §S,)e" ™" dv > 0 (probability a.s.). Thus for the value of
the call to be consistent with no-arbitrage, immediate exercise at time ¢ cannot be optimal. That is,

CE>5 -K. +

To prove Corollary 1, Theorem 2, Corollary 2 and later results for caps with constant growth
rates, we first state three auxiliary lemmas. These lemmas characterize first passage times of sets
with exponential boundaries when the asset price follows a geometric Brownian motion process.
The results complement those of Black and Cox (1976) who characterize the first passage time of
the set [0, L] when the stock price starts above the cap, i.e., S; > L. Equation (24) below can be

derived from equation (7) on p. 356 of Black and Cox (1976) by an appropriate change of variables.



17

Lemma 1: Suppose S; satisfies the stochastic differential equation
Aas, = S (r — d)dt + odW;].

For A < B, defineU(S;,A,B,,T) tobe P[St < Aand Sy < Bforv € [t,T)]. Then

U(St,A,B,t,T) = N(d(A)) _ (_&)1—2(7_5)/0

3 N(d(A,B)) (24)

when Sy < B andt € [0, T], where

_ 1 _ _ o2y -
a(A) = Py t[log(A) log(S) + (6 -7 +350°NT —t)]
1 _ — Loy =
d(A,B) = Um[log(b}) +1og(A) — 2log(B) + (6 —7 + 50°)(T - t)].

Lemma 2: Suppose that the cap is given by L, = Loe9t and T represents the first time at which S;

reaches L;. The distribution of the first passage time is

N(=df) - AlF2OI N doy irs, < I,

P[TL > T] = _ _
{N(d;) LN R A

where Ay = Si/Li, b =g+ 6 —v + 502, and d} = [+log(A¢) — B(T — )1/ (0T = £).

Lemma 3: The density of the first passage time Ty is

—n(d;)l—ggj%%) ifSy <Ly
y(») = o log(d)
n{dy) oy ifSt =Lt .
The next lemma summarizes a useful integral of the first passage time density. The integral
is parameterized by a constant a, which appears in expressions for f(a), ¢(a), and x(a) defined
in Lemma 4. Elsewhere in the paper, when f, ¢, and « appear without an argument, they refer to

f(0), ¢$(0), and x(0), respectively.

Lemma 4:

Jte(a_y)yy iy - {?\(Z)d)(u)/a:zN(do(a)) F NN @o(@) +2f(@)VEl0) iAo <1
0 AZP@DIT N do(a)) + AT N(~do(a) - 2f (@)VE[o) ifAg = 1

wheredo(a) = [log(Ao)—=f(a)t]/(0VT),Ag = So/Lo, b = g+5-r+302, f(a) = (b*+2(r—a)o?)'/2,
$(a) = 3(b - f(a)), and x(a) = (b + f(a)).
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Proof of Corollary 1: The optimal exercise boundary L A B, is immediate from Theorem 1. For
St = L A B, immediate exercise is optimal and the option value is (S; AL) — K. For §; < L A B, the

value of the option can be written as
CE(St,K, ) = (L A B — K) Ef[e 7770, (25)

where T is the hitting time of L A B.. The risk neutral valuation equation (25) follows from the
optimal exercise boundary and standard pricing results [see Harrison and Kreps (1979)]. The ex-
pectation can be written as

Effe (™0 = j Yy

St )fo/a'z-

Ty 20/0? N -
— ImIA? ' N (do) + A2 N(do + 2/ VT = E/0)] = (ot

The second equality follows from Lemma 4 with a = g = 0 and Ay = S;/(L A Bw). This proves
equation (2).

If there are no dividends, B, = o, & = 02 /2, and equation (3) follows directly from equation (2).
Alternatively, for 6 = 0, the discounted stock price is a martingale and by the optional sampling
theorem, S; = E}[e~" (TS, ] for any stopping time 7. Taking T to be the hitting time of the cap L

gives Sy = L Eff[e (T~ ]. Substituting this formula into equation (25) gives equation (3). 4

Proof of Theorem 2: By Theorem 1, for S; > L A B, immediate exercise is optimal and the option
value is (St A L) — K. For Sy < L A By and t = t* optimal exercise occurs at the first time the
boundary B is reached or at maturity, so the capped option value is the standard uncapped option
value C;(S¢). For Sy < L A By and t < t* the valuation formula (4) is immediate from Theorem 1.
To obtain (5), first define S™ to be the process which is followed by $ in the absence of dividends.
That is, the processes S and S" are related by S{* = S;edt. This can be used to compute the first

expectation in equation (4). When t* > t we have

t*—t
EFle 0 (Sy —K)linan] = | e (L= Ky(»)dy (26)

