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Abstract:   
We provide new results regarding the identification of peer effects. We consider an 
extended version of the linear-in-means model where each individual has his own 
specific reference group. Interactions are thus structured through a social network. 
We assume that correlated unobservables are either absent, or treated as fixed 
effects at the component level. In both cases, we provide easy-to-check necessary 
and sufficient conditions for identification. We show that endogenous and exogenous 
effects are generally identified under network interaction, although identification may 
fail for some particular structures. Monte Carlo simulations provide an analysis of the 
effects of some crucial characteristics of a network (i.e., density, intransitivity) on the 
estimates of social effects. Our approach generalizes a number of previous results 
due to Manski (1993), Moffitt (2001), and Lee (2006). 
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1 Introduction

One key challenge for the empirical literature on peer effects is to identify what drives the corre-

lation between outcomes of individuals who interact together (see Blume and Durlauf (2005) and

Soetevent (2006) for recent surveys). In a pioneer study, Manski (1993) distinguishes between

endogenous effect, i.e., the influence of peer outcomes, exogenous (or contextual) effects, i.e., the

influence of exogenous peer characteristics, and correlated effects, i.e., individuals in the same

reference group tend to behave similarly because they are alike or face a common environment.

Manski shows that two main identification problems arise in the context of a linear-in-means

model.1 First, it is difficult to distinguish real social effects (endogenous + exogenous) from

correlated effects.2 Second, even in the absence of correlated effects, simultaneity in behavior

of interacting agents introduces a perfect collinearity between the expected mean outcome of

the group and its mean characteristics. This ‘reflection’ problem hinders the identification of the

endogenous effect from the exogenous effects.3

One basic assumption that is usually made in the linear-in-means model, as well as in most

peer effects models, is that individuals interact in groups. This means that the population is

partitioned in groups, and that individuals are affected by all others in their group and by none

outside of it. This interaction pattern is very particular and is not likely to represent most forms

of relationship between individuals. Indeed, there is increasing recognition among economists

and social scientists in general of the role played by social networks in structuring interactions

1 In the linear-in-means model, the outcome of each individual depends linearly on his own characteristics, on
the mean outcome of his reference group and on its mean characteristics. Most papers on social interactions
have considered the linear-in-means model since it is naturally related to the standard simultaneous linear model
(Moffitt 2001). Notable exceptions are Brock and Durlauf (2001a, 2003) that exploit non-linearities emerging from
discrete choice models to identify endogenous from exogenous effects under the assumption of no correlated effects,
Krauth (2006) that extents Brock and Durlauf (2001a) to account for correlated effects, Glaeser, Sacerdote and
Scheinkman (1996) that provide a non-parametric test of the existence of social interaction effects, and Fortin,
Lacroix and Villeval (2006) that use a mixed discrete-continuous model with group-specific fixed effects. Brock
and Durlauf (2001b) provide a careful analysis of identification in both linear-in-means and discrete choice models.

2Empirical studies have notably addressed this problem by exploiting data where individuals are randomly
assigned to groups (removing any correlated effects), e.g., Sacerdote (2001) and Zimmerman (2003), by using
instrumental variables, e.g., Evans, Oates and Schwab (1992) and Graham and Hahn (2005), or by assuming that
correlated effects are time-invariant and estimating a group specific fixed effects model using panel data, e.g.,
Hanushek et al. (2003).

3Empirical studies have addressed this issue in many ways: for instance by assuming that only one type of social
effect exists (endogenous or exogenous), e.g., Graham and Hahn (2005), by assuming that there exists an individual
characteristic that affects outcome but which does not play the role of a contextual variable or more generally, by
assuming the existence of an instrumental variable, e.g., Gaviria and Raphael (2001) and Hanushek et al. (2003).
These assumptions are often ad hoc and in any case cannot be tested when the model is exactly identified.
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among agents. A growing body of theoretical work explores how individual incentives give rise

to networks and, in turn, can be shaped by them (e.g., see Jackson 2006). At the empirical level,

a few recent studies exploit datasets possessing rich information on relationships between agents

in order to provide cleaner evidence on social effects.4 Network datasets are especially valuable

to determine the appropriate reference groups likely to influence an individual’s behavior. It is

thus natural to analyze the problem of identification under more general assumptions.

Our approach is inspired from the literature in spatial econometrics (e.g., see Anselin et al.

2004). We consider an extended version of the linear-in-means model where each individual has his

own specific reference group, defined by the individuals whose mean outcome and characteristics

influence his own outcome. Interactions are thus structured through a directed social network

(e.g., Wasserman and Faust 1994). We show that relaxing the assumption of group interactions

generally permits to separate endogenous and exogenous effects. Therefore, the second negative

result of Manski (1993) is not robust to reference group heterogeneity. This result is important

since distinguishing between both peer effects is necessary to evaluate the impact of policies on

outcomes of networks with different structure. It also helps to detect which mechanism is at

work within a network.5 More generally, inference on parameters with behavioral interpretation

requires estimates of the structural form of the model.

Our main objective is to characterize the networks for which endogenous and exogenous

effects are identifiable. We determine these structures both in the absence of correlated effects

and when controlling for correlated effects in the form of component fixed effects.6 In both cases,

we provide easy-to-check necessary and sufficient conditions for identification. When there are

no correlated effects, we show that endogenous and exogenous effects are identified as soon as

individuals do not interact in groups.7 Thus, even the slightest departure from a groupwise

structure is sufficient to obtain identification. In many networks, identification originate from

natural exclusion restrictions induced by the structure. For instance, identification is guaranteed

if an individual has a friend’s friend who is not his friend (i.e., the network has an intransitive

4Dercon and DeWeerdt (2005) study the network of risk-sharing relationships between households in a Tanzanian
village. Conley and Udry (2005) look at how communication networks among farmers affect the adoption of a new
technology. Goyal et al. (2006) analyze the network of coauthorships among economists. Calvó-Armengol, Patac-
chini and Zenou (2005) and Lin (2005) study the AddHealth dataset and friendship networks among adolescents.

5For instance, imitation and conformism in behavior can be eliminated when only exogenous effects are present.
6A component is a maximal set of individuals indirectly related to each other, see Section 3.
7We also show that they may be identified under group interactions, see our discussion on Lee (2004) below.
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triad). The intuition is that the characteristics of his friend’s friend do not directly affect the

individual’s outcome but they affect it indirectly through their effects on his friend’s outcome.

This imposes an identifying restriction to the model.

When correlated effects are present at the component level, it is natural to take them out

through a within transformation similar to the one used in panel data models. However many

transformations can be used for this purpose. We focus on two of them: the local transformation

which expresses the model in deviation from the mean equation of the individual’s neighbors and

the global transformation which expresses it in deviation from the individual’s component. We

show that the global transformation is the one which imposes less restrictive conditions to obtain

identification. Whatever the transformation used, degrees of freedom are lost, and identification

now fails on some networks, such as the star. We still find that endogenous and exogenous effects

can be distinguished on most networks.

Our analysis admits as special cases several models studied in the literature, among which

Manski (1993), Moffitt (2001) and Lee (2006). These authors analyze different versions of the

standard model with group interactions. For our purposes, Manski’s model has the same prop-

erties as one where the individual is included when computing the mean of the group.8 In this

case, peer effects are not identified. In Moffitt’s model, the individual is excluded from the mean

and all groups have the same size. Peer effects are also not identified. In contrast, Lee’s model

considers interactions in groups with different sizes, and the individual is also excluded from the

mean. He finds that variations in group sizes can yield identification.9 We show that these three

results directly follow from our general conditions. Observe that Lee’s result may have important

empirical implications. Econometric analysis in existing studies that neglect these size effects

may be misspecified.10 Conversely, prospects for identification with standard datasets may be

better than usually thought.

Our paper advances the methodology of the empirical estimation of peer effects. We provide

8More precisely, Manski develops a linear-in-expectations model, where the individual’s outcome depends on
the outcome expectation of his group and social equilibrium is assumed. In the absence of correlated effects, the
reduced form of this model is similar to that of a linear-in-means model, where a non-cooperative Nash equilibrium
is assumed and where the individual is included when computing the mean.

9 Identification could be weak if the group sizes are large. See the discussion in Lee (2004).
10For instance, in the sample of Sacerdote (2001), 53% of roommates are in double rooms, 44% are in triples, and

3% in quads. The author assumes that the individual is excluded from the mean and that reduced-form coefficients
do not depend on the number of roommates. This may only be true under the assumption of no endogenous effects.
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a theoretical foundation behind a few recent attempts at identifying and estimating social effects

(Laschever 2005, and Lin 2005). Laschever (2005) applies a model of social interactions with

multiple reference groups to the likelihood of post-war employment of World War I veterans.

As shown in this paper, a multiple reference group structure is only one of many structures of

interaction for which social effects can be identified.11 Lin (2005) uses detailed data on friendship

links to estimate peers’ influence on students’ outcomes. He can obtain separate estimates for

endogenous and exogenous effects only because the friendship networks in his dataset satisfy our

general identification conditions.

While theoretically identified, a social interaction model can suffer from weak identification in

practice. Our paper also provides Monte Carlo simulations which analyze the effects of important

characteristics of a network, such as its density (that is, the proportion of actual over potential

links) and its level of intransitivity, on the quality of estimates of peer effects.

The rest of the paper is organized as follows. Section 2 introduces the extended linear-in-

means model, and presents our basic identification results. Section 3 addresses correlated effects

in the form of component fixed effects. Section 4 present our Monte Carlo simulations. A brief

discussion concludes.

