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Résumé / Abstract 
 
On étudie la concurrence entre deux firmes qui vendent des biens ou des services durables 
sous la condition d’encombrement. À chaque instant, des clients nouveaux achètent une unité 
du bien, en comparant les prix et les taux d’encombrement futur. On caractérise l’équilibre 
markovien de ce jeu. L’existence des externalités négatives rend la concurrence moins féroce. 
On montre que la firme qui a la plus grande capacité a, dans l’état stationnaire, une plus 
grande part de marché, un prix plus élevé, et un taux d’encombrement plus faible. Le prix du 
bien d’une nouvelle firme diminue continuellement, tandis que celui de son rival en exercise 
monte. La vitesse de convergence est une fonction croissante de l’effet d’encombrement. 
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We analyze duopolistic competition between horizontally differentiated firms selling durable 
goods or services subject to congestion. At each point of time, new customers buy one unit of 
the commodity from one of the firms, by comparing present prices and future congestion 
rates. We study the linear Markov equilibrium of this game which exists and is unique when 
firms are not too different. The existence of negative consumption externalities is shown to 
soften the price competition. Moreover, we show that the firm with the larger capacity has, at 
the steady state, a larger market share, a higher price, and a lower congestion rate. The price 
of an entrant decreases gradually after entry, while the price of the incumbent rises. The 
speed of convergence to the steady state is faster, the stronger is the congestion effect. 
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1. Introduction

In this paper we investigate the dynamic price competition between
two horizontally differentiated “profit-maximizing clubs” which face at
each point of time a flow of new customers who decide to belong to
one club or the other on the basis of a comparison of access prices and
of future congestion rates.
In the public economics literature, a club is defined as a group of

people sharing a public good subject to congestion. A classical exam-
ple is a swimming pool. There are many other examples of congestible
resources. Among the most prominent ones are those related to com-
munication and information based industries. It has been pointed out
that as usage grows congestion affects many parts of the Internet (see
Odlyzko,1999). As put by MacKie, Mason and Varian (1994a, page
1) in their exploratory paper on Internet economics:“There are many
network resources whose performance suffers when there is ‘overuse’:
the switching capacity of the routers, the bandwidth of the transport
medium, the disk and CPU capacity of popular servers...”
A special class of clubs that is becoming very prevalent is the

class of “profit-maximizing clubs” (Scotchmer, 1985). The distinc-
tive features of profit-maximizing clubs are (i) they are actually profit
maximizing firms, and (ii) customers have to pay an admission price
in order to be allowed to share the use of a common facility. The
utility which customers derive from this use is increasing in the fa-
cility’s size and decreasing in the number of individuals who share
the facility. With the privatization and commercialization of the In-
ternet, the access to congestible network resources (such as a Web
site, an ftp server or a router) is very often provided by competing
profit-maximizing firms. These “Internet Service Providers” (ISP) are
the modern examples of the “profit-maximizing clubs” analyzed by
Scotchmer (1985).
We develop a highly simplified dynamic model of price compe-

tition between two profit-maximizing clubs (say, two internet ser-
vice providers). In particular, we characterize the equilibrium pricing
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strategies of the firms, and study the evolution of access prices and
market shares.We hope this simplified model can be used to shed light
on the nature of price competition between two congestible networks
that provide horizontally differentiated services, such as two web sites.
Basic to our analysis is the assumption that once they have selected
a firm, customers cannot instantaneously change their mind. They
consequently have to take into account not only the prices and “dis-
tance” to each firm but also the anticipated future congestion rates,
when they make their decision to belong to one or the other “profit-
maximizing club”.
Doganoglu (2000) develops a model which bears some similarities

to ours: both models deal with dynamic price competition between two
horizontally differentiated firms when there exist consumption exter-
nalities. There is however a very important difference. In Doganoglu’s
model, consumers do not look forward, and they do not forecast future
externalities. In our model, consumers, in order to make a rational
decision, must forecast future congestion rates. Thus, in our model,
rational expectation equilibrium is a key requirement. The concept of
rational expectation equilibrium plays no role in Doganoglu’s model.
While there are several possible interpretations of our model, and

of its assumptions, for the sake of convenience, in what follows we
will stick, in the main text, to one interpretation. Other possible
interpretations will be mentioned in footnotes.
We consider two firms located at the two extremities of Hotelling’s

linear city represented by the interval [0, 1]. Each firm provides ac-
cess to a facility of a given exogenous size. Consumers are uniformly
distributed along the interval [0, 1] .Each consumer faces a constant
probability of death at each point of time. Also, at each point of
time, a flow of new consumers enters the market. For simplicity, we
assume the entry rate equals the death rate, so that the population is
stationary.
Upon entering the market, a consumer pays (once, and for all) a

subscription price to a firm of his choice. This subscription entitles
him to a life-time flow of service (one unit of service per unit of time)
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from the firm, but the quality of the service is affected by consumption
externalities (say, overcrowding). Also, the consumer has to bear at
each point of time a quadratic travel cost in order to be able to use
the facility provided by a firm. The consumer’s instantaneous utility
for using the facility is a decreasing function of the congestion rate of
this facility, as measured by the ratio of the number of customers to
the size of the facility. At each point of time the firms simultaneously
choose their subscription prices for new consumers . Each firm takes
into account the fact that attracting new consumers today by lowering
current subscription prices will result in larger future congestion rates
and hence fewer new subscribers in the future.1

The duopolistic competition is modelled here as a state-space dif-
ferential game where the firms strategies and the customers expec-
tations depend only on the “payoff-relevant state”, i.e., the market
shares. In other words we analyze the Markov Perfect Equilibria of
our game where not only the strategies but also the expectations are
Markovian (Karp,1996, and Driskill, 2001). For simplicity, we restrict
our attention to Linear Markov Perfect Equilibria in which both the
firms’ strategies and the consumers’ expectations are linear in the state
variables (the market shares). The reasons for this choice of focus are
two-fold. Firstly, the demand function is linear in the control vari-
ables (the prices), while the profit function is quadratic in the control
variables and linear in the state variables. Our game being linear-
quadratic (the objective function of each firm is linear-quadratic and
concave in the state and control variables, the equation of motion is lin-
ear), it is natural to search for linear equilibrium strategies. Secondly,
even though it is known that in general there may exist non-linear
strategies that solve linear-quadratic differential games, such strate-

