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Abstract: In this paper we estimate density functions for positive multivariate data. 
We propose a semiparametric approach. The estimator combines gamma kernels or 
local linear kernels, also called boundary kernels, for the estimation of the marginal 
densities with semiparametric copulas to model the dependence. This 
semiparametric approach is robust both to the well known boundary bias problem 
and the curse of dimensionality problem. We derive the mean integrated squared 
error properties, including the rate of convergence, the uniform strong consistency 
and the asymptotic normality. A simulation study investigates the finite sample 
performance of the estimator. We find that univariate least squares cross validation, 
to choose the bandwidth for the estimation of the marginal densities, works well and 
that the estimator we propose performs very well also for data with unbounded 
support. Applications in the field of finance are provided. 
 
Keywords: Asymptotic properties, asymmetric kernels, boundary bias, copula, curse 
of dimension, least squares cross validation 
 
JEL Classification: C13, C14, C22 
 
Résumé: Dans cet article nous estimons la fonction de densité pour des données 
multivariées et positives. Nous proposons une approche semi-paramétrique. La 
méthode utilise l’estimateur à noyau gamma ou local linéaire pour évaluer les 
densités marginales et la copule semi-paramétrique pour modéliser la dépendance. 
Cette approche semi-paramétrique est robuste à la fois au problème de biais à la 
frontière et au problème de dimensionnalité. Nous dérivons l’erreur quadratique 
moyenne  intégrée, y compris le taux de convergence, la convergence uniforme 
presque sûre ainsi que la normalité asymptotique. Une étude Monte Carlo montre la 
performance de cet estimateur. Pour choisir le paramètre de lissage on propose 
d’utiliser la méthode de validation croisée des moindres carrés. Nous montrerons par 
simlations la performance de cette technique. Des applications dans le domaine des 
finances sont fournies. 
 
Mots Clés : Propriétés asymptotiques, noyaux asymétriques, problème du biais, 
copule, problème de dimension, validation croisée. 
 
 
 



1 Introduction

Many results on nonparametric density estimation are based on the assumption that the support

of the random variable of interest is the real line. However, in applications, data are often bounded

with a possible high concentration close to the boundary. For example, in labor economics, the

income distribution for a specific country is bounded at the minimum wage. Usual nonparametric

density estimation techniques, for example the well known Gaussian kernel, for these kind of data

produce inconsistent results because the kernel allocates weight outside the support implying an

underestimation of the underlying density in the boundary. This boundary bias problem is well

documented in the univariate case. The first technique to resolve this problem is proposed by

Schuster (1985) suggesting the reflection method. Lejeune and Sarda (1992), Jones (1993) Jones

and Foster (1996), Müller (1991), and Rice (1984) use flexible kernels called boundary kernels

instead of the usual fixed kernels. Marron and Ruppert (1994) recommend to transform data

before applying the standard kernel. Chen (2000) proposes a gamma kernel estimator, Bouezmarni

and Scaillet (2005) and Bouezmarni and Rombouts (2006) investigate the properties of a gamma

estimator in respectively a mean absolute deviation and a time series framework.

In general, the univariate framework is only a first step towards multivariate density estimation

in order to explain links between variables the supports of some are potentially bounded. The

problem of inconsistent density estimation carries over (and becomes even more substantial) in the

case of multivariate bounded random variables. For the same reason as above, the multivariate

Gaussian kernel density estimator is not suitable for these kind of random variables. An additional

problem with nonparametric multivariate density estimation is that the rate of convergence of

the mean integrated squared error increases with the dimension. This is the well known curse

of dimensionality problem. To date, the boundary and the curse of dimension problems have not

been addressed simultaneously. For example, Müller and Stadtmüller (1999) propose a multivariate

estimator without a boundary problem but with a problem of curse of dimension. Liebscher (2005)

puts forward a semiparametric estimator based on copulas and on the standard kernel estimator for

the marginal densities which solves the curse of dimension problem but not the boundary problem.

This paper proposes a multivariate semiparametric density estimation method which is robust

to both the boundary and the curse of dimension problem. The estimator combines gamma or

local linear kernels the support of which matches that one of the underlying multivariate density,
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and semiparametric copulas. This leads to an estimator which is easy to implement. We derive

asymptotic properties such as the mean integrated squared error, uniform strong consistency and

asymptotic normality. In the simulations we compare the finite sample performance of the (modi-

fied) gamma and the local linear estimator for the marginal densities using the Gaussian and the

Gumbel-Hougaard copula. We find that the univariate least squares cross validation technique to

choose the bandwidths for the marginal kernel density estimators works successfully. Therefore,

bandwidth selection for our estimator can be done in a computational straightforward manner.