2 Social Effects and Social Networks

2.1 The Structural Model

Our model is an extension of the standard linear-in-means social interactions model in which we

allow for individual-specific reference groups. We follow the formulation of Moffitt (2001). Vectors

are denoted with bold letters. Suppose we have a set N of individuals i (i ∈ {1, 2, ..., n}). Let

yi be the outcome of interest for individual i. Let xi be a socioeconomic characteristic of i. For

simplicity, we present the model with a unique characteristic. Results hold with any number of

them (see Appendices for more details). Our main new assumption is as follows. Each individual

i may have a specific reference group Ni ⊂ N of size ni. This reference group (known by the

modeler) contains all individuals whose outcome or characteristics may affect i’s outcome. Except

where otherwise specified, we assume that individual i is excluded from his reference group, that

11While Laschever’s model is somewhat different from ours, the reason for identification is similar.
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is, i /∈ Ni. This corresponds to the usual empirical formulation (e.g., Sacerdote 2001, Hanushek

et al. 2003, Soetevent and Kooreman 2005). An individual is isolated if his reference group is

empty.12 We assume that not all individuals are isolated. The collection of individual-specific

reference groups defines a directed network between individuals.

Our results are consistent with two types of observations. First, they hold if we observe

an i.i.d. sample of size L from a population of networks with a fixed and known structure.

Alternatively, they hold if we observe an i.i.d. sample L from a population of networks with a

stochastic but strictly exogenous structure. For notational simplicity, our results are presented

for a fixed network; they can be easily adapted to the latter case (see discussion below). Also,

to focus on the population model, we omit for the moment the network observation index l,

(l = 1, ..., L).

We do not change any other assumption of the standard model. Especially, we assume that

the individual outcome may be affected by the individual characteristics, by the mean outcome

in the individual’s reference group (endogenous social effect), and by the mean characteristics in

the individual’s reference group (exogenous social effect). Formally, the structural model is given

by:

yi = α0 + α1xi + α2

P
j∈Ni

yj

ni
+ α3

P
j∈Ni

xj

ni
+ �i, (1)

where α2 captures endogenous effects and α3 exogenous effects. It is standard to require that

|α2| < 1. Except for this restriction, our model does not impose any other constraints on the

α’s. The error term �i reflects unobservable (to the modeler) characteristics associated with i. In

this section, we assume strict exogeneity of the error terms, that is E(�i|x) = 0 where x is the

vector (xi). Thus we assume no correlated effects. This assumption is relaxed in the next section.

We make no further assumption on the error terms. Especially, they are not necessarily i.i.d. or

normally distributed.13 Thus our model is semiparametric, or “distribution-free”.

We finally write the structural model using condensed notations. Thus, y is the vector (yi),

while 1 is the vector of ones. Let i denote the identity matrix. Introduce the interaction matrix

12While an isolated individual is not affected by others, he may still affect others.
13This structural model can be derived from a choice-theoretic approach where each individual i chooses his

outcome in order to maximize a quadratic utility function depending on his outcome and on his reference group’s
mean expected outcome and mean characteristics. This approach also assumes that social interactions have reached
a noncooperative (Nash) equilibrium at which expected outcomes are realized.
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g as follows: gij = 1/ni if j ∈ Ni, and 0 otherwise.14 Equation (1) becomes:

y = α01+ α1x+ α2gy + α3gx+ ², (2)

with E(² | x) = 0 and E(²²0| x) = Σ, where Σ is symmetric and positive definite but unrestricted

otherwise. Therefore Σ contains no identifying information. We assume throughout that the

expected outer product matrix of (1,x) has full rank. This formulation makes clear that the

structural theoretical model is composed of a system of linear simultaneous equations with cross-

and within-equation parameter restrictions. Indeed, the α’s are the same across equations and the

coefficients α2 and α3 associated with the individual i’ reference group are the same within any

equation) . Observe also that the systematic part of (2) is similar to that of a spatial autoregressive

(SAR) model (e.g., see Cliff and Ord 1981) extended to allow for exogenous effects. It is also an

extension of Lee (2006)’s model since, in its general version, it does not impose that individuals

interact in groups.15

2.2 Reduced Form and Identification

We now write the restricted reduced form of model (2). Since i−α2g is invertible,16 it can be

written as:

y =α0(i−α2g)−11+(i−α2g)−1(α1i+ α3g)x+ (i−α2g)−1², (3)

where the intercept is simply α0/(1− α2) if the individual is not isolated, and α0 otherwise and

where the variance-covariance matrix of the errors terms (i−α2g)−1² is given by Ω =(i−α2g)−1

Σ(i−α2g)0−1.

We say that social effects are identified if and only if the set of structural parameters (α0, α1, α2, α3)

can be uniquely recovered from the restricted reduced form parameters in (3) (injective relation-

ship).17 This means that it is impossible to find different sets of values for the structural para-

14More generally, gij could capture the strength of the interaction between i and j, and decrease with social, or
geographic, distance. Some of our results hold for arbitrary g, others for matrices that are row-normalized (see
discussion below).
15Lee (2006)’s model allows for group fixed effects, which we ignore here. In section 3, we introduce component

fixed effects in our model.
16This is the case since |α2| < 1. For a demonstration, see Case (1991), footnote 5.
17Since Σ = (i−α2g) Ω(i−α2g)

0, it can be uniquely recovered from Ω and α2.
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meters that are observationally equivalent.18As usual, our identification results are asymptotic in

nature (see Manski 1995). They characterize when social effects can, or cannot, be disentangled

if we are not limited in the number of observations we can obtain.

It will be useful in the following to use a series expansion of (3). Since (i−α2g)−1 =P∞
k=0(α2)

kgk and assuming no isolated individuals, one has:

y =α0/(1− α2)1+α1x+ (α1α2 + α3)
∞P
k=0

(α2)
kgk+1x+

∞P
k=0

(α2)
kgk². (4)

Moreover, from (4), the expected mean outcomes of reference groups conditional on x can be

written as:

E(gy | x) = α0/(1− α2)1+α1gx+ (α1α2 + α3)
∞P
k=0

(α2)
kgk+2x. (5)

The remainder of the paper clarifies the conditions under which identification holds under

network interaction.

2.3 Results

Our first result shows that the identification of social effects is related to a simple property of the

matrix g.

Proposition 1 Suppose that α1α2+α3 6= 0. If the matrices i,g, and g2 are linearly independent

social effects are identified. If the matrices i,g, and g2 are linearly dependent and no individual

is isolated, social effects are not identified.

It is worth noting that the first part of this result holds even if equation (2) is written with an

arbitrary matrix g, while the second part holds as soon as g is row-normalized.19 This includes

situations where the network is weighted, or where the sum of outcomes and characteristics in

the reference group matters, rather than the mean.

18Additional assumptions on the error terms, for example that they are i.i.d. (due to randomization of reference
groups), could help identification (e.g., see Moffitt 2001).
19One easy way to check whether these three matrices are linearly independent is the following. First, one

vectorizes each matrix, that is, one stacks its columns on top of each other. Second, one verifies whether the matrix
formed by concatening these stacked vectors has rank three.
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The condition α1α2+α3 6= 0 is natural in this setting. As shown in (4), it means that others’

characteristics have some (direct and/or indirect) effect on an individual’s expected outcome.

When it is violated, endogenous and exogenous effects are zero or exactly cancel out, and social

effects are absent from the reduced form. The condition is satisfied as soon as α1 and α3 have

the same sign, α2 > 0 and α1 6= 0. With several characteristics, it must be satisfied for at least

one of them.

Proposition 1 can be given a natural interpretation in terms of instrumental variables. We

show in Appendix 2 (Result 1) that when no individual is isolated, the matrices i,g, and g2 are

linearly dependent if and only if E(gy|x) is perfectly collinear with (1,x,gx).20 This perfect

collinearity means that we cannot find a valid (identifying) instrument for gy in the structural

equation (2). In contrast, when E(gy|x) is not perfectly collinear with the regressors, the restric-

tions imposed by the network structure allow the model to be identified. From (5), it is clear

that the variables (1,x,gx,g2x, g3x, ...) can be used as valid instruments and therefore can be

used to consistently estimate the α’s.21

Here an important remark is in order. Up to now, we have assumed that we observe an i.i.d.

sample of (yl,xl) of size L (l = 1, ..., L) from a population of networks with a fixed and known

structure (matrix g non-stochastic). Alternatively suppose that we observe an i.i.d. sample of

(yl,xl,gl) of size L, where the matrices gl are now stochastic but strictly exogenous. Consider

Proposition 1 in this case. As soon as one g in the support of the network’s distribution is such

that i,g, and g2 are linearly independent, then the model is identified. This is the case, since

for identification purposes, the size of the sample can be as large as needed. If for every g in the

support of the network’s distribution, no individual is isolated, i,g, and g2 are linearly depen-

dent, and they share a common relation of linear dependency, then the model is not identified.

Propositions 4 and 6 below can be generalized in a similar way.

20This equivalence is subject to a minor technical condition.
21One can show that the potential number of instruments cannot exceed a critical level smaller or equal to the

number of individuals in the network. Overidentification tests such as the one suggested by Lee (2003) for a spatial
autoregressive model could be implemented.

8



2.3.1 Group Interactions

In this section, we apply Proposition 1 to analyze identification when individuals interact in

groups. We focus particularly on models developed by Manski (1993), Moffitt (2001) and Lee

(2006).

Nonindentification in Manski’s (1993) Model Let us first show how Proposition 1 covers

Manski’s first negative result discussed in the introduction. Suppose that individuals interact

in groups, and also that the individual is included when computing the mean (i ∈ Ni). That

is, there is a partition of the population in subsets G1, .., Gk such that for any i ∈ Gl, Ni = Gl.

This means that individuals are affected by all others in their group and by none outside of it.

The network of interaction is therefore the union of complete subnetworks. In this case, g2 = g,

that is, g is idempotent. The second part of Proposition 1 applies. From (5), the expected mean

outcome of the reference groups, E(gy|x), is given by α0/(1− α2)1+ (α1 + α3)/(1− α2)gx and

is therefore perfectly collinear with the mean characteristics of the group. Therefore, the list of

valid instruments is (1,x,gx). In this model, no matter the group sizes, social effects are not

identified.