1Note that a different interpretation, in which the negative consumption ex-
ternalities follow from social and not technological reasons, is equally consistent
with our model. In this interpretation two firms produce horizontally differentiated
durable goods and consumers’ behavior is characterized by vanity and subject to
snob effects (for a static model along these lines see Grilo, Shy and Thisse (2001)).
A fixed fraction of randomly chosen durable goods in the hands of the consumers
have to be replaced at each point of time.
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gies are technically difficult to compute analytically. Furthermore, it is
true that, in linear-quadratic problems, best replies to linear strategies
are linear.
We show that, in equilibrium, other things being equal, a firm

with a larger market share charges a lower price. Intuitively this is the
consequence of a higher congestion rate which the customers rationally
expect to prevail at this firm. When the firms are identical, i.e., when
the sizes of their facilities are the same, we show that the steady-state
prices are higher than what they would be if there were no congestion
effects. At first this might seem counter-intuitive: congestion means
lower quality, and would this not be translated into lower consumer
valuation and thus lower price? Upon reflection, the higher price is
due to the fact that lower quality softens competition between the
duopolists. The presence of future negative consumption externalities
softens duopolistic price competition. There is little incentive to cut
prices in order to attract more new consumers when eveyone knows
that this will result in higher future congestion rates which will render
the firm less attractive for future new consumers. The other results we
obtain are about the implications of different facility sizes. We show
that the firm which has the larger capacity has larger steady-state
market share, higher steady-state price and lower steady-state rate of
congestion.
Our paper is related to a paper by Grilo, Shy and Thisse (2001) who

deal, in a static framework, with price competition when consumer be-
havior is characterized by conformity or vanity. They analyze the case
where the pleasure of consuming a good is affected for social reasons
by the consumption choices of the others. When the utility from buy-
ing the good increases (respectively, decreases) with the number of
the consumers they speak of “conformity” (respectively,“vanity”). In
the case of vanity, the existence of negative consumption externalities
softens price competition.
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2. The model

2.1. Assumptions and notation

We consider two firms located at the two extremities of the interval
[0, 1] , firm 1 at 0 and firm 2 at 1. At time t, they post subscription
prices p1(t) and p2(t). There is a continuum of consumers of mass 1
uniformly distributed over the interval [0, 1] . Firm i (= 1, 2) provides
to its customers the access to its facility. The capacity Ki of firm
i is fixed, for simplicity. Consumers face a constant probability of
death2 equal to µ. (A non-constant probability of death would be
more realistic but would overburden the analysis.) Thus, at each point
of time, consumers exit the market at the rate µ. We assume they are
replaced by an equal flow of new consumers. The population is thus
stationary. Consumers make their choice of firm only at the time they
enter the market.
A consumer located at x ∈ [0, 1] bears a “travel cost” of τx2 per

unit of time if he chooses firm 1, and τ(1 − x)2 if he chooses firm 2.
This travel cost may be interpreted as a utility loss from the divergence
between the type of the facility of his club and his “ideal” (most pre-
ferred) facility type. The travel cost means that the two firms provide
differentiated services to the consumers. We have chosen the quadratic
travel cost for tractability. An alternative specification, linear travel
cost, is also tractable, but computation would be more awkward. We
conjecture that the results would be much similar. (If we were to al-
low firms to choose locations in the interior of the interval [0, 1] , some
serious problems would arise with linear travel cost; see d’ Aspremont
et al. 1979.)
We assume in addition that there is a negative consumption ex-

ternality. Let Di(t) denote the market share of firm i at time t. The
consumption externality, incurred at each point of time, is measured
in monetary units by A

Ki
Di(t) where A is a negative parameter. (The

limiting case where A = 0 corresponds to zero externality.) Such a

2We thank a referee for suggesting this overlapping-generations interpretation.
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consumption externality may represent the congestion effects, i.e., the
quality of the service decreases with the number of users. For exam-
ple, the greater the number of customers who log in, the slower the
connection . We specify that a consumer’s utility decreases linearly
with increased rate of congestion. (The linearity assumed here does
not seem inappropriate for internet traffic, though it would be highly
inappropriate for highway traffic.) For a same number of customers,
one incurs a lower utility loss by choosing a firm with a larger ca-
pacity. In the following for notational simplicity we define ai = A

Ki
.

(Note that a is negative.) We call ai firm i’s congestion coefficient,
and aiDi(t)/A its congestion rate at time t. In our model, both a1
and a2 are exogenous.
It is convenient to define amin as the smaller (i.e., the more nega-

tive) of the two negative numbers a1 and a2:

amin = min {a1, a2} < 0 (1)

The average congestion coefficient is defined as

a =
a1 + a2
2

< 0 (2)

As we shall see, it turns out that a number of equilibium parameters
depend on a (and not on a1 and a2 separately).

2.2. Consumer’s choice and market demand

Let xi denote the location of firm i. Since we assumed the two
firms are located at the two extremities, it follows that x1 = 0 and
x2 = 1. Let r > 0 be the discount rate. For a consumer located at
x who enters the market at time t, his life-time utility from being a
customer of firm i (net of congestion cost and transportation cost) is

Wi(x, t) =

Z ∞

t

[U + aiDi(v)− τ(x− xi)
2]e−(r+µ)(v−t)dv (3)

where U is the utility per unit of time from consuming one unit of the
service if congestion and transport cost are both zero. The sum r+ µ
is called the effective discount rate.
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His life-time surplus if he chooses firm i is

Vi(x, t) =Wi(x, t)− pi(t) (4)

The consumer compares Vi(x, t) with Vj(x, t) and subscribes to the
firm that gives the greater life-time surplus, if it is non-negative. (If
it is negative, the consumer will subscribe to neither firm.)
Since both Di and (x− xi)

2 are bounded above by 1, and amin ≤
ai < 0, it follows that

Wi(x, t) ≥ U + amin − τ

r + µ
.

We assume that U is sufficiently large, as specified below:
Assumption 1:

U + amin − τ

r + µ
> 0 (5)

This assumption implies that for given population size, the sum of
congestion cost and travel cost is not high enough to deter consumers
from patronizing either firm. It is a standard assumption in Hotelling
models of horizontal differentiation (see d’Aspremont, Gabszewicz and
Thisse, 1979, for instance). It rules out the not very interesting case
where each firm would be a local monopolist.
Let us define the lifetime congestion at firm i for the new consumers

at t as

Λi(t) =

Z ∞

t

Di(v)e
−(r+µ)(v−t)dv ≥ 0 (6)

This expression, when multiplied by ai < 0, represents the discounted
value of the future stream of congestion externalities that the consumer
will experience at firm i from time t onwards. Note that Λi(t) has two

important properties: first, Λi(t) ∈
h
0, 1

r+µ

i
because Di(t) ∈ [0, 1] ,

and second, Λ1(t)+Λ2(t) = 1
r+µ
, becauseD1(t)+D2(t) = 1.We assume
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that consumer expectations are rational. It is as if the consumer could
perfectly forecast the future time path of congestion at each firm.
Equation (4) can then be more conveniently written as