The simulations reveal also that for data without a boundary problem our estimator performs very

well.

Examples of multivariate positive data abound in finance and economics. Cho (1998) investi-

gates whether ownership structure affects investment using variables such as capital expenditures,

and research and development expenditures sampled from the 1991 Fortune 500 manufacturing

firms. Grullon and Michaely (2002) study the relationship over time between dividends and share

repurchases conditional on the market value and the book value of assets for US corporations. In

our application we estimate the joint density of the stock price and the total number of shares out-

standing. The data come from 558 US companies observed in 2005. We test if the density depends

on the fact that dividends are paid out or not, and on the fact that there is debt outstanding or

not. We use the Gumbel-Hougaard copula as suggested by the simulation results.

The paper is organized as follows. The semiparametric estimator for multivariate positive data

is introduced in Section 2. Section 3 provides convergence properties. In Section 4, we investigate

the finite sample properties of the gamma and local linear kernel semiparametric copula estimator

for positive bivariate data. Section 5 contains the application described above. Section 6 concludes.

The proofs of the asymptotic results are gathered in the appendix.

2 Semiparametric density estimator

Let X = {(X1
i , ...,Xd

i ), i = 1, .., n} be a sample of independent and identically distributed random

variables in IR+d, with distribution function F and density function f . We estimate the density

function with a semiparametric method based on nonparametric marginal density estimates and a

semiparametric copula. Compared to a full nonparametric approach we impose some structure on

the unknown distribution but doing so we do not have the curse of dimension problem. Furthermore,
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in several research fields one wants to interpret parameters of interest that measure the association

between the random variables. What is not of interest is left unspecified.

From Sklar (1959) it is well known that the distribution function can be expressed via a copula

F (x1, ..., xd) = Γ(F1(x1), ..., Fd(xd)) (1)

where Fi is the marginal distribution of the random variable Xi, Γ is a copula function which

captures the dependence of X. See Nelson (1999) for a textbook reference on copulas. There are

several possibilities to work with copulas. First, one can assume parametric models for both the

copula and the marginal distribution. Estimation of the parameters is done by maximum likelihood

or inference function for margins. See Oakes (1982), Romano (2002) and Joe (2005) for details of

these methods. A second possibility is to consider nonparametric models for both the marginal

distribution and the copula. Deheuvels (1979) proposes a method based on the multivariate em-

pirical distribution. Gijbels and Mielniczuk (1990) use the kernel method to estimate a bivariate

copula and suggest to use the reflection method to overcome the boundary bias problem. More

recently, Chen and Huang (2007) propose a bivariate estimator based on the local linear estimator.

A Bernstein polynomial kernel type estimator is developed by Sancetta and Satchell (2004) and

Rödel (1987) uses the orthogonal series method. A third possibility to work with copulas is a

semiparametric approach which supposes a parametric model for the copula, Γ = Γθ, and a non-

parametric model for the marginal distributions. This method is developed by Oakes (1986), and

Genest, Ghoudi, and Rivest (1995) and Genest and Rivest (1993). Recently, Kim, Silvapulle, and

Silvapulle (2007) compare semiparametric and parametric methods for estimating copulas.

In this paper our interest lies in the density function. It is well known that, by deriving (1)

with respect to (x1, ..., xd), the density function can be expressed as

f(x1, ..., xd) = f1(x1)...fd(xd)γ(F1(x1), ..., Fd(xd)) (2)

where fj is the marginal density of the random variable Xj and γ is the copula density. We

estimate the density function in a semiparametric way. With respect to the semiparametric copula,

we estimate the parameter θ by a consistent estimator. The distribution function of Xj is estimated

by Fnj using the empirical distribution. The marginal density of Xj = (Xj
1 , ...,Xj

n) is estimated

nonparametrically as

f̂j(xj) =
1

n

n
∑

i=1

K(bj ,X
j
i )(xj) (3)
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where bj is the bandwidth parameter and the kernel K is the local linear kernel when it is defined

as

KL(h, t)(x) = Kl

(

x, h,
x − t

h

)