= (L - K)[N**'"N(do) + 2% N(do + 2ft* — tjo)]. (27)

In (26), y(») represents the density of the first passage time of S; to the level L. The formula for
y(y) is given in Lemma 3 for the case S; < L and g = 0. Equation (27) follows from (26) using

Lemma 4 witha = g = 0.
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The second expectation can be written as

L
Ef[e " D Cpu(Spx ) (ryzpry ] = e 7D . Ce+(x) dP[Six < x,S, < Lforv e [t,t*]]dx

X =

L
= T(*-D J Cex () ulx, t,t*) dx
x=0

The formula for u(x, t, t*) in equation (6) in the text follows by differentiating U(S;, x, L, t, t*) with

respect to x (see equation (24) in Lemma 1). ¢

Proof of Corollary 2: The first term in equation (10) is the same as the term in (5) in Theorem 2
with t* replaced by T.

The remaining terms in equation (10) follow from

E[e " T"9(Sr — K)" 1{7,;211]

L
= J e "I (x -~ K)*dP[Sy < x and S, < L forv € [t,T)]
x =0

L
= ~r(T—1) (e . — _ y1-2(r-8)/0? + 1
MLZKe (x — K)[n(dy (x)) - A} n(di () e
L
= —r-__ 1 - _ y1-2(r-8)/0? +
‘L:Ke oI = M () — A n(d; (x))ldx

~ Ke " TOIN(d; (1) = N(d; (K) - A7 (N @} (1) - N(af ).
A simplification of the integral in the previous line gives equation (10) and proves Corollary 2. ¢
Proof of Theorem 3: The event {S;, = L} is equivalent to the event

{2 > [0g(L/S:) = (r = § = o) (e ~ D] =—i==1.

te'—t ‘

Proof of Theorem 4: We start by considering whether it is optimal to exercise above the cap. At

time 0, the perfect foresight value of exercising the option at time s (when S; > L;) is
f(s) =e " [Lged’ - K].

For a trajectory such that Sy = L; for all 0 < t < T, the optimal exercise time is given by

il

argmax.,.7 f (s). In fact, this { is t}k as shown next.

Suppose that s < T and Sg > L;. There exists a random variable €(w) such that S¢ie(w)

\%

Lsie(w) (probability almost surely). Hence, it pays to delay exercise if f'(s) > 0. Defining t}‘ =
argmax. .7 f(s), it easy to show that f'(s) > 0 for s < t}k and f'(s) <0 fors > t}k. It follows that
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it does not pay to exercise if S; > L, and t < t;‘:. On the other hand, immediate exercise is optimal
ifS;=L;and t = t}‘.

The same argument as in the proof of Theorem 1 shows that it is not optimal to exercise at
any time ¢t < T when S; < L¢ A By. It also shows that exercise is optimal whenever t > t* and
By =8 < Ly.

Hence, exercise is only optimal at time ¢t < t*A t}‘ if S¢ = Ly. To show that a (t., t*, ) exercise
policy is optimal, it remains to be shown that the optimal exercise set at the cap is connected and
extends from some £, to L*A t}‘. Lemma 5 which follows asserts exactly this result and hence proves

Theorem 4. ¢

Lemma 5 (Connectedness of the exercise set): Suppose that it is optimal to exercise at time t,
when S;, = Ly,. Then for all times t, satisfying t; < t» < t*A t}‘, it is optimal to exercise when

Sty = Ley.

Proof of Lemma 5: Without loss of generality, we assume that t}k =T. Let T(L,t,T) denote the

optimal time to exercise an option with a cap of L starting at time ¢ which matures at time T. Let

&1 (8L, T) denote the option price under the policy T(L, t, T) when the stock price at time ¢

is S, the cap function is L, and the option matures at time T. Define the cap L by L; = Ly, -, for
t > 1.9 Finally, let S' = L, and S? = L;,. By the definition of L, L;, = S'. Figure 7 illustrates these

definitions.

Figure 7 ABOUT HERE

Claim 1: Ly, —K = C, &7 (s1,1,1).
Proof of Claim 1:

Ly, - K = C,;(L’t"T) (SL,L,T) (since it is optimal to exercise at t;)
e RN O A R (P P)
(American option with a shorter maturity)

= C;;(Ltzj) (SYL,T) (S is a Markovian process)

In the second line, T(L,t;, T — (2 — t1)) is the optimal exercise policy at time t; for an option with
maturity T — (t; — £;) and cap L. Since the cap L between t; and T — (t> — t1) is the same as the cap
L between t, and T, the equality in the third line holds. ¢



21

Claim 2: 7+ (s2,1,T) - ;021 ($1 L, T) < Ly, — Ly,.