Vi(x, t) =
U − τ(x− xi)

2

r + µ
+ aiΛi(t)− pi(t) (7)

Thus, at time t a new consumer located at x will find that choosing
firm i is optimal if

a1Λ1(t)− p1(t)− τx2

r + µ
≥ a2Λ2(t)− p2(t)− τ(x− 1)2

r + µ
(8)

and choosing firm 2 is optimal if the inequality is reversed. If x is such
that (8) holds with equality, the consumer will be indifferent between
the two firms.
For given p1(t), p2(t), Λ1(t), since Λ2(t) = 1

r+µ
−Λ1(t), there exists

a unique number ex(t) = ex(p1(t), p2(t), Λ1(t)) such that expression (8)
holds with equality if and only if x takes the value ex(t), where

ex(t) = ·1
2
+
(p2(t)− p1(t))(r + µ) + 2aΛ1(t)(r + µ)− a2

2τ

¸
where a is given by (2).
Thus if ex(t) ∈ [0, 1] then new consumers at time t who are located

to the left of ex(t) will choose firm 1 and those who are located to the
right of ex(t) will choose firm 2. (If ex(t) < 0, then all new consumers
at time t will choose firm 2, and if ex(t) > 1 then all new consumers
will choose firm 1.) It is easy to see that

−τ ≤ (p2(t)− p1(t))(r + µ) + 2aΛ1(t)(r + µ)− a2 ≤ τ (9)

Recalling that the rate of flow of new consumers is µ, it follows
that the rate of new subscriptions to firm 1 is d1(t) = µex(t) and, for
firm 2, d2(t) = µ [1− ex(t)], provided that ex(t) ∈ [0, 1], i.e., provided
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that (9) holds3. Note that d1(t) + d2(t) = µ which is equal to the flow
of new consumers (since the total population is normalized at unity).
Intuitively, no firm will have an incentive to set its price such thatex(t) < 0 or ex(t) > 1. So it is reasonable to assume that (9) holds

along the equilibrium path. Then the instantaneous demand di(t) to
firm i is4

di(t) = µ

·
1

2
+
(pj(t)− pi(t))(r + µ) + 2aΛi(t)(r + µ)− aj

2τ

¸
(10)

where i, j = 1, 2, i 6= j.
The net rate of change in the market share Di of firm i consists of

the flow of new subscriptions minus the exit flow µDi :

dDi(t)

dt
= di(t)− µDi(t) (11)

Let ki be the firm i’s cost of servicing a customer. Then firm i’s
net cash flow at time t is

πi(t) = pi(t)di(t)− kiDi(t) (12)

The firms compete over an infinite horizon. Firm i chooses the time
path of price pi(t) to maximize its present valueWi =

R∞
0

πi(t)e
−rtdt .

In what follows, we assume k1 = k2 = k = 0 for simplicity. The basic
results would remain unchanged if k > 0.

3If condition (9) does not hold, then we have to deal with an instantaneous
market where all new subscribers strictly prefer the same firm, say firm i. This
cannot happens for optimizing firms, because firm i could improve its profit by
raising pi(t).

4If we wish to be completely general, we could proceed as follows. Given the
set S = {0, 1, ex}, define mid {0, 1, ex} to be ex if ex ∈ [0, 1], to be 0 if ex < 0, and
to be 1 if ex > 1. Then the flow demand facing firm 1 is d1(t) = µmid {0, 1, ex(t)}
and that facing firm 2 is d2(t) = µ − d1(t).In what follows, we shall ignore this
complication.
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3. Equilibrium expectations and strategies

We consider here the Markov Perfect Equilibria (MPE) of our
game. The concept of Markov Perfect Equilibrium has several merits.
We refer the readers to Fudenberg and Tirole (1991, sections 4.7 and
13.1) and Dockner et al. (2000) for fuller discussions of these mer-
its. At these equilibria the strategies of the firms and the consumers
expectations depend only on the payoff relevant information, i.e., on
the physical state of the world. We begin by defining the concepts of
Markov Expectation Rules for consumers, and Markov Pricing Strate-
gies for firms. Unless otherwise indicated, all proofs are relegated to
the Appendix.

3.1. Markov Expectation Rules

Recall that each new consumer at time t must compare the life-
time surplus if he subscribes to firm 1 with the lifetime surplus if he
subscribes to firm 2. In general, consumers form their expectations
Λe
1(t) and Λ

e
2(t) of the actual values Λ1(t) and Λ2(t). Expectations are

said to be rational if Λe
i (t) = Λi(t).

AMarkov Expectation Rule is a pair of functions (F1(.), F2(.)) that
generate the values Λe

1(t) and Λ
e
2(t) from what the consumer currently

observes, namely the market shares D1(t) and D2(t). This pair of
functions maps any observed point (D1(t), D2(t)) on the unit simplex

∆ = {(D1(t),D2(t)) | 0 ≤ Di(t) ≤ 1 , D1(t) +D2(t) = 1}
to a point (Λe

1(t),Λ
e
2(t)). Thus

Λe
i (t) = Fi(D1(t),D2(t))

Since D1 = 1−D2, we can write

Λe
i (t) = fi(Di)

In what follows, to sharpen our focus, we assume that all consumers
use the same expectation rule. Introducing heterogeneity in expecta-
tion rules could be interesting, but is beyond the scope of this paper.
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In the special case where the expectation rule is linear, we obtain
the following Lemma:

Lemma 1: Linear Markov Expectation Rules that are rational
must be of the form

Λe
i (t) = δi + biDi(t) ≡ fi(Di(t)) for i = 1, 2 (13)

where

0 ≤ δi ≤ 1

r + µ
− b (14)

b1 = b2 = b > 0 (15)

b =
1

r + µ
− (δ1 + δ2) (16)

Remark: Lemma 1 implies that, under rational expectations, con-
sumers extrapolate from current market shares: the higher a firm’s
current market share, the greater is the expected life-time congestion
rate at that firm’s facility.