Nonindentification in Moffitt’s (2001) Model Alternatively, as in Moffitt (2001), suppose

that individuals interact in a unique group, and that the individual is excluded when computing

the mean (i /∈ Ni). Denote by ωn the corresponding interaction matrix where ωij = 1/(n− 1) if

i 6= j and 0 otherwise. It is easy to see that ω2n =
1

n−1 i+
n−2
n−1ωn if n ≥ 2, and the second part of

Proposition 1 again applies. Social effects are not identified.

Identification in Lee’s (2006) Model Suppose now that individuals interact in two groups

of sizes n1 and n2 with n1, n2 ≥ 2. The interaction matrix g can be written as follows

g =

⎛⎝ ωn1 0

0 ωn2

⎞⎠ .
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Suppose that g2 = λ0i + λ1g.22 The diagonal elements give λ0 = 1/(n1 − 1) = 1/(n2 − 1),

hence n1 = n2. Therefore, if n1 6= n2, the matrices i,g, and g2 are linearly independent, the

first part of Proposition 1 applies. Moreover, using eq. (5), one can easily show that E(gy|x) =

α0/(1−α2)1+β0x+β1gx+β2g
2x, with β2 6= 0 when α2 6= 0 and α1α2+α3 6= 0.23 Therefore, the

variables (1,x,gx,g2x) can be used as valid instruments for gy. In this model, social effects are

identified. This result is related to Lee (2006)’s model in the absence of group fixed effects.

Proposition 2 Suppose that individuals interact in groups. If all groups have the same size,

social effects are not identified. If (at least) two groups have different sizes, and if α1α2+α3 6= 0,

social effects are identified.

Identification arises here thanks to the effects of the group size on reduced form coefficients

within each group. After some manipulations, eq. (3) can be rewritten as follows:

yi =
α0

1− α2
+ [α1 +

α2(α1α2 + α3)

(1− α2)(ng − 1 + α2)
]xi +

α1α2 + α3
(1− α2)(1 +

α2
ng−1)

x̄i + νi, (6)

where ng is the size of i’s group, and x̄i is the mean over all other individuals in the group

and νi is the error term. Variation of reduced form coefficients across groups of different size

allows to identify the structural model. The impact of ng on these coefficients has an intuitive

interpretation. Consider first the reduced form coefficient on xi in (6). It is the sum of a direct

and an indirect effect. The direct effect is simply equal to α1, and captures the effect of i’s

characteristic on i’s outcome already present in the structural model. The indirect effect arises

through endogenous effects: xi affects yj , which in turn, affects yi.24 The indirect effects decrease

with ng, and become negligible as ng tends to infinity. This reflects the diminishing role that

i plays, by himself, in determining others’ outcomes when the size of the group grows. For a

similar reason, the reduced form coefficient on x̄i is increasing in ng. As the role played by one

individual decreases, the mean characteristics of all the others become more important.

22Observe that, since at least one individual is not isolated, the matrices i and g are linearly independent.
23After few manipulations, one obtains: β2 = [(α1α2 + α3)α2]/(1 − λ2α2 − λ1α

2
2 − λ0α

3
2),where λ0 =

1
(n1−1)(n2−1) , λ1 =

n1+n2−3
(n1−1)(n2−1) , and λ2 =

n1n2−2(n1+n2)+3
(n1−1)(n2−1) .

24This indirect effect itself has different channels: xi affects yj both directly through exogenous effects (α3), and
indirectly through endogenous effects (α2) via its effects on yi (α1) and yk (α3).
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Thus, variations in group sizes create exogenous variations in the reduced form coefficients

across groups that lead to identification. Interestingly, Davezies et al. (2006) have shown that

Lee’s model is generically identified, even when all members in the group are not observed.

Observe finally that, in this model, social effects may be identified when the individual is excluded

in the computation of the group mean, but not when he is included.

2.3.2 Network Interactions

Suppose now that individuals interact through a network. In addition, suppose that we can find

an intransitive triad in the network. This is a set of three agents i, j, k such that i is affected by

j and j is affected by k, but i is not affected by k. In this case, gik = 0 while g2ik ≥ gijgjk > 0.

In contrast, g2 = λ0i+ λ1g implies that g2ik = 0. Therefore, the presence of an intransitive triad

guarantees that i,g, and g2 are linearly independent. This means that g2x is a valid instrument

for gy, since xk affects yi but only indirectly, through its effect on yj (that is, through a link of

distance 2).

Most networks have intransitive triads.25 Some networks do not, however. They are called

transitive, and are characterized by specific properties, e.g., see Bang-Jensen and Cutin (2000).

We analyze the case of transitive networks in Appendix 1. We show that for most of them,

the first part of Proposition 1 applies. More precisely, we show that i,g, and g2 are linearly

independent if and only if g2 6= 0. In this case, the variables (1,x,gx,g2x) can be used as valid

instruments for gy. When g2 = 0, the first part of Proposition 1 obviously does not apply.26

However, the presence of isolated individuals still yields identification. Indeed, α0 and α1 can be

identified from the reduced form parameters of isolated individuals. Also, α2 can be identified

from the constant of the reduced form of non-isolated individuals (i.e., α0
1−α2 ) as long as α0 6= 0.

Finally, α3 is identified from the coefficient associated with x in (3). In the end, we obtain the

following result.

Proposition 3 Suppose that individuals do not interact in groups. Suppose that α1α2 + α3 6= 0.

If g2 6= 0, social effects are identified. If g2 = 0, social effects are identified when α0 6= 0, but not

25Especially, if individuals do not interact in groups, any symmetric network has an intransitive triad. Symmetric
networks are such that j ∈ Ni ⇒ i ∈ Nj . They arise naturally in certain contexts, like co-authorship.
26Networks such that g2 = 0 do not have any triad. Any individual either affect others, or is affected by others.

These structures correspond to bipartite unidirectional networks.
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when α0 = 0.

Overall, the results presented in this section show that endogenous and exogenous effects

can usually be identified as soon as there is some variation in the reference groups. The results

are clear-cut, reflecting the theoretical nature of identification conditions. In practice though,

we expect identification to be weak if the network is close to being complete, or if individuals

interact in groups and group sizes are large. We explore this issue in Section 4.

3 Correlated Effects

In this section, we partially address the problem of correlated effects. We introduce unobserved

variables common to individuals who belong to the same component of the network. These vari-

ables may be correlated with individual observable characteristics, which introduces an additional

identification problem. As in panel data models, we solve this problem by taking appropriate

differences between outcomes to take out the unobserved variables. We then ask whether en-

dogenous and exogenous social effects can be disentangled. We characterize the necessary and

sufficient conditions for identification. Not surprisingly, these conditions are more demanding

than in the absence of correlated effects. Identification still holds in most networks, but it fails

for some specific ones. We also find that the way common unobservables are eliminated matters.

We provide the best possible condition for identification in this setting.

3.1 The Model

We introduce component-level unobservables in the previous model. The components of a network

are defined as follows (see Wasserman and Faust 1994).27 Two individuals i and j are related

if j ∈ Ni or i ∈ Nj . They are indirectly related if they are related, or if there is a chain of

individuals i1, ..., il such that the pairs i and i1, i1 and i2, ..., il and j are related. A component

is a maximal set of indirectly related individuals. Components provide a natural partition of the

population. Denote by C the set of components and by |C| its cardinality (i.e., their number).

27Two types of components can be defined on directed graphs. They are called weak and strong components
in the literature on social networks. We consider here weak components. See the proof of Proposition 3 for a
discussion of strong components. Weak and strong components coincide when relations are undirected.
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We observe that when individuals interact in groups within the network, components are simply

equal to the groups. We consider the following structural model. For any component c and for

any individual i belonging to c,

yi = μc + α1xi + α2

P
j∈Ni

yj

ni
+ α3

P
j∈Ni

xj

ni
+ �i. (7)

The component fixed effect μc captures unobserved (by the modeler) variables that have common

effects on the outcome of all agents within the component. Importantly, E(μc|x) may be different

from zero for all i ∈ c but we assume that E(�i| μc,x) =0. Thus, correlated unobservables may

be present but we maintain the strict exogeneity of x, given μc. This is a natural generalization of

the model of Lee (2006) to a network setting. A similar model has been estimated by Lin (2005).

The structural model (7) captures different types of correlated effects. Individuals in the same

component can face a common environment. The model is also consistent with two-step processes

of link formation. For instance, suppose that individuals join clubs first, and then forms links

with others in their club. Individuals may have different types, capturing preferences over social

relations. If individuals self-select into clubs based on their types, then conditional on belonging

to a club, link formation may be uncorrelated with individual characteristics.

Before studying how the reflection problem can be solved in this context, the standard ap-

proach is first to eliminate the component-level unobservables. In analogy with the within trans-

formation in panel data models, this can be done by taking appropriate differences between

structural equations. However there are many transformations that can eliminate the unobserv-

ables. We next study two natural ways to do that. Throughout this section, we assume that no

individual is isolated. More generally, our results are valid for any row-normalized matrix g.

3.2 Local Differences

We first take local differences. We average equation (7) over all the neighbors of i (that is, all

individuals j such that j ∈ Ni), and subtract from i’s equation. This approach is local since it

does not fully exploit the fact that the fixed effect is not only the same for all neighbors of i but

also for all individuals of his component. Written in matrix notations, the structural model, on
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which a within local transformation is applied, becomes:

(i− g)y = α1(i− g)x+ α3(i− g)gx+ α2(i− g)gy+ (i− g)². (8)

The corresponding reduced form is obtained as in Section 2 (see eq. (3)).

(i− g)y = (i−α2g)−1(α1i+ α3g)(i− g)x+ (i− α2g)
−1(i− g)². (9)

Our next result characterizes identification in this setting.