(4)

where

Kl(x, h, t) =
a2(x, h) − a1(x, h)t

a0(x, h)a2(x, h) − a2
1(x, h)

K(t), (5)

K is any symmetric kernel with a compact support [−1, 1] and

as(x, h) =

∫ x/h

−1
tsK(t)dt. (6)

We also consider a gamma kernel defined as

KG(b, t)(x) =
tx/b exp(−t/b)

bx/b+1Γ(x/b + 1)
(7)

and a modified gamma kernel

KMG(b, t)(x) =
tρ(x)−1 exp(−t/b)

bρ(x)Γ(ρ(x))
, (8)

where

ρ(x) =



















x/b if x ≥ 2b

1
4 (x/b)2 + 1 if x ∈ [0, 2b).

(9)

The second gamma kernel is proposed by Chen (2000) in order to reduce the bias of the gamma

kernel KG. In fact, in the next section we show that for this kernel the first derivative disappears

in the asymptotic integrated bias.

To conclude, the semiparametric method separates the multivariate density estimator into mar-

ginal density estimation and copula estimation. With the univariate boundary kernels we resolve

the potential boundary problem in the marginal densities, and the use of a semiparametric copula

circumvents the curse of dimension problem. Therefore, to estimate the multivariate density we

need to choose n bandwidths and a copula family. Figure 1 displays shapes of the Gaussian, local

linear and the gamma kernel estimator with a Gaussian copula for data without a boundary prob-

lem. We observe that the shapes of all the kernels are quite similar, demonstrating the flexibility

of the local linear and the gamma kernels using a Gaussian copula. Figure 2 shows how the semi-

parametric estimator adapts nicely to densities with high a concentration in the boundary region

and that the Gaussian kernel (panel b) is inconsistent for this type of data.
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(b) Gaussian kernel

2
4

6
8

10

2.5

5.0

7.5

10.0

0
.0

5
0
.1

0
0
.1

5

(c) Local linear kernel
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(d) Gamma kernel

Figure 1: Normal density function with Gaussian, local linear and gamma kernel estimators.
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Figure 2: Truncated normal with two boundary problems with Gaussian, local linear and gamma

kernel estimators.

6



3 Convergence properties

In this section we establish the asymptotic properties of the semiparametric estimator. Assumptions

on the bandwidth parameters and the copula parameter are given next.

Assumptions on the bandwidth parameters

A1. aj → 0, and n−1a
− 1

2

j → 0, for j = 1, ..., d., as n → ∞.

A2. aj → 0, and log(n)n−1a
− 1

2

j → 0, for j = 1, ..., d., as n → ∞.

The condition A1 is needed for mean integrated squared error and the normality of the estimator,

the condition A2 is required for the uniform strong convergence of the estimator. These conditions

are similar to those of Bouezmarni and Scaillet (2005).

Assumptions on the copula

P1. Suppose that γθ is bounded on [0, 1]d and

|γt(u1, ..., ud) − γs(v1, ..., vd)| ≤ C

(

d
∑

i=1

|ui − vi| + |t − s|
)

for u = (u1, ..., ud), v ∈ J ⊂ [0, 1]d, t, s ∈ Θ, C is a constant and J is the intersection of an

open set and [0, 1]d.

P2.

||θ̂ − θ|| = O

(
√

ln(n)

n

)

, a.s. (10)

P3.

IE(θ̂ − θ)2 = O(ln(n)n−1). (11)

The condition P1 allows to separate the two random terms, that is the parameter estimator and the

marginal distribution estimators, in the copula estimator. Hence, it suffices to make assumptions

P2 and P3 on the parameter estimator of the copula, since it is well known that the consistency of

the empirical distribution estimator is guaranteed. Liebscher (2005) shows for the Raftery family

and Gumbel family of copulas that the three conditions above are fulfilled.

Under the previous assumptions we establish our main theoretical results. The next proposition

shows the asymptotic mean integrated squared error.
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Proposition 1. mean integrated squared error of f̂sp

Suppose that f1, ..., fd are twice differentiable at x. Under assumption A1, P1 and P3 we have

MISE =

∫

(

d
∑

j=1

ajB
∗
j (x))2 dx +

1

n





d
∑

j=1

a
−1/2
j

∫

Vj(x)dx



 + o





d
∑

j=1

a2
j



+ o



n−1
d
∑

j=1

a
−1/2
j





where for the gamma kernel, aj = bj and

Bj = γθ(x)f̃j(x)Bj(x) and Vj(x) = (2
√

π)−1γ2
θ (x)f̃2

j (x)fj(xj)x
−1/2
j

with

f̃j(x) =
∏

k 6=j

fk(xk).