3.2. Markov Pricing Strategies

A pricing strategy for firm i is said to be Markovian if it is a rule
which tells firm i what price to charge at time t, based only on the
knowledge of its current market share Di(t) and the current market
share of the other firm. We denote a Markov pricing strategy by Pi(.).
It is a function that maps any observed point (D1(t),D2(t)) on the
unit simplex ∆ to a point pi(t) on the real number line. Thus

Pi(D1(t),D2(t)) = pi(t)

Again, since D1 +D2 = 1, we can write

Pj(Di,Dj) = Pj(1−Dj ,Dj) ≡ epj(Dj) ≡ epj(1−Di)
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Given a pricing strategy epj(1−Di) adopted by firm j, and given an
expectation rule (fi(Di), fj(Dj)) adopted by all consumers, a pricing
strategy ep∗i (Di) is said to be firm i’s best reply to both the pricing
strategy epj(.) and the expectation rule (fi(.), fj(.)), if for any initial
market share Di(0) this pricing strategy yields a time path pi(t) that
solves the optimal control problem

max
pi(t)

Z ∞

0

e−rtπi(t)dt (17)

subject to
Ḋi(t) = di (t)− µDi(t)

0 ≤ Di(t) ≤ 1
where

di(t) = µ

½
1

2
+
[epj(1−Di(t))− pi(t)] (r + µ) + 2afi(Di(t))(r + µ)− aj

2τ

¾
(18)

and πi(t) = pi(t)di(t).

Definition 1 A Markov perfect equilibrium is a quadruple of func-
tions (ep∗1(.), ep∗2(.),f1(.), f2(.)) such that (i) ep∗i (.) is firm i’s best reply to
both the pricing strategy epj(.) and the expectation rule (fi(.), fj(.)),for
i, j = 1, 2, i 6= j, and (ii) expectations are rational in the sense that,
for i = 1, 2,

fi(Di(t)) ≡
Z ∞

t

Di(v)e
−(r+µ)(v−t)dv

where

dDi(t)

dt
= di(t)− µDi(t) (19)

with di(t) given by (18).
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In what follows, we will focus on Linear Markov Perfect Equilibria
(LMPE) of our game, i.e., Markov perfect equilibria where the firms’
strategies and the consumers’ expectation functions are linear and
autonomous. The reasons for this choice have been explained in the
introduction.
The linear Markov pricing strategies will be written in the form

pj(t) = epj(Dj(t)) = αj + sjDj(t) (20)

In what follows, we solve for the constants b, δj, αj and sj for j = 1, 2.

3.3. The optimal control problem of each firm

Each firm i has to solve the optimal control problem (17), given the
strategy epj(1−Di), j 6= i, and the expectation rule (fi(Di), fj(Dj)).
Here, we focus on the case where firm ı́’s rival follows a linear Markov
pricing strategy, given by (20) and the consumer expectation rule is
linear. Thus we face a standard infinite horizon optimal control prob-
lem with a linear-quadratic structure5. Introducing the current-value
co-state variable λi(t) we define the current-value Hamiltonian for firm
i as

Hi(t) = (pi(t) + λi(t))di(pi(t),Di(t))− µλi(t)Di(t)

where
di(pi(t),Di(t)) =

µ

½
1

2
+
[αj + sj(1−Di(t))− pi(t)](r + µ) + 2a[δi + bDi(t)](r + µ)− aj

2τ

¾
.

The necessary conditions include:

λi(t) =
τ − aj
r + µ

+αj + sj(1−Di(t))− 2pi(t)+ 2a[δi+ bDi(t)](21)

5For theorems stating necessary and sufficient conditions, see, for example,
Leonard and Long (1992, Chapter 9). Alternative sufficient conditions are given
in Dockner et al. (2000, Section 3.6).
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dλi(t)

dt
= (r + µ)λi(t)− [pi(t) + λi(t)]

µ(r + µ)

2τ
(2ab− sj) (22)

A similar set of equations is obtained from firm j’s optimal control
problem. Using these two set of equations, we get the following lemma:

Lemma 2: (Equilibrium requirements for firms, given the
consumer’s parameters δ1, δ2 and b)
Given b, δ1 and δ2 of the consumers expectation rule, any pair of

linear pricing strategies epi(Di) = αi+ siDi that solve the optimization
problem of the firms must have the following properties (i) s1 = s2 = s,
where s satisfies the equation

2ab[(r+2µ)τ−2abµ(r+µ)]+s[8abµ(r+µ)−3(r+2µ)]−4µ(r+µ)s2 = 0(23)
and (ii) α1 and α2 satisfy the two equations

[τ − 2µ(ab− s)] [(s+αj+2aδi)(r+µ)−aj]−2(r+µ) [τ − µ(ab− s)]αi = 0(24)

for i = 1, 2, i 6= j.
Remark: It is interesting that s1 = s2 even when the firms have

different capacities.

3.4. Equilibrium Linear Markov Expectation Rule

We now show that the requirement that expectations be rational
implies certain restrictions on the constants δ1, δ2 and b of the linear
expectation rule.We obtain the following result:

Lemma 3: (Equilibrium requirements for consumers, given
the firms parameters α1, α2 and s
Given α1, α2 and s, the rational expectation requirement that

Λe
i (t) = Λi(t) can be satisfied by a linear expectation rule if and only
if the constants δi and b satisfy the following equations. For b :

−(brτ − τ + brsµ+ 2bτµ+ bsµ2) + ab2µ(r + µ) = 0 (25)
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For δi :

δi =
bµ(rs+ τ + sµ− aj + (r + µ)(αj − αi))

2(r + µ)(abµ− τ)
, i, j = 1, 2, i 6= j(26)

A direct implication of Lemmas 2 and 3 is
Lemma 4: (Difference in intercepts of the pricing strate-

gies)
Under rational expectations and linear strategies, differences in

capacities are reflected in differences in the intercepts of the pricing
strategies.
Proof:

Using equations (26) and subtracting δ2 from δ1 one obtains

δ1 − δ2 =
bµ[a1 − a2 − 2(r + µ)(α1 − α2)]

2(r + µ)(τ − abµ)
(27)

Subtracting the second equation (24) from the first and substitut-
ing the right-hand side of (27) for δ1 − δ2 in the resulting equation,
we obtain:

α1 − α2 = − [τ + 2(s− ab)µ](a1 − a2)

(r + µ)(−3τ + 5abµ− 4sµ) (28)

Remark: It follows that, under rational expectations, the two
firms’s linear equilibrium strategies are identical (i.e., pi = α+ sDi) if
and only if their capacities K1 and K2 are identical (so that a1 = a2).
The same condition is necessary and sufficient for the equality δ1 = δ2.

3.5. A Complete Characterization of Linear Markov Perfect Equilib-
rium

We now solve for a Linear Markov Perfect Equilibrium. To do
so, we use the six equations (23), (24), (25), (26), to solve for the six
unknowns, b, s, α1, α2, δ1 and δ2. It turns out that the equations can be
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solved sequentially. First, the two equations (23) and (25) determine
b∗ and s∗, and their values are dependent on the average congestion
coefficient a (not on the individual a1 and a2). Second, α∗1, α

∗
2, δ

∗
1 and

δ∗2 are dependent on b∗ but not on s∗.