Proposition 4 Consider model (8). Suppose that α1α2 + α3 6= 0. Social effects are identified if

and only if the matrices i,g,g2, and g3 are linearly independent.

This condition is more demanding than the condition of Proposition 1. Some information has

been lost to take into account the presence of correlated effects. This loss makes identification

more difficult. The following property may be useful in applications (e.g., see Horn and Johnson

1985). If the matrix g has (at least) four different eigenvalues, then i,g,g2, and g3 are linearly

independent. If g has three different eigenvalues (or less) and g is diagonalizable, then i,g,g2,

and g3 are linearly dependent.

As in the previous section, Proposition 4 has a natural interpretation in terms of instrumental

variables. We show in Appendix 2 (Result 2) that the matrices i,g,g2, and g3 are linearly

dependent if and only if the expected value of the endogenous variable on the right-hand side of

equation (8), E[(i−g)gy|x], is perfectly collinear with the regressors ((i−g)x, (i− g)gx). When

this perfect collinearity holds, the structural model is clearly not identified. Again, from a series

expansion of E[(i−g)gy|x] similar to the one in eq. (5), it is clear that when E[(i−g)gy|x] is not

perfectly collinear with the regressors, the variables ((i−g)x, (i− g)gx), (i−g)g2x, (i−g)g3x, ...)

can be used as valid instruments for (i− g)gy.

We study the implications of Proposition 4 on the pattern of interactions among individuals.

Consider group interactions. Three different sizes are now necessary to obtain identification.

With two groups of sizes n1 and n2, we can see that i,g,g2, and g3 are linearly dependent. More

precisely,

g3 =
1

(n1 − 1)(n2 − 1)
i+

n1 + n2 − 3
(n1 − 1)(n2 − 1)

g +
n1n2 − 2(n1 + n2) + 3

(n1 − 1)(n2 − 1)
g2.
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In contrast, with three sizes (or more), i,g,g2, and g3 are linearly independent, and social effects

are identified (see Davezies et al. 2006).28 This is, of course, confirmed by looking directly at the

reduced form. Let ng be the size of i’s group. Equation (9) becomes

yi − ȳ =
(ng − 1)α1 − α3
(ng − 1) + α2

(xi − x̄) +
ng − 1

ng − 1 + α2
(�i − �̄). (10)

where means are computed over all individuals in i’s group. (See eq. 2.5 in Lee 2006). Only one

composite parameter can now be recovered from the reduced form for each group size. Three

sizes are thus needed to identify the three structural parameters.

Next, consider network interaction. Intransitive triads have a natural counterpart. Define

the distance between two individuals i and j in the network as the number of links connecting i

and j in the shortest chain of individuals i1, ..., il such that i1 ∈ Ni, i2 ∈ Ni1 , ..., j ∈ Nil .
29 For

instance, this distance is 1 between two individuals directly connected and 2 in an intransitive

triad. Define the diameter of the network as the maximal distance between any two individuals

in the network. Suppose that we can find two individuals i and j separated by a distance 3 in

the network. In this case, g3ij > 0 while g2ij = gij = 0. Hence, no linear relation of the form

g3 = λ0i+ λ1g + λ2g
2 can exist. Therefore, one has:

Corollary 5 Consider model (8) and suppose that α1α2+α3 6= 0. If the diameter of the network

is greater than or equal to 3, social effects are identified.

This condition is satisfied in most networks. As in Section 2, it can be understood in terms of

instrumental variables. Let i, i1, i2, j be a path of minimal length connecting i to j. Observe that

now yi− 1
ni

P
k∈Ni

yk has to be explained as a function of exogenous variables and of 1ni
P

k∈Ni
(yk−

1
nk

P
l∈Nk

yl). Also, i1 ∈ Ni and i2 ∈ Ni1 . The exogenous characteristic xi2 is not a valid

instrument to estimate the endogenous social effect, since yi2 directly appears on the right-hand

side. In contrast, yj does not appear on the right-hand side, hence xj affects yi only indirectly

through its effect on yi2 . Therefore, xj is a valid instrument to estimate the endogenous social

effect, and the model is identified. From the series expansion of the model, this means that the

28With three groups of sizes n1, n2 and n3, the matrix g is diagonalizable and has four distinct eigenvalues:
1,−1/(n1 − 1),−1/(n2 − 1), and −1/(n3 − 1).
29 If there is no chain of individuals connecting i and j, by convention the distance between them is equal to 0.
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variables ((i−g)x, (i− g)gx), (i−g)g2x) are valid instruments for the right-hand side endogenous

vector (i− g)gy.

Identification fails, however, for a number of non trivial networks of diameter lower than or

equal to 2. This is notably the case for complete bipartite networks. In these graphs, population is

divided in two subgraphs such that all individuals in one subgraph are connected to all individuals

in the other subgraph, and there is no connection within subgraphs. These include star networks,

where one agent, at the center, is connected to all the other agents, who are all only connected

to him. It is easy to check that g3 = g for complete bipartite networks. By Proposition 4, social

effects are not identified for these networks. To illustrate, consider star networks. Let i = 1

denote the center. Reduced form equation (9) for star networks can be expressed as follows:

y1 −
1

n− 1

nX
j=2

yj =
α1 − α3
1 + α2

(x1 −
1

n− 1

nX
j=2

xj) + ν1, or

yi − y1 = α1(xi − x1) + (α1 −
α1 − α3
1 + α2

)(x1 −
1

n− 1

nX
j=2

xj) + ν2,∀i ≥ 2.

We can only recover the two composite parameters α1 and α1−α3
1+α2

from the estimation of the

reduced form. This makes the identification of the three structural parameters impossible.

We could not fully characterize the condition of Proposition 4 in terms of the geometry of

the network. To gain some insight on this issue, we determined all the connected non directed

networks for which identification fails when n = 4, 5, and 6. They are depicted in Figure 1. We

observe two features. First, the number of networks for which identification fails is relatively low,

even within the set of networks with diameter lower than or equal to 2. Second, all these networks

exhibit a high degree of symmetry. We suspect that both features hold more generally. Linear

dependence between i,g,g2, and g3 likely imposes strong restrictions on the network’s geometry.

3.3 Global Differences

We next take global differences. We average equation (7) over all individuals in i’s component, and

subtract from i’s equation. In contrast with the previous section, the equation being subtracted

is now identical for all individuals in the same component. Introduce the matrix h as follows:

hij =
1
|c| if i and j belong to c, and hij = 0 otherwise. The ith element of hx equals the average of

x over i’s component. Also, for any component c, let 1c denote the vector whose ith element is 1 if
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i ∈ c and 0 otherwise. We can write the structural model on which a global within transformation

is applied as follows:

(i− h)y = α1(i− h)x+ α3(i− h)gx+ α2(i− h)gy+ (i− h)². (11)

In this context, the restricted reduced form becomes:30

(i− h)y = (i− h)(i−α2g)−1(α1i+ α3g)x+(i− h)(i−α2g)−1². (12)

We characterize the condition under which this model is identified. Our result involves the rank

of the matrix i − g. Since ∀c ∈ C, (i − g)1c = 0, this rank is always lower than or equal to

n− |C|.31

Proposition 6 Consider model (11). Suppose that α1α2+α3 6= 0. If the matrices i,g,g2, and g3

are linearly independent, social effects are identified. Next, suppose that g3 = λ0i+ λ1g + λ2g
2.

If rank(i − g) < n − |C| and 2λ0 + λ1 + 1 6= 0, social effects are identified. In contrast, if

rank(i− g) = n− |C|, social effects are not identified.32

From a demonstration similar to the one used in in Result 2 of Appendix 2, one shows that

the model is not identified if and only if E[(i− h))gy|x] is perfectly collinear with the regressors

((i− h)x, (i− h)gx). Moreover, the variables ((i− h)x, (i− h)gx, (i− h)g2x, ...) can be used as

valid instruments to estimate the model consistently, when the model is identified.

The result shown in Proposition 6 implies that if social effects are identified when taking local

differences, they are also identified when taking global differences. The reverse need not be true,

however, as the example below demonstrates. The condition rank(i − g) < n − |C| means that

30Since i − h and (i − α2g)
−1 do not generally commute, the reduced-form cannot be obtained directly from

equation (11). Rather, rewrite equation (7) as follows:

y =
X
c

μc1c + α1x+ α2gy+ α3gx+ ²

Isolate y:
y =

X
c

μc
1− α2

1c + (i−α2g)−1(α1i+ α3g)x+ (i−α2g)−1²

and multiply by i− h.
31The vectors 1c are linearly independent, hence dimKer(i− g) ≥ |C|. Since dimKer(i− g) + rank(i− g) = n,

rank(i− g) ≤ n− |C|.
32The case where rank(i − g) < n − |C| and 2λ0 + λ1 + 1 = 0 is covered in the Appendix. It involves a more

elaborate condition.
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we can find a vector x such that gx = x and for some i, j belonging to the same component,

xi 6= xj . For many networks, the conditions in Propositions 4 and 6 are identical. Under group

interactions, both ways of removing the common group unobservables are equivalent. This can

be seen directly on the reduced form. Equation (12) is equivalent to equation (9). Alternatively,

we can apply Proposition 6. With two groups of sizes n1 6= n2, |C| = 2, and rank(i− g) = n− 2.

Social effects are not identified under either way of eliminating the unobservables. Similarly, we

can check that rank(i− g) = n− |C|, hence that identification fails, for the networks depicted in

Figure 1 and for complete bipartite networks.

The two conditions are not equivalent, however. There are networks for which social effects

are identified when taking global differences, but not when taking local differences. We give an

example in Figure 2 with n = 5. This network has a unique component. The matrix g satisfies

g3 = g, hence identification fails when taking local differences. However, rank(i − g) = 3 <

n− |C| = 4 and 2λ0 + λ1 + 1 = 2 6= 0. Thus, identification holds when taking global differences.