2
Proof of Claim 2:

CtTZ(L,tz,T) (S2,1,T) - C;(i’tz'T)(Sl,]:, )
< D (82,1, T) — cf 2 (811, T)
(suboptimality of T = T(L,t2,T) for Ctz(i‘tz‘T) (SYL,L,T))
= Efi[e " TWD ) (L by = Lot ) L e (@i, 1) < Tho (52213 ]
+ Ef[en (TN (§2 ) = K = (St — K 1 e <ringsz =g ]
+Efle T (Ly — E1) 17t s inszonn ]
+ Efle " TT(SE - K)Y = (St = K M gr 0, myamyngst<iry]
(where SL = S"e(r"‘s_%"2)”"”)“’(2*“2‘2) fori=1,2
and St = Sie(r_‘s'%"2)(T“t2)+"(ZT_Zf2) fori=1,2)
< Ejle D= (§2 | 1) = St Lir @iz <Ti ]
+ Ef e T (S - SP1 o s Tin(s2aLr) ]
+ Ef e (SF - SP r o mysTynist<iry ]
(since on the event $2 > L1, §3 — S} > Lt — L)
<§%?-¢§! (see the argument in the text below)

= Ltz _l_:tz :Ltz _Lt1-

15 ’ -
For T > t, the quantity S2 — S1 can be written as (S2 — Shyer=0-309)(T-t)+0(zr~21) ywhere 62 > g1,
Since & > 0, the process e "(T=%) (52 —S1) js a supermartingale. Hence for any stopping time T > t;

the last inequality follows. ¢

Combining Claims 1 and 2 gives

Cg-(L,tz,T) (SZ,L’ T) < Ltz -K

2

which implies that exercise is optimal at time t; if S? = L;,. This shows that the optimal exercise

set is connected and proves Lemma 5. ¢
Proof of Theorem 5: The option value under the (£,,*,ty) policy can be written as

CtL(te, t*,tf) = E;k [e_r(t“_t){Cttz’tfl{gteﬂqte} + Cg,t* 1{SthLtg}}]-
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Writing S;, = Seexp[(r — 6 — éoz)(te —t)+0z\t. —t]and Ly, = Ly exp[g(t. — t)] implies S;, > L,
if and only if z > ~d} (A, t, — t). Also note that Ay, = A; exp[—b(t, — t) + 02/, — t]. Using these
expressions in the expectation above gives equation (15). Expressions for C* , » and Cﬁyt* are proved

in Lemmas 6 and 7 which follow. ¢

Lemma 6: At time L, with Sy, > L¢,, the value of the option corresponding to the (t,,t*,ty)
policy is independent of t*. The value, denoted Cy! , ;s given by equation (16) in the statement of

Theorem 5.
Proof of Lemma 6:

Ciy, = Efle MLy — K) lirpeepy] + Ef[e & (Lyy — K)irat)

ty—te ty—t,
=Ly, J . e Yy (y)dy — K , ¢v0dy + [Le,edtr=te) — Ko "Wt EF [1(7,501]
= y=

Applying Lemma 4 with a = g to the first integral, with a = 0 to the second integral, and then

applying Lemma 2 to the last expectation proves Lemma 6. 4

Lemma 7: At timet, with S;, < L,,, the value of the option under the (t.,t*,ts) policy, denoted

C{i,t* is given by equation (17) in the statement of Theorem 5.
Proof of Lemma 7:

Ci,t* = E;[Q‘T(Tl‘*tE)(LTL - K)l{TL<t*}] + Ezt [E"T(t*_te)ct* (St*)l{TLZt*}]
t*—t, £t Ly .
=Ly, f e Yy (y)dy — K ey (y)dy + J e "W i () A (x, Lo, t*)dx
=0 y=0 x=0

The first two integrals can be evaluated using Lemma 4. The term i {x, t., t*) represents the density
of Si+ given that T; > t*. Applying Lemma 1 with a change of variables gives a formula for P[S;» <
xand S, < L, forv € [f,,t*)]. Differentiating with respect to x gives the stated formula for

n{x,te, t*). *
Proof of Theorem 6: The first part of the proof of Theorem 4 shows that t}k is given by
t¥ = argmax f(s), (18)
O<s<T

where f(s) = e "*[Lped® — K]. The derivative of f(s) is

f(s) =e[(g —7)Loe? +¥K]. (28)
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Equation (28) implies that f is unimodal. If condition (19) holds, i.e., if (g —¥)L¢e9T +¥K > 0, then
f'(s) = 0forall 0 <s < T. This means that the marginal value of waiting to exercise is positive, so
it is not optimal to exercise above the cap. Hence t}‘ =T.