Lemma 5: The equilibrium value b∗ is unique, and has the fol-
lowing properties: (i) it is the unique solution in the interval

³
0, 1

r+µ

´
of the cubic polynomial

8τ−10bτ(r+2µ)+2b2τ(r+2µ)2+2ab3µ(r2+3rµ+2µ2) = 0(29)

and (ii) b∗ ≤ 1
r+2µ

.
The equilibrium value s∗ is

s∗ = s(b∗) =
−2τ(−1 + b∗r + 2b∗µ) + 2ab∗2µ(r + µ)

2b∗µ(r + µ)
< 0 (30)

Thus, in a LMPE, the higher is the current market share Di(t), the
lower is the current price pi(t).
It remains to solve for α∗1, α

∗
2, δ

∗
1 and δ∗2 . Recall that Lemma 1

states that δ1 and δ2 must be positive. It turns out that this property
can be satisfied in a LMPE if and only if the difference between the
capacities of the two firms is bounded, in absolute value, by a term
that depends on the average congestion rate a. This will be made
precise by the following assumptions.

Assumption 2: The absolute value of the difference between a1
and a2 does not exceed ω, wherewhere

ω ≡ [1− b∗(r + µ)]

·
τ [4− b∗(r + 5µ)]
2µ(r + µ)b∗2

− 2a
¸

(31)

Remark: ω > 0 because of part (ii) of lemma 5. Assumption 2
implies

a2 ≤ a1 + ω (32)
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and

a1 ≤ a2 + ω (33)

Inequality (32) states that the negative number a2 is algebraically
smaller than the sum of ω and the negative number a1. It is is satisfied
if either (i) a1 is closer to zero than a2, or (ii) a1 is more negative than
a2 but not substantially so. It will be seen that (32) is necessary and
sufficient for δ∗1 > 0. Similarly, for δ

∗
2 > 0, we need inequality (33).

Proposition 1 Under assumptions 1A and 1B, there is a unique Lin-
ear Markov Perfect Equilibrium. It has the following properties:

1. The rational expectation rule is fi(Di) = δ∗i + b∗Di, i = 1, 2,
where b∗ is given in Lemma 5, and where δ∗i = δi(b

∗) > 0, and

δi(b) =
1− b(r + µ)

2(r + µ)
− b2µ(ai − aj)

4ab2µ(r + µ) + 4τ(−4 + b(r + 5µ))
(34)

2. The pricing strategies are pi = α∗i + s∗ Di, i = 1, 2, where s∗ < 0
and is given in Lemma 5, and where α∗i = αi(b

∗), and

αi(b) = H(b) +K(b) (ai − aj) (35)

whereH(b) = τ 2−b(3r+5µ)+b
2(r+µ)(r+3µ)

b2µ(r+µ)2
andK(b) = −τ(2−b(r+3µ))

2(r+µ)[ab2(r+µ)+(b(r+5µ)−4)τ ]
and H(b∗) > 0, K(b∗) > 0.

Remark: Conditions (32) and (33) which are equivalent to δi ≥ 0,
i = 1; 2 (see condition (14)), mean simply that for the existence of
a LMPE the difference between the capacity levels of the two firms
should not be too great. This condition is trivially satisfied in the
symmetric case when a1 = a2.When conditions (32) and (33) are not
satisfied, there does not exist a linear MPE. In that case, it is an open
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question whether there exists a non-linear MPE, possibly such that
the firm with the larger capacity becomes a monopolist in finite time.
The equilibrium strategies of both firms are such that they reduce

their prices as their market shares increase (this is the meaning of
s∗ < 0). The highest price a given firm i will set is the price which it
will choose just after entering the market, when its stock of customers
Di is zero. This follows intuitively from the negative consumption
externality which we assume. New customers rationaly expect that
the entrant will for a while offer a better service (i.e, a lower congestion
rate) than the incumbent. This allows the entrant to set initially high
prices. After entry, the price of the entrant will steadily decrease while
the price of the incumbent will steadily increase as the market shares
and the congestion rates tend toward their steady state values.
If originally, there is only one firm in a monopoly steady state

equilibrium, the unexpected entry of a new firm will cause the price of
the incumbent to jump down from its steady state value, and afterward
his price will rise steadily; thus there is an overshooting. Regarding
the fixed component of the firms’ price strategies, namely the αis, it
is worth noting that they are always strictly positive in the symmetric
case when a1 = a2, i.e., when the capacities K1 and K2 of the firms
are equal. In such a case dumping (i.e., setting its price pi below
its marginal cost) is not optimal for a new entrant. However it may
be optimal for an incumbent i which initially covers all the market
(i.e. Di = 1) to set a price below marginal cost immediately after the
entry of a competitor. This should not be seen as an entry deterrence
strategy, but rather as the consequence of a very high initial congestion
rate, relative to that of the new entrant, which makes the incumbent
unattractive from the customers’ viewpoint.

Proposition 2 When the firms have identical capacities (i.e,. a1 =
a2 = a) the steady state prices in the unique Linear Markov Perfect
Equilibrium are given by

bpi = ab∗3µ(r + µ)2 + τ [4− b∗(5r + 9µ) + b∗2(r + µ)(r + 4µ)]

2b∗2µ(r + µ)2
(36)
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Moreover bpi > τ
r+µ

> 0.

It is very easy to see that bpi → τ
r+µ

as a→ 06. This result means
that without the negative consumption externality, i.e., in the absence
of congestion effects, the firms would charge steady-state prices equal
to four times the present value of the travel cost of the marginal con-
sumer (located at distance 1/2):

bpi = (4) τ(1/2)2
r + µ

The introduction of negative consumption externalities increases the
equilibrium price above this value. The competition between firms
in the presence of congestion effects is less intense than what would
prevail in the absence of such negative consumption externalities. The
fact that customers value negatively the present and future market
share of a firm does indeed lead to a softening of competition. The
intuition behind this result is as follows. The firms themselves value
less their present and future market shares since congestion would
prevent them from posting high prices in the future. Consequently
they have less incentive to cut present prices in an attempt to attract
more new customers. It is rather clear that positive consumption
externalities would have the opposite effect.
A somewhat surprising implication of this result is as follows. Sup-

pose that initially the firms have K1 = K2 =∞, so that a1 = a2 = 0,
and bpi = τ

r+µ
. Then the firms have an incentive to collude on an equal

reduction of their capacities, because this would result in strictly neg-
ative ai and aj, and consequently higher prices and higher profits.