The way correlated effects are addressed affects the way endogenous and exogenous social effects

can be identified.

We next show that Proposition 6 gives the best possible condition for identification. If social

effects are not identified when subtracting the component’s average, they are never identified.

We consider some arbitrary linear combinations of the structural equations designed to remove

the μc’s. Let d be the corresponding n × n differentiation matrix. For instance, d = i − g

when subtracting the average over individuals’ neighbors, and d = i − h when subtracting the

component’s average. To eliminate the component-level unobservables, d must satisfy ∀c ∈ C,

d1c = 0. Hence, rank(d) ≤ n− |C|. Denote by kerd = {x : dx = 0} the kernel of d. Applying

d, the structural model becomes dy = α1dx+α3dgx+α2dgy+d² with associated reduced form

dy = d(i−α2g)−1(α1i+ α3g)x+ d(i−α2g)−1².

Proposition 7 Let d and d0 be two differentiation matrices such that kerd ⊂ kerd0. If social

effects are identified for the network g and the matrix d0, then they are identified for the same

network and the matrix d.

This result says that prospects for identification improve when the differentiation matrix has a

smaller kernel. Observing that i−h has maximal rank, we conclude that the condition described

in Proposition 6 is the best possible condition for identification.
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Corollary 8 If social effects are identified for the network g and any differentiation matrix d,

then they are identified for the same network when subtracting the component’s average.

4 Monte Carlo Simulations

In this section, we report results from Monte Carlo simulations. We focus on the baseline model

(1). Proposition 3 shows that social effects are identified if individuals do not interact in groups.

In practice, however, we expect identification to be weak if the graph is close to be complete

(i.e., when its density is close to one). We study here how the strength of the identification is

affected by the density of the graph and its degree of intransitivity, for various types of graphs.

We find that structural parameters are better estimated when the density of the graph is small.

The impact of intransitivity on the precision of estimators is however more complex and can be

U-shaped for graphs with intermediate to high density.

4.1 Networks

We define the density and the level of intransitivity of a network (see Wasserman and Faust

1994). Density is equal to the ratio of the number of links over the total number of possible

links. It describes the average probability that any two individuals are connected. The level of

intransitivity is the ratio of the number of intransitive triads, where i is connected to j and j to

k but i is not connected to k, over the number of triads, where i is connected to j and j to k

(and k 6= i). The intransitivity level lies between 0 and 1; it equals 0 only when the network is

transitive.

We consider two types of networks. We first look at the standard Erdös-Rényi (1959) model of

random graphs. Link are i.i.d. and each pair of individuals is connected with the same probability

d. In this case, the expected density is equal to d while the expected level of intransitivity is 1−d.

When d = 1, the network is complete and social effects are not identified. We examine how the

strength of identification changes when d varies from 1 to 0.05 by increments of −0.05.

Erdos-Rényi random graphs provide a natural starting point, but their structure is very spe-

cific. Especially, a lower d corresponds to a lower density and a higher intransitivity. In order

to disentangle both effects, we introduce a second type of graphs. We adapt the small-world

procedure of Watts and Strogatz (1998) to our context. We start from disjoint complete sub-
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graphs of size k. (Hence k divides the population size n). Then, with probability p each link

is rewired at random. Since the total number of links is constant, density is fixed and equal to

k−1
n−1 . We let the probability p vary. When p equals 0, the level of intransitivity is 0. When p

equals 1, we obtain an Erdös-Rényi graph. As p increases, the expected level of intransitivity

increases. We set n = 100 and we let k and p takes the following values: k ∈ {4, 5, 10, 20, 25, 50}

and p ∈ {0.01, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1}.33 In summary, the second type of graphs allows us to

look at how intransitivity affects the strength of identification, holding density constant. Also,

they can be used to analyse the impact of density, holding intransitivity constant.

4.2 Estimation

We implement our baseline model, i.e.,

y = α0 + α1x+ α2gy + α3gx+ ².

Structural parameters are chosen as follows

α0 = 3, α1 = 0.75, α2 = 0.5, α3 = 0.7.

In this model, ² is a n×1 vector of disturbances which is N(0,Σ). We set Σ = σ2i and σ2 = 1.34

x is a n × 1 vector of observations on the exogenous variables. We draw one observation from

the network. Regressors xi are i.i.d., picked from a uniform distribution on [0, 50]. Finally, we

generate the n × 1 vector of endogenous variables y thanks to the reduced-form equation (3):

y =α0/(1− α2)1+(i−α2g)−1(α1i+ α3g)x+ (i−α2g)−1².

Social effects are estimated following a Generalized 2SLS strategy proposed in Kelejian and

Prucha (1998) and refined in Lee (2003). This procedure yields an asymptotically optimal IV

estimator and reduces to a two-step estimation method in our case. The first step consists in

estimating a 2SLS using as instruments S =
h
1 x gx g2x

i
. In our case, the model is just

identified, and we obtain bα2SLS = (S0X)−1S0y where X =
h
1 x gy gx

i
is the matrix

33A connected graph is said to have the small-world property when his diameter and his level of intransitivity
are both relatively low, see Watts and Strogatz (1998). This typically happens for low values of p.
34Our theoretical results are valid for any variance-covariance matrix Σ. Here the error terms are i.i.d. and

homoscedastic. However, since we use an instrumental variables approach to estimate the parameters, we do not
exploit this fact to help identification.
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of explanatory variables. The second step consists in estimating a 2SLS using as instrumentsbZ = Z(bα2SLS), with Z(α) = h 1 x gx E[gy(α) | x]
i
. From the reduced-form equation, it

follows that

E[gy(α) | x] = g(i− α2g)
−1[α01+ (α1i+ α3g)x].

Again, since the model is just identified, we obtain

bαLEE = (bZ0X)−1bZ0y.
With homoscedastic and i.i.d. error terms, the estimated variance-covariance matrix of the pa-

rameters is

V (bαLEE) = bs2(bZ0X)−1bZ0bZ(X0bZ0)−1,
where bs2 = 1

n−4bu0bu and bu are the residuals from this second step.

4.3 Results

Table 1 reports the estimation results for Erdös-Rényi graphs. The probability of link formation,

or expected density, d, is given in column 1. For each level of density, we pick one graph. We look

at 1000 draws for the vectors ² and x. For each draw, we estimate the structural parameters.

Columns 3-6 of Table 1 report the average estimates and the average standard errors over the

1000 draws. Estimates of the endogenous and the exogenous effect are respectively shown in

columns 5 and 6.

We find that precision is a decreasing function of density. When the density is smaller or

equal to 0.3, the bias on the estimates of both peer effects is relatively small and the precision

is relatively good. As the density of the graph increases, precision worsens. None of the two

estimates are significant on average at the 10% level when the density exceeds 0.5. As expected,

when the density is equal to one (complete graph), the estimation procedure diverges.

The estimation results for small-world graphs are given in Tables 2a-2c. Each of these tables

are composed of two panels. To each panel corresponds a specific value of k. Within each panel,

density is fixed and as one goes down the columns, p, hence intransitivity, increases. For each

value of k and p, we pick one graph. Again, for each graph we report the estimate averages over

1000 draws.
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Results are more complex than for Erdös-Rényi graphs. When density is low (k small),

precision is an increasing function of intransitivity. However, for intermediate to high levels of

density, the relationship is U-shaped. For k = 50, the relationship is plainly non-monotonic. In

any case, starting from a situation where peer effects are not identified (p = 0), a slight increase in

the level of intransitivity holding density constant greatly improves identification. As regards the

density, a glance across the tables indicates that for a given level of intransitivity, the precision

of the estimates is everywhere a decreasing function of density. Overall, these results confirm the

role played by the network’s structure on the identification of peer effects.

5 Conclusion

In this paper, we characterize the conditions under which endogenous and exogenous social effects

are identified in a linear-in-means model with general interaction structure. Our analysis shows

that both effects can usually be distinguished with network data, although identification may fail

for specific networks. Also, when the model is identified, we show, from Monte Carlo simulations,

that characteristics of a network, such as its density and its level of intransitivity, may strongly

affect the quality of the estimates of the peer effects. At the empirical level, a few recent pa-

pers have already used these network effects to separately estimate endogenous and exogenous

effects.35 Further empirical work is certainly needed to better understand the feasability of these

identification strategies.

Our results suggest that there are high benefits to analyzing network data. On the other

hand, collecting comprehensive data on relationships between agents can be very costly. The

development of electronic databases has, in some instances, dramatically lowered this cost. Thus,

studies on co-authorship networks among scientists are linked to the availability of literature

databases (see Newman 2001, Goyal et al. 2006). Sampling the network provides a different way

to reduce these costs. This can be done in many ways, e.g., see Rothenberg (1995). It would be

interesting to study how our identification results apply in such settings. Can the econometrician

still recover endogenous and exogenous effects if he only knows a limited part of the network?

Finally, the problems of correlated effects and the endogeneity of link formation remain central.

35See Laschever (2005), Lin (2005), and our discussion in the introduction.
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Experiments, or natural randomizations, provide one answer. In an experimental context, our

results could guide empirical research. For instance, appropriate structures of interactions could

be imposed on participants in the lab. With non-experimental data, taking differences between

endogenous variables can eliminate certain types of unobserved variables, as done in section 3.

Alternatively, two-stage estimations could be attempted on network data. The likelihood of link

formation could be estimated in a first step, and social effects conditional on links formed in a

second step. This would require to have some understanding on how relationships emerge, hence

could be fruitfully combined with theoretical models of network formation.36

36See Weinberg (2004) and Ioannides and Soetevent (2006) for first steps in this direction.
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APPENDIX 1

Proof of Proposition 1.