The optimal bandwidths which minimize the asymptotic mean integrated squared error are

a∗j = c∗jn
− 2

5 , for some positive constants c∗1, ..., c
∗
d. (12)

Therefore, the optimal asymptotic mean integrated squared error is

AMISE∗ =







∫

(
d
∑

j=1

C∗
j B∗

i (x))2 dx +





d
∑

j=1

C∗
j
−1/2

∫

Vj(x) dx











n− 4

5 (13)

In particular, if a = a1 = ... = ad, the optimal bandwidths and the optimal asymptotic mean

integrated squared error are

a∗ =

(

1

4

∑
∫

Vj(x)dx
∑
∫

B∗
j (x)dx

)
2

5

n− 2

5 , and AMISE∗ =
5

4
4

5

(

∑

∫

Vj(x)dx

)
4

5
(

∑

∫

B∗
j (x)dx

)
1

5

n− 4

5

proposition 1 states the mean integrated squared error and the optimal bandwidth of the semi-

parametric gamma estimator. The estimator is free from the curse of dimension since the rate

of convergence is the same as in the univariate case. The optimal bandwidth can not be used in

practice since it depends on the unknown density function. However, we can use for example least

squares cross validation methods choosing optimal bandwidths for the marginal densities by noting

that the same rate of convergence of mean integrated squared error for the multivariate estimator

is obtained. The following remark states the MISE of the semiparametric estimator with the local

linear estimator and the second gamma kernel estimator for the marginals.
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Remark 1. The results of proposition 1 remain valid

• For the local linear estimator with aj = h2
j ,

B∗
j (x) = γθ(x)f̃j(x)

κ2

2
f jj(x) and Vj(x) = κdγθ(x)2(x)f̃2

j (x)fj(xj)

where κ2 =
∫

x2K(x)dx and κ =
∫

K2(x)dx.

• For the modified gamma kernel, aj = bj ,

B∗
j (x) = γθ(x)f̃j(x)

xjf
jj(x)

2
and Vj(x) = (2

√
π)−1γθ(x)2(x)f̃2

j (x)fj(xj)x
−1/2
j .

The following proposition establishes the uniform strong consistency of the semiparametric

density estimator with the gamma kernel estimator for the marginal densities.

Proposition 2. Uniform strong consistency of f̂sp

Let f be a continuous and bounded probability density function. Under assumption A2, P1 and P2,

for any compact set I in [0,+∞), we have

sup
t∈I

∣

∣

∣f̂sp(x) − f(x)
∣

∣

∣

a.s.−→ 0 as n −→ +∞. (14)

If we also assume a twice differentiable density function then the rate of convergence of f̂sp

can be deduced from Proposition 2. The last proposition deals with the asymptotic normality of

the semiparametric density estimator. The result is useful for goodness of fit tests and confidence

intervals.

Proposition 3. Asymptotic normality of f̂sp

Suppose that f1, ..., fd are twice differentiable at x. We suppose that the bandwidth parameters

satisfy (12). Under assumption P1 and P2. we have

n
1

2





d
∑

j=1

V ∗
j (x)b

−1/2
j





− 1

2
(

f̂sp(x) − f(x) − µx

)

D−→ N(0, 1) (15)

where

V ∗
j (x) =



















(2
√

π)−1γ2
θ (x)f̃2

j (x)fj(xj)x
−1/2
j if xj/bj → ∞

Γ(2κ+1)
22κ+1Γ2(κ+1)

γ2
θ (x)f̃2

j (x)fj(xj)b
−1/2
j if xj/bj → κ

(16)
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and

µx =
d
∑

j=1

bjB
∗
j (x). (17)

The next remark deals with the asymptotic normality of the semiparametric estimator with the

local linear and the second gamma kernel estimator for the marginal densities.