Proposition 3 below gives some results on the differences between
firms’ strategies in the case where firms’ capacities differ. We denote
by a hat the steady state values of the variables.

6From equation (29) b∗ → 1
r+2µ as a→ 0.
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Proposition 3 In the unique Linear Markov Perfect Equilibrium the
firm with the larger capacity

1. has the greater α, i.e.

α1 − α2 = 2K(b
∗)(a1 − a2) (37)

where K(b∗) > 0

2. has the larger steady state market-share, i.e.,

bD1 − bD2 = Z(b∗)(a1 − a2) (38)

where Z(b) = b2µ(r+µ)
(−1+b(r+µ))(ab2µ(r+µ)+4τ(−4+b(r+5µ))) and Z(b

∗) > 0.

3. has the higher steady state price

bp1 − bp2 =W (b∗)(a1 − a2) (39)

whereW (b) = ab3µ(r+µ)2+τ(4−b(5r+9µ)+b2(r+µ)(r+4µ))
2(r+µ)(−1+b(r+µ))(ab2µ(r+µ)+4τ(−4+b(r+5µ))) andW (b

∗) >
0.

4. has the lower steady state rate of congestion, i.e.

bc1 − bc2 = U(b∗)(a1 − a2) (40)

where U(b) = 1
A (r+2µ)

( µ τ(4−4b(r+2µ)+3b2(r+µ)(r+2µ))
4(−1+b(r+µ))(ab2µ(r+µ)+4τ(−4+b(r+5µ))) and U(b

∗) <
0.

All these results are intuitive: a firm with a larger capacity has a
larger market share but nevertheless a lower rate of congestion which
allows it to set a higher price.
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Our final proposition below, the proof of which is straightforward,
states that the rate convergence to the steady state is faster, the more
important are the congestion effects, i.e., the greater is the absolute
value of a. This means that in a market where there is congestion,
the entrant’s market share increases more quickly than in a market
without congestion effects. This result has as its parallel a result in
Doganoglu (2000) in a model without rational expectations, according
to which positive consumption externalities slow down convergence
toward the steady state.

Proposition 4 At the unique Linear Markov Perfect Equilibrium the
market share of firm i evolves according to

Di(t) = (Di(0)− δi(b
∗)(r + µ)

1− b∗(r + µ)
)e(r+µ−

1
b∗ )t +

δi(b
∗)(r + µ)

1− b∗(r + µ)

where δi(b) is given by equation (34). The rate of convergence to
the steady state market share bDi =

δi(b∗)(r+µ)
1−b∗(r+µ) is equal to

1
b∗ − (r +

µ) and is decreasing in b∗. From equation (29) b∗ is increasing in
a
τ
: convergence to the steady state is faster, the more important are

the congestion effects (a has a bigger absolute value) and the more
differentiated are the products (τ is larger).

4. Concluding remarks

By setting up a model of dynamic oligopolistic competition with
differentiated products involving congestion externalities, we have been
able to obtain a number of predictions. For example, we showed how,
upon the entry of a new firm, an incumbent would subtantially cut
his price from the monopoly price, and let it rise again gradually, to a
lower steady tate level. Such an overshooting reaction is not an entry-
deterrence strategy. Rather, it is a subgame perfect best response to
the linear Markovian strategy of the entrant. Our model also shows
that competition is softer, the greater is the congestion effect. This
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suggests that if firms can collude on capacity choices, they will choose
smaller capacities (even if the marginal cost of capacity is zero). This
is in keeping with the standard theoretical result that market power
leads to the underprovision of goods.
Several extensions of the model seem feasible and worthwhile. A

natural extension is the endogenisation of capacities. Another exten-
sion would be to allow existing consumers to switch brands, in re-
sponse to price incentives. A third extension would be to endogenize
the number of firms.

Acknowledgements: Wewould like to thank Hassan Benchekroun,
Kim Long, and Koji Shimomura for discussions and comments.
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Appendix

Proof of Lemma 1
Since the actual values Λi(t) are defined by (6), for rational expec-

tations to hold, we require that the functions Fi(.) satisfy the following
properties

0 ≤ Fi(D1(t),D2(t)) ≤ 1

r + µ
(41)

F1(D1(t),D2(t)) + F2(D1(t),D2(t)) =
1

r + µ
(42)

for all (D1(t),D2(t)) ∈ ∆.
Since there are only two firms, condition (42) implies that once the

function F1(.) is specified, we can infer the function F2(.) because of
the functional dependence. Also, since D2 = 1−D1, we can write

Λe
1(t) = F1(D1(t),D2(t)) = F1(D1(t), 1−D1(t)) ≡ f1(D1(t))

and

Λe
2(t) =

1

r + µ
−F1(D1(t), D2(t)) =

1

r + µ
−f1(D1(t)) =

1

r + µ
−f1(1−D2(t)) ≡ f2(D2(t))

Rational expectations mean Λe
i (t) is equal to Λi(t), i.e., for all t,

Λe
i (t) = fi(Di(t)) =

Z ∞

t

Di(v)e
−(r+µ)(v−t)dv ≡ Λi(t) (43)

The special case of interest is the linear expectation rule, where,
for D1 ∈ [0, 1]

0 ≤ f1(D1) = δ1 + b1D1 ≤ 1

r + µ
(44)

and, for D2 ∈ [0, 1]

f2(D2) =
1

r + µ
−f1(1−D2(t)) =

1

r + µ
−[δ1 + b1(1−D2)] ≡ δ2+b2D2
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It follows that b2 = b1 ≡ b and δ2 = 1
r+µ
− b− δ1.Then, setting D1 = 0

in (44), we obtain the restriction

0 ≤ δ1 ≤ 1

r + µ

and, setting D1 = 1 in (44), we obtain

0 ≤ δ1 + b ≤ 1

r + µ

which yields the restriction

b ≤ 1

r + µ
− δ1 ≤ 1

r + µ

Furthermore, the rational expectations requirement that Λe
i (t) = Λi(t)

implies the restriction that b ≥ 0. To see this, note that Λe
i (t) = Λi(t)

implies
Λ̇e
i (t) = Λ̇i(t)

which implies, from differentiating (43) with respect to time,

bḊi(t) = (r+µ)Λi(t)−Di(t) = (r+µ)Λ
e
i (t)−Di(t) = (r+µ) [δi + bDi(t)]−Di(t)

This gives us the differential equation

bḊi(t) = (r + µ) [δi + bDi(t)]−Di(t) (45)

Upon integration, we get

Di(v) =
δi(r + µ)

1− b(r + µ)
+

·
Di(t)− δi(r + µ)

1− b(r + µ)

¸
e
(r+µ)b−1

b
(v−t).