Consider two sets of structural parameters (α0, α1, α2, α3) and (α00, α
0
1, α

0
2, α

0
3) leading to the

same reduced form. It means that α0(i−α2g)−11 =α00(i−α02g)−11 and (α1i+α3g)(i−α2g)−1 = (α01i+

α03g)(i − α02g)
−1. Multiply the second equality by (i − α2g)(i − α02g). Since ∀α, (i − αg)−1g =

g(i−αg)−1, this is equivalent to

(α1 − α01)i+ (α3 − α03 + α01α2 − α1α
0
2)g + (α

0
3α2 − α3α

0
2)g

2 = 0 (A1)

Suppose first that i, g, and g2 are linearly independent. Then, α1 = α01, α3+α
0
1α2 = α03+α1α

0
2,

and α03α2 = α3α
0
2. Suppose first that α

0
3α2 6= 0. There exists λ 6= 0 such that α02 = λα2, α

0
3 = λα3.

Substituting yields α03 + α1α
0
2 = λ(α3 + α1α2) = α3 + α1α2. Since α3 + α1α2 6= 0, λ = 1, hence

α02 = α2, α
0
3 = α3. Suppose next that α03α2 = 0. Since α3+α1α2 6= 0, we cannot have α2 = α3 = 0

or α02 = α03 = 0. Thus, either α2 = α02 = 0 and by the last equation α3 = α03 = 0, or α3 = α03 = 0

and by the last equation (and since α1 6= 0 because α3 + α1α2 6= 0), α2 = α02 = 0. To conclude,

observe that α0(i−α2g)−11 =α00(i−α2g)
−11 implies that α01 =α001, hence α0=α

0
0.

Next, suppose that i, g, and g2 are linearly dependent, and that no individual is isolated. The

latter property implies that g1 = 1, and α0(i−α2g)−11 =α0/(1−α2)1. Three equations only need

to be satisfied for (α0, α1, α2, α3) and (α00, α
0
1, α

0
2, α

0
3) to yield the same reduced form. Therefore,

the model is not identified.

Suppose that there are K characteristics and that parameters α1k and α3k are associated with

characteristic k. Structural parametersα andα0 lead to the same reduced form iff α0(i−α2g)−11 =α00(i−

α02g)
−11 and ∀k, (α1ki+α3kg)(i−α2g)−1 = (α1ki+α3kg)(i−α02g)

−1. Suppose that for some k0,

α3k0 + α1k0α2 6= 0. If i, g, and g2 are linearly independent, by the previous argument α0=α00,
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α2=α
0
2, α1k0 = α01k0 and α3k0 = α03k0 . Then, for any other k, multiplying by i−α2g leads to

α1ki + α3kg =α1ki + α3kg hence α = α0. If i, g, and g2 are linearly dependent, we can find

α 6= α0 leading to the same reduced-form.

Proof of Proposition 3.

Suppose that individuals do not interact in groups, and that the network is transitive. We

make use of standard properties of directed graphs, see e.g., Bang-Jensen and Cutin (2000).

Say that there is a path between i and j in the network if gij > 0 or if there exist i1, ..., il

such that gii1gi1i2 ...gilj > 0. A cycle is a path between i and i. A strong component of the

network is a maximal set S of individuals such that there is path between any two individuals

in S. The original network induces an acyclic network on the strong components. Thus, there

always exist a strong component S such that ∀i ∈ S,Ni ⊂ S. Transitive directed graphs admit a

simple characterization, see Proposition 4.3.1 in Bang-Jensen and Cutin (2000). Especially, their

strong components are complete, and the relations between strong components are also complete.

Formally, let S and S0 be two strong components. Then, ∀i 6= j ∈ S, gij > 0. And, if there is a

path between i ∈ S and i0 ∈ S0, then for all j ∈ S and j0 ∈ S0, gjj0 > 0.

We know that there exists two strong components S1 and S2 of sizes s1, s2 such that: (1)

∀i ∈ S1, Ni = S1 − {i}, and (2) ∀i ∈ S2, Ni = S ∪ S2 − {i} where S is a group size s ≥ s1 such

that S1 ⊂ S and S2 ∩S = ∅. S1 is a strong component, which is not affected by any other strong

component. S2 is a strong component affected by S1. We can find S1 6= S2 since individuals

do not interact in groups. Suppose first that s1, s2 ≥ 2. For any i 6= j ∈ S1, gij = 1
s1−1

while for any i 6= j ∈ S2, gij = 1
s2+s−1 . If g

2 = λ0i+λ1g, then ∀i, (g2)ii = λ0. In addition,

(g2)ii =
P

j∈N gijgji. Since S1 is a strong component, if i ∈ S1 and gijgji > 0, then j ∈ S1. The

same is true for S2. Therefore, if i ∈ S1, (g2)ii =
P

j∈S1 gijgji =
1

s1−1 . In contrast, if i ∈ S2,

(g2)ii =
P

j∈S2 gijgji =
s2−1

(s2+s−1)2 . Since s2 + s− 1 > s1 − 1, we have s2−1
(s2+s−1)2 <

1
s1−1 , which is a
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contradiction.

Suppose next that s1 or s2 is equal to 1. It means that for some i, (g2)ii = 0. Hence λ0 = 0

and for all i, (g2)ii = 0. Therefore, all the strong components of the network have size 1, and the

network is acyclic. In this case, there must exist a pair of individuals i and j such that: (1) i is

affected by j, (2) j is isolated, and (3) all the individuals affecting i are isolated. Then, gij = 1
ni

and (g2)ij =
P

k∈N gikgkj = 0. Therefore, λ1 = 0, hence g2 = 0. Therefore, if g2 6= 0, i, g, and

g2 are linearly independent.

Finally, suppose that g2 = 0. These networks are characterized by the fact that: (1) no

relation is reciprocal, i.e., j ∈ Ni ⇒ i /∈ Nj , and (2) they do not have any triad, i.e., sets of three

different individuals i, j, k such that i ∈ Nj and j ∈ Nk. Two sets of structural coefficients lead to

the same reduced form if α1 = α01, α3 + α01α2 = α03 + α1α
0
2, and α0(i−α2g)−11 =α00(i−α02g)

−11.

The last condition becomes α01−α0α02g1 =α001−α00α2g1. There must exist one isolated and one

non-isolated individual in the network. When i is isolated, (g1)i = 0 and α0 = α00. When i is not

isolated, (g1)i = 1, and α0(1 − α02) = α00(1 − α2). Under the assumption that α0 6= 0, we have

α2 = α02, hence α3 = α03 and social effects are identified.

Proof of Proposition 4

Two sets of structural parameters (α1, α2, α3) and (α01, α
0
2, α

0
3) lead to the same reduced form

of (i− g)y if and only if (i−α2g)−1(α1i + α3g)(i − g) = (i−α02g)−1(α01i + α03g)(i − g). This is

equivalent to

(α1−α01)i+[α3−α03−(α1−α01)+α01α2−α1α02]g−[α3−α03+α02(α3−α1)−α2(α03−α01)]g2+(α02α3−α2α03)g3 = 0

Suppose first that i, g, g2, and g3 are linearly independent. Then, α1 = α01, α3 + α1α2 =

α03 + α1α
0
2, and α02α3 = α2α

0
3. By the same argument as in the proof of Proposition 1, α2 = α02
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and α3 = α03. Suppose next that i, g, g
2, and g3 are linearly dependent. If g2 = λ0i+λ1g, only

two equations must be satisfied for (α1, α2, α3) and (α01, α
0
2, α

0
3) to lead to the same reduced form,

hence social effects are not identified. If g3 = λ0i+λ1g + λ2g
2, (α1, α2, α3) and (α01, α

0
2, α

0
3) lead

to the same reduced form of (i− g)y if and only if the following three equations are satisfied

α1 − α01 + λ0(α
0
2α3 − α2α

0
3) = 0

α3 − α03 − (α1 − α01) + α01α2 − α1α
0
2 + λ1(α

0
2α3 − α2α

0
3) = 0

−(α3 − α03)− α02(α3 − α1) + α2(α
0
3 − α01) + λ2(α

0
2α3 − α2α

0
3) = 0

Since no individual is isolated, g1 = 1, and λ0+λ1 + λ2 = 1. This means that the third equation

can be simply obtained by summing the first two. Hence two equations only need to be satisfied,

and social effects are not identified.

With K characteristics, α and α0 lead to the same reduced-form iff ∀k, (i−α2g)−1(α1ki +

α3kg)(i − g) = (i−α02g)−1(α01ki + α03kg)(i − g). Suppose that α3k0 + α1k0α2 6= 0. If i, g, g2,

and g3 are linearly independent, then α2 = α02, α1k0 = α01k0 and α3k0 = α03k0 . For any other k,

multiplying by i−α2g leads to (α1k−α01k)i+(α3k−α03k+α01k−α1k)g+(α03k−α3k)g2 = 0, hence

α1k = α01k and α3k = α03k.

Proof of Proposition 6.

We first show that social effects are identified if and only if the following condition is true. If

μ0i+ μ1g + μ2g
2 has identical rows over each component, then μ0 = μ1 = μ2 = 0.

Suppose that the condition holds. Consider c one component of g. On c, the reduced form

of equation (7) can be written y = μc
1−α21c+(i−α2g)

−1(α1i + α3g)x + ν. Averaging over the
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component and subtracting yields:

y − 1

|c|(
|c|X
i=1

yi)1c=(i−α2g)−1(α1i+ α3g)x− ϕ(x,α)1+ ν0

where |c| is the size of the component, α = (α1, α2, α3), and ϕ(x,α) = 1
|c|
P|c|

j=1[(i−α2g)−1(α1i+

α3g)x]j is linear in x. Next suppose that (α1, α2, α3) and (α
0
1, α

0
2, α

0
3) lead to the same reduced

form. It means that ∀x, (i−α2g)−1(α1i+α3g)x−ϕ(x,α)1 = (i−α02g)−1(α01i+α03g)x−ϕ(x,α0)1.