If condition (20) holds, i.e., if (g — )Ly + ¥K < 0, then f'(s) < 0for all 0 < s < T. This means
that the marginal value of waiting to exercise is negative, so immediate exercise is always optimal
at or above the cap. Hence t§ = 0. Finally, if 0 < t}“ <T, f ’(t}k) = 0 which implies equation (21).

The optimal value of t., denoted t ¥, is given by the solution of the univariate nonlinear program
(P):

(P) max Cf (te, t*,t5)
subject to:
0<t, <t*A t}k
The Karush-Kuhn-Tucker Theorem gives necessary conditions for t} to solve (P). If the optimal
solution to (P) is an interior solution, i.e., if 0 < tf < t*A t}", then
0C§ (e, t*, t7)

= 0. 29
ote to=t} (29)

By the Markovian property of the underlying asset process, the optimal solution to (P) is inde-
pendent of So. For convenience, we take Sy = Ly, i.e., Ag = 1, in equation (29). Taking the partial
derivative of the expression for Cé‘(te, t*,t}‘) in equation (15) and setting the result to zero at
t. = 7 gives the integral equation (22). If £ = t*A (7, then oCk (t,,t*, t7)/ot. = 0 when evaluated
at t, = t*A t}‘. If t¥ = 0 is the optimal solution to (P), then limy, o 0C} (£, t*, t}“)/ate <0. ¢
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Footnotes

. The payoff is assumed to be ((S; AL)—K)* even when the option is exercised out-of-the-money,
i.e.,, when S; < K. This assumption is for expositional convenience only. It eliminates the need
to describe exercise policies using separate cases for S; < K and S; > K. In reality, the option

would never be exercised when S; < K.

. Suppose an investor purchases one call, shorts one unit of the underlying asset, and invests the
strike price in the riskless bond. If the value of the call were equal to the immediate exercise
value, these transactions would have zero cost. Now if the investor closes the position at the
first hitting time of the time-dependent boundary or at maturity, the net cash flow is strictly
positive, which implies an arbitrage opportunity. Hence, no-arbitrage means that immediate

exercise is not optimal for S; < L;.
. An explicit expression for By is K(b + )/ (b + f — 0?), where b and f are defined in (9) below.

. For §; < L, equation (3) in the absence of dividends is valid for more general price processes.
In fact, the last part of the proof of Corollary 1 in the Appendix shows that the equation holds
for Itd price processes dS; = Si[rdt + o:dW;], where 7 is constant and oy is progressively
measurable with respect to W. We thank Bjorn Flesaker for pointing out the generality of

equation (3).

. Since L is constant and B; is continuous and strictly decreasing in t, there cannot be more than

one solution t*.

. More general results for time varying and random caps in the absence of dividends are given

in Broadie and Detemple (1993a).

. Note that b differs from b because of g. Also f, ¢, and « have slightly different meanings

than before because of b in their definitions.

. Explicit expressions for all of the partial derivatives in equation (22) can be obtained from the

authors.

. For t < t» the cap L; is never used.
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Figure Legends

Figure 1. Optimal exercise region

Figure 2. Exercise region for a (t.,t*, ty) policy

Figure 3. Comparison of option values for different stock prices
Figure 4. Option value vs. exercise policy

Figure 5. Optimal exercise policy vs. cap growth rate

Figure 6. Shorter maturity option boundary

Figure 7. Illustration of the caps L and L
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Figure 2. Exercise region for a (t.,t*,ty) policy
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Figure 6. Shorter maturity option boundary
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Table 1. Early exercise premium

Stock European capped American capped Early exercise

Price option value (a) option value (b) premium (c = b-a) )/ (@
35 6.95 6.96 0.02 0.27%
40 11.45 11.57 0.12 1.08%
45 15.91 16.40 0.49 3.05%
50 19.85 21.17 1.32 6.66%
55 22.96 25.73 2.77 12.06%
60 25.19 30.00 4.81 19.08%
65 26.65 30.00 3.35 12.57%
70 27.53 30.00 2.47 8.98%
75 28.02 30.00 1.98 7.06%
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Table 2. Hedge ratios (0C/0S)

i) (i) (iii) (iv)
Stock European American American capped European
Price uncapped capped delayed exercise capped
35 0.87 0.87 0.87 0.86
40 0.96 0.96 0.95 0.92
45 0.99 0.97 0.94 0.85
50 1.00 0.94 0.82 0.71
55 1.00 0.89 0.61 0.53
60 1.00 0.00* 0.38 0.36
65 1.00 0.00 0.19 0.23
70 1.00 0.00 0.08 0.13
75 1.00 0.00 0.03 0.07

*The hedge ratio for Sy = 59.99 is 0.79. The derivative is discontinuous at Sg = L.
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