Substituting this Di(v) into (6) we get

Λi(t) =
δi

1− b(r + µ)
+ (Di(t)− δi(r + µ)

1− b(r + µ)
)

Z ∞

t

e−
1
b
(v−t)dv
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which is equal to Λe
i (t) = δi+bDi(t) if and only if b is strictly positive.

Proof of Lemma 2

Substituting for λi(t) in equation (22) using the right-hand side of
(21), and rearranging we obtain

dλi(t)

dt
= Ai +Bi Di(t) (46)

where the values of Ai and Bi are easy to compute.
In equation (21), replace pi(t) by αi + siDi(t), then differentiate

with respect to t we obtain

dλi(t)

dt
= [−sj − 2si + 2ab]dDi(t)

dt
(47)

In the equation (19) for dDi(t)
dt

let us substitute αi + siDi(t) for
pi(t). Then substitute the resulting expression for

dDi(t)
dt

in equation
(47) and rearrange in order to obtain

dλi(t)

dt
= Fi +Gi Di(t) (48)

where the values of Fi and Gi are easy to compute.
At a Linear Markov Perfect Equilibrium of the game it must be

that, at each t ≥ 0, and for i = 1, 2, Ai +Bi Di(t) = Fi +Gi Di(t). It
follows that Ai = Fi and Bi = Gi.

Equating Bi and Gi for i = 1, 2, yields two equations in s1 and s2 :

2ab[(r + 2µ)τ − 2abµ(r + µ)]− µ(r + µ)(s1 + s2)
2+

(s1 + s2)[4abµ(r + µ)− (r + 2µ)τ ]− si(r + 2µ)τ = 0 (49)

for i = 1, 2, j 6= i.
Subtracting the second equation from the first we obtain
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−(r + 2µ)(s1 − s2)τ = 0

Not surprisingly it turns out that s1 = s2 = s : the impact of a
firm’ s current market share on the price it sets is the same for both
firms, regardless of the difference in capacities. Now from equations
(49) we obtain the following equation for s :

2ab[(r+2µ)τ−2abµ(r+µ)]+s[8abµ(r+µ)−3(r+2µ)]−4µ(r+µ)s2 = 0(50)

Equating Ai and Fi for i = 1, 2, yields two equations in α1 and α2,

−2(r+µ) [τ − µ(ab− s)]αi+[τ − 2µ(ab− s)] [(s+αj+2aδi)(r+µ)−aj] = 0
which is (24).

Proof of Lemma 3

Replace the left-hand side of equation (45) by bdi(Di(t))− µDi(t)
where

di(Di(t)) = µ

·
1

2
+
(αj − αi) + s(1− 2Di(t))(r + µ) + 2a(δi + bDi(t))(r + µ)− aj

2 τ

¸
The resulting equation is of the form MDi +Ni = 0. Since this must
hold for all values of Di ∈ [0, 1], it follows that M = 0, i.e.,

−(brτ − τ + brsµ+ 2bτµ+ bsµ2) + ab2µ(r + µ) = 0 (51)

and Ni = 0, i.e.,

δi =
bµ(rs+ τ + sµ− aj + (r + µ)(αj − αi))

2(r + µ)(abµ− τ)

Proof of Lemma 5
From equation (51) one obtains

s(b) =
−2τ(−1 + br + 2bµ) + 2ab2µ(r + µ)

2bµ(r + µ)
(52)
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Substituting this value for s in equation (50) one obtains

8τ−10bτ(r+2µ)+2b2τ(r+2µ)2+b3(a1+a2)µ(r2+3rµ+2µ2) = 0(53)
Define X(b) = 4τ − 5bτ(r+2µ)+ b2τ(r+2µ)2+ b3aµ(r2+3rµ+2µ2).
This is a third-order polynomial in b.Let us show that this polynomial
has only one positive root smaller than 1

r+2µ
7.

Note first that X(−∞) = +∞ and X(+∞) = −∞ and X(0) =
4τ > 0. Note moreover that

X(
1

r + 2µ
) =

aµ(r + µ)

(r + 2µ)2
< 0

Differentiating X(b) with respect to b we obtain

X
0
(b) = −5τ(r + 2µ) + 2bτ(r + 2µ)2 + 3b2aµ(r + µ)(r + 2µ)

Let us denote ∆ the discriminant of X
0
(b) :

∆ = 4τ 2(r + 2µ)4 + 60τ(r + 2µ)2aµ(r + µ)

There are three possible cases, first the case where ∆ is equal zero,
then the case where ∆ is strictly positive, and finally the case where
∆ is strictly negative.
(i) ∆ = 0 or, equivalently, a = − τ(r+2µ)2

15µ(r+µ)
,in which case X 0(b) = 0

for only one value of b which is equal to −τ(r+2µ)
3aµ(r+µ)

.

This value corresponds to an inflection point of the function X(b)
and X 0(b) < 0 for all other values of b. It follows that there is only one
value of b such that X(b) = 0. Call this value b∗. Since X(0) > 0 and

X( 1
r+2µ

) < 0 this value belongs to the open interval
³
0, 1

r+2µ

´
.

(ii) ∆ < 0 or, equivalently, a < − τ(r+2µ)2

15µ(r+µ)
, in which case there are

no real values of b such that X
0
(b) = 0. X(b) is everywhere strictly

7Note that this amounts to showing the uniqueness of the LMPE since the
equilibrium values of s, α1, α2, δ1 and δ2 are unambiguously defined as functions
of b.
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decreasing in b, there is only one real value of b such that X(b) = 0
and, by the same argument as above, this value belongs to the open
interval

³
0, 1

r+2µ

´
.

(iii) ∆ > 0 or, equivalently, a > − τ(r+2µ)2

15µ(r+µ)

Here there are two real values b1 and b2 of b such that X
0
(b) = 0:

b1 =
−τ(2r+4µ)−

√
20aτµ(3r+3µ)+τ2(2r+4µ)2

2aµ(3r+3µ)
> 0

and

b2 =
−τ(2r+4µ)+

√
20aτµ(3r+3µ)+τ2(2r+4µ)2

2aµ(3r+3µ)
> 0

There is a a local minimum of X(b) at b2 and local maximum at
b1. It follows that the polynomial X(b), which has at least one strictly
positive real root, may have up to three real strictly positive roots.
When it has only one root we can use the same argument as before to
show that it must belong to the interval

³
0, 1

r+2µ

´
.