Remark 2. The asymptotic normality in (15) remains valid

• For the local linear kernel, with bj = h2
j

B∗
j (x) = γθ(x)f̃j(x)

s2
2(pj) − s1(pj)s3(pj)

s2(pj)s0(pj) − s2
1(pj)

f ′′(xj)

2

and

V ∗
j (x) = γθ(x)2(x)f̃2

j (x)f(x)
s2
2(pj) − 2s2(pj)s1(pj)e1(pj) + s2

1(pj)e2(pj)

(s2(pj)s0(pj) − s2
1(pj))2

where pj = xj/hj , si(p) =
∫ p
−1 uiK(u)du and ei =

∫ p
−1 uiK2(u)du

• For the modified gamma kernel, with the same V ∗
j as for gamma kernel but with

B∗
j (x) = γθ(x)f̃j(x)



















1
2xjf

′′(xj) if xj ≥ 2bj

ξbj
(xj)f

′(xj) if xj < 2bj

where ξb(x) = (1 − x)(ρ(2, x) − x/b)/(1 + bρ(2, x) − x).

The two terms µ and V ∗
J are unknown since they depend on the unknown density function.

In practice, we can replace the density function in these terms by the semiparametric estimator,

thanks to the uniform strong convergence in Proposition (2). Remark that the presence of the

term µ in (15) is due to the bias. This term disappears if we choose the bandwidth parameter

bj = o(n−2/5) for the gamma kernels and hj = o(n−1/5) for the local linear kernels . Remark also

that for the gamma kernels the variances increase at points near zero but decrease for points further

away from zero.
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4 Finite sample properties

For bivariate random variables, we compare the mean and the variance of the mean integrated

squared error (MISE) of the semiparametric estimator via copula using the Gaussian, local linear

and modified gamma kernel. The gamma kernel estimator is not considered as it performs less well

than the modified kernel as documented for example in Chen (2000). We consider the Gaussian

copula and the Gumbel-Hougaard copula, denoted respectively C1 and C2, which are defined as

follows

C1(u1, u2) =
1√

1 − α2
exp

{−(w2
1 − 2αw1w2 + w2

2)

2(1 − α2)

}

exp

{

w2
1 + w2

2

2

}

(18)

and

C2(u1, u2) =
exp

(

−(v1 + v2)
1/β
)

u1u2

{ln(u1) ln(u2)}α−1 ({v1 + v2}1/β + β − 1
)

(

−{v1 + v2}2−1/β
) (19)

where α is the correlation coefficient, τ = 1 − β−1 is Kendall’s tau, wi = Φ−1(ui), vi = (− ln(ui))
β

and Φ−1 is the inverse of normal distribution function. We consider four following data generating

processes (the densities are displayed in Figure 3):

• Model A: no boundary problem: normal density with mean (µ1, µ2) = (6, 6) and variance

(σ2
1 , σ

2
2) = (1, 1) and correlation r = 0.5.

• Model B: independent inverse Gaussian with mean µ = 0.8 and the scaling parameter λ = 1.

• Model C: one boundary problem: Truncated normal density with mean (µ1, µ2) = (−0.5, 6)

and variance (σ2
1 , σ

2
2) = (1, 1) and correlation r = 0.5.

• Model D: two boundary problems: Truncated normal density with mean (µ1, µ2) = (−0.5,−0.5)

and variance (σ2
1 , σ

2
2) = (1, 1) and correlation r = 0.8.

We consider the sample sizes 250, 500 and 1000 and we perform 100 replications for each model.

In each replication the bandwidth is chosen such that the integrated squared error is minimized.

This theoretical bandwidth is compared with the bandwidth selected using the univariate least

squares cross-validation method.

For model A and B, we report the mean and the standard deviation of the MISE in Table 1.

A basic point is that the mean and the variance of the MISE are both negatively related to the
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Figure 3: Density functions considered for the simulations.

sample size. This is indeed true for all models. In fact, for model A and B, the mean MISE is lower

and decreases faster with the sample size for the Gumbel-Hougaard copula. For example, for the

local linear estimator and model A the mean MISE for n = 250 is equal to 0.0033 and 0.0032 for

the Gaussian and Gumbel-Hougaard copula respectively. For n = 1000 this decreases respectively

to 0.002 and 0.0015. However, the standard deviation for the Gumbel-Hougaard copula is slightly

larger and decreases at the same rate as the Gaussian copula. The overall performance of all the

estimators is similar for model A

We also find in Table 1 that given the copula for model B, here the density has more mass closer

to zero, the mean and variance of MISE of the modified gamma estimator are smaller than those

of the other estimators. Also, the local linear estimator performs better that the Gaussian kernel

in term of mean and variance of ISE. Therefore, with respect to model B, we prefer as estimator

the modified gamma with the Gumbel-Hougaard copula.