Multiplying by i−α2g and i−α02g gives ∀x, [(α1 − α01)i + (α3 − α03 + α01α2 − α1α
0
2)g+(α

0
2α3 −

α2α
0
3)g

2]x = (1−α2)(1−α02)[ϕ(x,α)−ϕ(x,α0)]1. This means that the matrix (α1−α01)i+(α3−

α03 + α01α2 − α1α
0
2)g+(α

0
2α3 − α2α

0
3)g

2 has identical rows over each component. Thus, α1 = α01,

α3 + α01α2 = α03 + α1α
0
2, and α02α3 = α2α

0
3, and, using the argument in the proof of Prop. 1,

social effects are identified.

Conversely, suppose that the condition does not hold. There exist μ0, μ1, μ2 not all equal to

zero such that μ0i+ μ1g+ μ2g
2 has identical rows over each component. We follow the previous

reasoning in reverse. We can find α 6= α0 such that μ0 = α1−α01, μ1 = α3−α03+α01α2−α1α02, and

μ2 = α02α3−α2α03. Then, (α1−α01)i+(α3−α03+α01α2−α1α02)g+(α02α3−α2α03)g2 has identical rows

over each component. Over each component c, there exists (rj) such that ∀x, [(α1−α01)i+(α3−α03+

α01α2−α1α02)g+(α02α3−α2α03)g2]x = (1−α2)(1−α02)(
P|c|

j=1 rjxj)1. Dividing by i−α2g and i−α02g

means that ∀x,(i−α2g)−1(α1i+α3g)x− (i−α02g)−1(α01i+α03g)x =(
P|c|

j=1 rjxj)1. Averaging over

the component yields ϕ(x,α) − ϕ(x,α0) =
P|c|

j=1 rjxj . Therefore, ∀x, (i−α2g)−1(α1i+ α3g)x−

ϕ(x,α)1 = (i−α02g)−1(α01i+α03g)x−ϕ(x,α0)1. This means that α and α0 have the same reduced

form, hence social effects are not identified.

Next, suppose that μ0i+μ1g+μ2g
2 has identical rows over each component. Since g1c= 1c,

multiplying by g leaves the matrix unchanged. Thus, μ0i+ μ1g + μ2g
2 = μ0g + μ1g

2 + μ2g
3. If
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i,g,g2, and g3 are linearly independent, then μ0 = μ1 = μ2 = 0, and social effects are identified.

If g3 = λ0i + λ1g + λ2g
2, and μ2 = 0, then μ0 = μ1 = 0. If μ2 6= 0, we can set μ2 = 1. This

yields μ0 = λ0 and μ1 = λ0 + λ1. In other words, either λ0i + (λ0 + λ1)g + g
2 has identical

rows over components, and social effects are not identified, or there is one component such that

λ0i+ (λ0 + λ1)g + g
2 does not have identical rows, and social effects are identified.

Finally, let m = λ0i + (λ0 + λ1)g + g
2. Notice that gm = λ0g + (λ0 + λ1)g

2 + g3 = m.

It means that on any component, any column mj of m satisfies gmj = mj . Suppose that

rank(i− g) = n − |C|. It means that on any component, dimKer(i− g) = 1. Therefore, on

any component c of size |c|, mj = ξj1 and all rows of m are equal to (ξ1, ..., ξnC ). Thus, social

effects are not identified. Conversely, suppose that m has identical rows over components. Take

a component, and a vector u such that gu = u on this component. Then, mu = (2λ0+λ1+1)u.

Since m has identical rows, mu has identical elements. As soon as 2λ0+λ1+1 6= 0, ui = uj and

on this component dimKer(i− g) = 1, hence rank(i− g) = n− |C|.

With K characteristics, α and α0 lead to the same reduced-form iff ∀k, (i − h)(α1ki +

α3kg)(i−α2g)−1 = (i−h)(α01ki+α03kg)(i−α02g)−1. Suppose that α3k0 +α1k0α2 6= 0. If g satisfies

the condition of Proposition 6, then α2 = α02, α1k0 = α01k0 and α3k0 = α03k0 . For any other k,

right multiplying by i−α2g leads to (i−h)(α1ki+α3kg) = (i−h)(α01ki+α03kg) hence α1k = α01k

and α3k = α03k.

Proof of Proposition 7.

Denote by r(α,g) = (i−α2g)−1(α1i + α3g) and by ri its columns. Social effects are not

identified if and only if there exists α 6= α0 such that dr(α,g) = dr(α0,g) This is equivalent to

the fact that for every i, the vector ri(α,g)−ri(α0,g) belongs to kerd. Therefore, if kerd ⊂ kerd0

and if social effects are not identified for d, then they are not identified for d0.
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APPENDIX 2. Perfect collinearity and identification.

Result 1. Suppose that α1α2 + α3 6= 0 and that no individual is isolated. Then,

(1) ∀x, E(gy|x) = λ01+ λ1x+ λ2gx⇒ g2 = μ0i+ μ1g.

(2) g2 = μ0i+ μ1g and μ0α2 6= −1⇒∀x, E(gy|x) = λ01+ λ1x+ λ2gx.

Proof. Recall, from 2, that y = α0
1−α21 + (i − α2g)

−1(α1i+ α3g)x + (i − α2g)
−1². Multiplying

by g and taking the expectation yields:

E(gy|x) = α0
1− α2

1+ (i− α2g)
−1(α1g + α3g

2)x.

One can then see that ∀x, E(gy|x) = λ01+ λ1x+ λ2gx is equivalent to λ0 = α0
1−α2 and

λ1i+ (λ2 − α2λ1 − α1)g − (α2λ2 + α3)g
2 = 0.

If i,g,g2 are linearly independent, then λ1 = 0, λ2 = α1, hence α2α1 + α3 = 0, which is not

possible. This shows that ∀x, E(gy | x) = λ01+ λ1x+ λ2gx⇒ g2 = μ0i+ μ1g.

Reciprocally, suppose that g2 = μ0i+μ1g. We want to find λ1 and λ2 such that α2λ2+α3 6= 0,

λ1 = μ0(α2λ2+α3) and λ2−α2λ1−α1 = μ1(α2λ2+α3). This is equivalent to λ1−μ0α2λ2 = μ0α3

and α2λ1 + (μ1α2 − 1)λ2 = −α1 − μ1α3. This system has a unique solution in λ1 and λ2 if and

only if μ1α2 − 1 + μ0α
2
2 6= 0. Since g21 = 1, μ0 + μ1 = 1 and the last condition is equivalent to

μ0α2 6= −1. If μ0α2 = −1, then the system has no solution if α1α2 + α3 6= α3 and an infinity of

solutions otherwise.

WithK characteristics, denote by xk the vector associated with characteristic k. We can show

through the same reasoning that ∀x1, ...,xK , E(gy|x) = λ01 +
PK

k=1(λ1kx
k + λ2kgx

k)⇒ g2 =

μ0i+μ1g and that g
2 = μ0i+μ1g and μ0α2 6= −1⇒∀x1, ...,xK , E(gy|x) = λ01+

PK
k=1(λ1kx

k+
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λ2kgx
k). Observe that here the variables (1,x1, ...,xK ,gx1, ...,gxK ,g2x1, ...,g2xK , ...) can be

used to instrument for gy. ¤

Result 2. Suppose that α1α2 + α3 6= 0 and that no individual is isolated. Then,

(1) ∀x,E[(i− g)gy|x] = λ0(i− g)x+ λ1(i− g)gx⇒ g3 = μ0i+ μ1g + μ2g
2.

(2) g3 = μ0i+μ1g+μ2g
2 and μ0α2(1+α2)+μ1α2 6= −1⇒∀x,E[(i− g)gy|x] = λ0(i− g)x+

λ1(i− g)gx.

Proof. Similarly, E[(i−g)gy|x] = (i−α2g)
−1(α1g+α3g

2)(i−g)x. Therefore, one can see that

∀x, E[(i− g)gy|x] = λ0(i− g)x+ λ1(i− g)gx is equivalent to

λ0i+ (λ1 − (1 + α2)λ0 − α1)g + (α1 − α3 − λ1 − α2(λ1 − λ0))g
2 + (α2λ1 + α3)g

3 = 0.

If i,g,g2,g3 are linearly independent, then λ0 = 0, λ1 = α1, hence α2α1 + α3 = 0, which is not

possible.

Reciprocally, suppose that g3 = μ0i + μ1g + μ2g
2. We want to find λ1 and λ2 such that

α2λ1+α3 6= 0, −λ0 = μ0(α2λ1+α3), −(λ1− (1+α2)λ0−α1) = μ1(α2λ1+α3), and (−α1+α3+

λ1+α2(λ1−λ0)) = μ2(α2λ1+α3). Since μ0+μ1+μ2 = 1, one can see that the third equation is

a simple linear combination of the first two. Thus, only the first two have to be satisfied. They

are equivalent to λ0+μ0α2λ1 = −μ0α3 and (1+α2)λ0− (1+μ1α2)λ1 = μ1α3−α1. This system

as a unique solution if and only if μ0α2(1 + α2) + μ1α2 6= −1.