Let us consider the case where there are more than one real root.
Let us show that only the smallest root is lower than 1

r+2µ
. We have

already shown that X( 1
r+2µ

) < 0 : this implies that either all the
roots are lower than 1

r+2µ
or that only the smallest root satisfies this

condition. Suppose that all the roots are lower than 1
r+2µ

. It must then
be that b2 < b1 <

1
r+µ

.Define bI as the value of b such thatX 00(bI) = 0.

Then bI = − τ(r+2µ)
3aµ(r+µ)

. Clearly bI < 1
r+2µ

since b2 < bI < b1. Since

we are considering here the case when a > − τ(r+2µ)2

15µ(r+µ)
it must be that

bI >
5

r+2µ
> 1

r+2µ
, contradicting our initial assumption. We conclude

that there is one and only one root of X(b) which belongs to the open

interval
³
0, 1

r+2µ

´
.

Let us show that the equilibrium value, s(b∗), of s is < 0; obviously
the sign of s(b) is the sign of −2τ(−1+br+2bµ)+b2µ(r+µ)(a1+a2).
Let us multiply this last expression by b(r + 2µ) (which is strictly
positive) and then subtract X(b) (which equals zero at b = b∗) from
the resulting expression.
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We obtain a new polynomial that we’ll call S(b); the sign of S(b∗)
is the same as the sign of s(b∗) :

S(b) = −8τ + 12bτ(r + 2µ)− 4τb2(r + 2µ)2
S(b) has two positive roots, 1

r+2µ
and 2

r+2µ
, and is strictly negative

when b < 1
r+2µ

.

Proof of Proposition 1

The equilibrium values of δi as functions of b (see equations (34)),
i = 1, 2, are obtained by substituting for (αi − αj) in equation (27) its
value from equation (28), then substituting in the resulting equation
the value of s from equation (52) and finally solving the system of two
equations formed by the equation thus obtained (which gives δ1 − δ2
as a function of b) and equation (16)(which gives δ1+ δ2 as a function
of b).
The equilibrium values of αi as functions of b (equations (35), i =

1, 2, are obtained by solving the system of equations (24) for α1 and
α2, then substituting for s its value from equation (52) and finally for
δ1 and δ2 their values from equations (34).To show H(b∗) > 0, note
that the sign of H(b) is the sign of its numerator, 2 − b(3r + 5µ) +
b2(r + µ)(r + 3µ), which is itself strictly positive for all b ∈ [0, 1

r+2µ
),

with the immediate consequence that H(b∗) > 0.To show that K(b∗)
> 0, see the proof of Proposition 3¥

Proof of Proposition 2

1. The steady-state price bpi = αi(b
∗) + s(b∗) bDi where bDi is the

steady-state market share of firm i. When a1 = a2 it is straight-
forward to show that bDi =

1
2
. Substituting respectively for αi(b

∗)
and s(b∗) in the above equation their values from equations (52)
and (35) one obtains equation (36).

2. From equation (36)
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bpi− τ

r + µ
=

ab∗3µ(r + µ)2 + τ(4− b∗(5r + 9µ) + b∗2(r + µ)(r + 2µ)

2b∗2µ(r + µ)2

The sign of the RHS of the above equation is the sign of its
numerator. Since b∗ must satisfy X(b∗) = 0 subtract X(b∗)
from the numerator in order to obtain

sign[bpi − τ

r + µ
] = sign[−ab∗2µ(r + µ) + τ(1− b∗(r + 2µ))]

This sign is positive since, as shown in the Proof of Proposition
1, b∗ < 1

r+2µ
.¥

Proof of Proposition 3

1. It follows straightforwardly from Proposition 1 that α1 − α2 =
2K(b)(a1 − a2). Let us show that both the numerator and the
denominator ofK(b) are strictly negative at b = b∗ so thatK(b∗)
> 0. First, from proposition 1, b∗ < 1

r+2µ
= 2

2r+4µ
, so b∗ < 2

r+3µ

and the denominator of K(b) is strictly negative at b = b∗. Next,
b∗ < 1

r+2µ
= 4

4r+8µ
,so b∗ < 4

r+5µ
and the numerator of K(b) is

strictly negative at b = b∗.

2. At the steady-state dΛi
dt
= 0 =⇒ (r + µ)(δi + b bDi)− bDi = 0 =⇒bDi = δi

r+µ
1−b(r+µ) . It follows that

bD1 − bD2 =
r+µ

1−b(r+µ)(δ1 − δ2)

and we can now substitute for (δ1 − δ2) its value from equation
(34). It remains to show that Z(b∗) > 0 or equivalently, since
the numerator of Z(b)is strictly positive, that the denominator
of Z(b) is strictly positive at b = b∗. In the first place we know
that b∗ < 1

r+µ
=⇒ −1+b∗(r+µ) < 0. Then we know that ai < 0,

i = 1, 2, and we have already shown above that b∗ < 4
r+5µ

: it
follows that ab2µ(r + µ) + 4τ(−4 + b(r + 5µ)) < 0.
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3. The steady-state price bpi = αi + s bDi. Therefore bp1− bp2 = (α1−
α2) + s( bD1 − bD2) and we can substitute for (α1 − α2), s and
( bD1 − bD2) respectively their values from equations (37), (52)
and (38) in order to obtain equation (39). It remains to show
thatW (b∗) > 0 The sign of the denominator ofW (b) at b = b∗ is
the same as the sign of the denominator of Z(b) at b = b∗ which
has been shown to be positive. So the sign of W (b) at b = b∗ is
the sign of its numerator. Subtracting X(b)(= 0 at b = b∗) from
this numerator we obtain bµ(1− br)− ab2µ(r+ µ) which is > 0
since a < 0 and b < 1

r+µ
< 1

r
.

4. bci = bDi

Ki
= ai bDi

A
=⇒ bc1−bc2 = 1

A
(a1 bD1−a2 bD2) =

1
a

r+µ
1−b(r+µ)(a1δ1−

a2δ2). Substituting for δ1 and δ2 their values from equation (34)
we obtain bc1 − bc2 = 1

A
[ab

3µ(r+µ)2+τ(5−b(5r+9µ)+b2(r+µ)(r+5µ))
2(−1+b(r+µ))(ab2µ(r+µ)+4τ(−4+b(r+5µ))) ](a1 −

a2). Subtracting from the numerator
r+µ

2(r+2µ)
X(b) (= 0 at b = b∗)

we obtain equation (40). It remains to show that U(b∗) < 0. But
the numerator of U(b) is always strictly positive while the sign
of the denominator is the same as the sign of the denominator
of Z(b) at b = b∗ which has been shown to be positive. Since
A < 0 we conclude that U(b∗) < 0.¥
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