For model A and B, the theoretical bandwidths and the univariate least squares cross-validation

(LSCV) implied bandwidths are reported in Table 2. As for the MISE, the bandwidths are nega-

tively related to the data sample size, and this is uniformly true for all the models. We give first

some remarks for model A. The estimator with the Gumbel-Hougaard copula uses slightly large

bandwidths than those with the Gaussian copula. In terms of variance, the gumbel copula leads

to a less variable bandwidth. This remark holds for the estimator with Gaussian, local linear and

modified gamma kernels. The mean of the theoretical and LSCV bandwidths of the estimator with

the Gaussian kernel are similar. But, the variance of the LSCV bandwidths is greater than the

theoretical bandwidth. The LSCV rule selects bandwidths which are in general smaller than the

theoretical bandwidth for the local linear kernel and larger for modified gamma kernel. The LSCV

12



Table 1: Mean and standard deviation of L2 error for the density function estimators.

Gaussian Local Linear Modified Gamma

C1 C2 C1 C2 C1 C2

n=250 Mean 0.0034604 0.0032558 0.0033483 0.0031577 0.0034706 0.0033808

Std dev 0.0008184 0.0012831 0.0008045 0.0012706 0.0008197 0.0013154

A n=500 Mean 0.0025740 0.0020527 0.0025007 0.0019930 0.0025843 0.0021315

Std dev 0.0003590 0.0005381 0.0003554 0.0005306 0.0003607 0.0005464

n=1000 Mean 0.0021078 0.0014917 0.0020616 0.0014566 0.0021150 0.0015405

Std dev 0.0002167 0.0003623 0.0002138 0.0003555 0.0002190 0.0003688

n=250 Mean 0.0175830 0.0163880 0.0162330 0.0149720 0.0154400 0.0121850

Std dev 0.0056233 0.0059273 0.0052316 0.0054240 0.0057964 0.0055539

B n=500 Mean 0.0127010 0.0102840 0.0116060 0.0093563 0.0104410 0.0070886

Std dev 0.0041244 0.0045425 0.0036716 0.0041353 0.0034800 0.0032665

n=1000 Mean 0.0092182 0.0057773 0.0083068 0.0052725 0.0080871 0.0040154

Std dev 0.0023277 0.0025010 0.0020823 0.0022283 0.0018718 0.0017529

A: bivariate normal, B: two independent inverse Gaussian. Std dev: standard deviation. Copula1: Gaussian

copula and Copula2: Gumbel-hougaard copula
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rule seems to performs better for the modified gamma kernel than the local linear kernel. Also,

with respect to the variance, the LSCV bandwidths are less stable than the theoretical bandwidth.

For example for the modified gamma kernel with n = 500 the mean theoretical bandwidths for the

Gumbel-Hougaard copula are (0.014, 0.013) and the mean LSCV bandwidths are (0.015, 0.016). The

standard deviation for the those bandwidths are respectively (0.0054, 0.0048) and (0.0068, 0.0072).

For model B, the theoretical bandwidths are the almost the same for Gaussian kernel with the

two considered copulas. The means of LSCV bandwidths are slightly larger than the theoretical

bandwidth. In term of variance they are similar. From model A to B, the estimator with the

Gaussian kernel and local linear kernel uses small bandwidths, whereas the modified gamma kernel

uses slightly large bandwidths. It seems that the two first estimator try to reduce the bias and

the last one try to reduce the variance. We also remark in general for both models A and B, the

behavior of the first and second bandwidth are similar since the densities under study are quite

symmetric. This changes in the case of one boundary problem in model C.

For model C and D, with pronounced boundary problems, we report the mean and the variance

of the MISE in Table 3. We do not consider the Gaussian kernel as it suffers from the boundary

bias. Given the copula, the estimator with modified gamma kernel dominates slightly in terms of

mean MISE. Also, the modified gamma kernel performs better in term of variance. The Gumbel-

Hougaard copula seems to be more adequate than the Gaussian copula for both the local linear

and modified gamma kernels. For example, for n = 250, the mean integrated of the estimator with

modified gamma kernel is 0.010251 and for Gumbel-Hougaard copula it is 0.0057428. From model

C to D, that is when the concentration of observations becomes large in the boundary region, the

mean and the variance of the MISE increase.