As in the previous result, the generalization to K characteristics is straightforward. Here, the

variables ((i− g)x1, ..., (i− g)xK , (i− g)gx1, ..., (i− g)gxK , (i− g)g2x1, ..., (i− g)g2xK , ...) can

be used to instrument for (i− g)gy. ¤
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Figure 1: Non directed graphs for which the matrices i, g, g2, and g3 are linearly dependent
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Figure 2: A graph for Figure 2: A graph for whichwhich social social effectseffects are are identifiedidentified whenwhen usingusing global global differencesdifferences but notbut not
whenwhen usingusing local local differencesdifferences..
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Table 1: Network Simulations for Erdos-Renyi graphs (1000 draws) 
 

Density Intransitivity 
0α̂  

(S.E.) 
1α̂  

(S.E.) 
2α̂  

(S.E.) 
3α̂  

(S.E.) 
0.05 0.9477 3.0013 0.7497 0.5004 0.6993 

  1.6816 0.0071 0.0269 0.0237 
0.10 0.9005 3.0080 0.7498 0.4999 0.6998 

  4.1868 0.0071 0.0686 0.0549 
0.15 0.8469 2.7214 0.7502 0.5043 0.6978 

  6.5377 0.0070 0.1080 0.0838 
0.20 0.8093 3.5105 0.7500 0.4915 0.7067 

  9.2527 0.0071 0.1527 0.1158 
0.25 0.7507 3.3334 0.7499 0.4954 0.7006 

  12.8648 0.0071 0.2121 0.1593 
0.30 0.6990 4.2639 0.7501 0.4786 0.7172 

  17.1369 0.0071 0.2838 0.2116 
0.35 0.6403 2.0503 0.7503 0.5168 0.6856 

  22.7531 0.0071 0.3762 0.2789 
0.40 0.5927 3.5205 0.7500 0.4922 0.7033 

  27.3555 0.0070 0.4537 0.3353 
0.45 0.5413 3.7504 0.7497 0.4876 0.7061 

  33.9050 0.0071 0.5605 0.4131 
0.50 0.4989 2.2471 0.7500 0.5110 0.6918 

  40.3953 0.0071 0.6696 0.4924 
0.55 0.4441 3.0884 0.7502 0.5026 0.6939 

  51.5507 0.0071 0.8553 0.6261 
0.60 0.3860 2.6165 0.7500 0.5027 0.6997 

  64.5321 0.0072 1.0710 0.7854 
0.65 0.3462 0.7184 0.7501 0.5366 0.6724 

  77.8152 0.0072 1.2899 0.9446 
0.70 0.3032 -1.4445 0.7503 0.5762 0.6446 

  94.3919 0.0072 1.5639 1.1434 
0.75 0.2488 -0.7077 0.7501 0.5683 0.6500 

  122.7888 0.0073 2.0330 1.4854 
0.80 0.2003 2.3562 0.7499 0.5069 0.6903 

  166.9340 0.0073 2.7691 2.0259 
0.85 0.1529 -1.9230 0.7500 0.5745 0.6468 

  237.4791 0.0075 3.9225 2.8630 
0.90 0.0966 -57.5221 0.7501 1.4881 -0.0283 

  2072.7681 0.0125 33.8434 25.1028 
0.95 0.0491 -49.8582 0.7495 1.4424 -0.0308 

  8637.3878 0.0206 140.1818 101.0338 
1 0.000 304.8219 0.8264 -9.2265 5.4705 
  ->∞  -> ∞  ->∞  ->∞  
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Table 2a: Small World graphs, { }4,5k = , 1000 draws. 
 

k p Intransitivity
0α̂  

(S.E.) 
1α̂  

(S.E.) 
2α̂  

(S.E.) 
3α̂  

(S.E.) 
4 0.01 0.0396 3.0082 0.7506 0.4987 0.7030 
   0.5249 0.0295 0.0476 0.1073 

4 0.05 0.1704 3.0173 0.7508 0.4987 0.7024 
   0.4757 0.0141 0.0222 0.0474 

4 0.10 0.2991 3.0202 0.7500 0.4993 0.7014 
   0.4965 0.0111 0.0173 0.0346 

4 0.20 0.6395 2.9851 0.7502 0.5002 0.6995 
   0.4462 0.0077 0.0093 0.0176 

4 0.40 0.8246 3.0032 0.7503 0.4997 0.7005 
   0.4781 0.0073 0.0093 0.0163 

4 0.60 0.9456 2.9855 0.7502 0.5000 0.7005 
   0.4867 0.0071 0.0086 0.0146 

4 0.80 0.9652 2.9830 0.7502 0.5005 0.6992 
   0.4644 0.0070 0.0081 0.0137 

4 1.00 0.9680 2.9774 0.7502 0.5004 0.6996 
   0.4806 0.0071 0.0081 0.0135 

5 0.01 0.0266 3.0019 0.7509 0.4979 0.7055 
   0.6251 0.0301 0.0624 0.1491 

5 0.05 0.2096 2.9984 0.7500 0.5004 0.6989 
   0.5676 0.0116 0.0230 0.0498 

5 0.10 0.3031 3.0214 0.7496 0.4999 0.7002 
   0.5890 0.0101 0.0195 0.0397 

5 0.20 0.5004 3.0008 0.7498 0.5002 0.6995 
   0.7150 0.0087 0.0181 0.0314 

5 0.40 0.8288 3.0353 0.7502 0.4994 0.7001 
   0.6558 0.0071 0.0119 0.0182 

5 0.60 0.9245 3.0266 0.7501 0.4992 0.7010 
   1.2469 0.0071 0.0208 0.0209 

5 0.80 0.9576 2.9818 0.7498 0.5003 0.6998 
   0.6025 0.0071 0.0106 0.0169 

5 1.00 0.9584 3.0440 0.7499 0.4994 0.7003 
   0.8009 0.0070 0.0132 0.0174 
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Table 2b: Small World graphs, { }10, 20k = , 1000 draws. 
 

k p Intransitivity
0α̂  

(S.E.) 
1α̂  

(S.E.) 
2α̂  

(S.E.) 
3α̂  

(S.E.) 
10 0.01 0.0321 3.0077 0.7501 0.4995 0.7015 

   0.9237 0.0188 0.0793 0.2069 
10 0.05 0.1525 2.9991 0.7492 0.5020 0.6945 

   0.9013 0.0103 0.0396 0.0938 
10 0.10 0.2484 3.0294 0.7495 0.5015 0.6947 

   1.0113 0.0090 0.0339 0.0730 
10 0.20 0.4743 3.1004 0.7502 0.4989 0.6994 

   1.3026 0.0079 0.0311 0.0529 
10 0.40 0.7528 3.0963 0.7501 0.4981 0.7021 

   2.1654 0.0074 0.0403 0.0465 
10 0.60 0.8672 2.8426 0.7500 0.5024 0.6985 

   3.1458 0.0071 0.0536 0.0481 
10 0.80 0.9086 3.1253 0.7500 0.4990 0.6985 

   3.5709 0.0071 0.0586 0.0480 
10 1.00 0.9099 2.8883 0.7502 0.5014 0.6995 

   3.6729 0.0070 0.0600 0.0485 
20 0.01 0.0339 3.0338 0.7496 0.5009 0.6959 

   1.4941 0.0130 0.1054 0.2818 
20 0.05 0.1518 3.0723 0.7499 0.4989 0.7007 

   1.5786 0.0087 0.0587 0.1368 
20 0.10 0.2678 2.9678 0.7499 0.5005 0.6999 

   1.8760 0.0079 0.0522 0.1040 
20 0.20 0.4578 3.1922 0.7503 0.4967 0.7026 

   2.7157 0.0074 0.0576 0.0854 
20 0.40 0.6748 3.3740 0.7497 0.4944 0.7028 

   4.7499 0.0073 0.0854 0.0871 
20 0.60 0.7760 3.0040 0.7500 0.5002 0.6995 

   7.6492 0.0071 0.1290 0.1059 
20 0.80 0.8044 3.1250 0.7498 0.4975 0.7023 

   8.9864 0.0070 0.1486 0.1142 
20 1.00 0.8084 2.9218 0.7497 0.5018 0.6969 

   9.3405 0.0071 0.1544 0.1175 
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Table 2c: Small World graphs, { }25,50k = , 1000 draws. 
 

k p Intransitivity
0α̂  

(S.E.) 
1α̂  

(S.E.) 
2α̂  

(S.E.) 
3α̂  

(S.E.) 
25 0.01 0.0217 3.1217 0.7500 0.4964 0.7065 

   1.9620 0.0143 0.1484 0.4028 
25 0.05 0.1262 3.0693 0.7502 0.5002 0.6965 

   2.0250 0.0085 0.0717 0.1653 
25 0.10 0.2770 3.0468 0.7500 0.5000 0.6979 

   2.4580 0.0077 0.0628 0.1170 
25 0.20 0.4260 3.0929 0.7500 0.4988 0.7004 

   3.3078 0.0074 0.0695 0.1012 
25 0.40 0.6525 3.6216 0.7500 0.4897 0.7066 

   6.6105 0.0072 0.1163 0.1105 
25 0.60 0.7348 2.6441 0.7499 0.5060 0.6949 

   10.6845 0.0071 0.1792 0.1423 
25 0.80 0.7556 2.7247 0.7502 0.5046 0.6960 

   12.4027 0.0071 0.2055 0.1554 
25 1.00 0.7588 2.8411 0.7504 0.5022 0.6998 

   12.5097 0.0071 0.2066 0.1553 
50 0.01 0.0335 3.8310 0.7495 0.4946 0.6845 

   11.3662 0.0097 0.2885 0.5146 
50 0.05 0.1280 3.3371 0.7501 0.4900 0.7196 

   10.9162 0.0078 0.2225 0.3027 
50 0.10 0.2403 2.9446 0.7501 0.4995 0.7022 

   32.4395 0.0076 0.5588 0.4834 
50 0.20 0.3505 4.4018 0.7504 0.4757 0.7172 

   18.3516 0.0072 0.3201 0.2912 
50 0.40 0.4711 4.0322 0.7498 0.4844 0.7083 

   25.7533 0.0071 0.4335 0.3435 
50 0.60 0.4997 4.6724 0.7501 0.4724 0.7207 

   34.6307 0.0071 0.5769 0.4338 
50 0.80 0.5014 0.8452 0.7499 0.5353 0.6724 

   39.1768 0.0071 0.6509 0.4816 
50 1.00 0.5052 3.2033 0.7500 0.4987 0.6984 

   38.8392 0.0071 0.6428 0.4737 
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