For model C and D, the theoretical bandwidths and the univariate least squares cross-validation

(LSCV) implied bandwidths are reported in Table 4. The estimator with gumbel-Hougaard copula

uses larger bandwidths than the Gaussian copula and LSCV for Local linear kernel. The univariate

LSCV rule yields closer results with respect to the theoretical bandwidths for the estimator with

the modified gamma kernel than the one with the local linear kernel. The variance of the univariate

LSCV implied bandwidths is in general smaller for the estimator with the local linear kernel in both

models. However, the variance is larger for the modified gamma for model D. We conclude that

also for models C and D the modified gamma Gumbel-Hougaard semiparametric estimator is the

best configuration.

14
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Gaussian local linear Modified Gamma

Mean Std dev Mean Std dev Mean Std dev

n=250 C1 (0.3267,0.3059) (0.0613,0.0609) (0.7115,0.6717) (0.1576,0.1433) (0.0185,0.0164) (0.0071,0.0064)

C2 (0.3377,0.3211) (0.0592,0.0529) (0.7376,0.6972) (0.1355,0.1245) (0.0189,0.0165) (0.0067,0.0057)

LSCV (0.3299,0.3537) (0.1124,0.1069) (0.5256,0.5571) (0.3074,0.3438) (0.0207,0.0240) (0.0101,0.0098)

A n=500 C1 (0.2822,0.2718) (0.0545,0.0535) (0.6014,0.5790) (0.1462,0.1493) (0.0134,0.0123) (0.0057,0.0055)

C2 (0.2925,0.2857) (0.0551,0.0519) (0.6431,0.6257) (0.1232,0.1168) (0.0142,0.0132) (0.0054,0.0048)

LSCV (0.2943,0.2943) (0.0851,0.0872) (0.4124,0.3956) (0.2422,0.2410) (0.0155,0.0162) (0.0068,0.0072)

n=1000 C1 (0.2355,0.2378) (0.0421,0.0440) (0.4845,0.5025) (0.1255,0.1342) (0.0097,0.0099) (0.0032,0.0035)

C2 (0.2510,0.2516) (0.0463,0.0412) (0.5454,0.5610) (0.1062,0.0947) (0.0101,0.0104) (0.0034,0.0034)

LSCV (0.2670,0.2504) (0.0669,0.0749) (0.3458,0.3315) (0.1943,0.1874) (0.0128,0.0123) (0.0045,0.0045)

n=250 C1 (0.0938,0.0960) (0.0252,0.0272) (0.1976,0.2055) (0.0533,0.0555) (0.0229,0.0249) (0.0099,0.01120)

C2 (0.0944,0.0984) (0.0199,0.0235) (0.2080,0.2144) (0.0525,0.0588) (0.0244,0.0260) (0.0099,0.01180)

LSCV (0.1013,0.1022) (0.0249,0.0297) (0.1841,0.1781) (0.0726,0.0756) (0.0283,0.0296) ( 0.0077,0.0076)

B n=500 C1 (0,0794,0,0823) (0.0245,0.0184) (0.1692,0.1795) (0.0527,0.0414) (0.0169,0.0161) (0.00947,0.0087)

C2 (0.0789,0.0830) (0.0209,0.0178) (0.1771,0.1804) (0.0475,0.0412) (0.0178,0.0176) (0.00832,0.0083)

LSCV (0.0901,0.0948) (0.0228,0.0183) (0.1637,0.1860) (0.0619,0.0553) (0.0245,0.0249) ( 0.0068,0.0071)

n=1000 C1 (0.0731,0.0697) (0.0185,0.0197) (0.1562,0.1529) (0.0395,0.0433) (0.0125,0.0131) (0.00654,0.0066)

C2 (0.0691,0.0685) (0.0158,0.0163) (0.1450,0.1478) (0.0387,0.0360) (0.0131,0.0134) (0.00577,0.0064)

LSCV (0.0852,0.0858) (0.0187,0.0187) (0.1613,0.1632) (0.0413,0.0458) (0.0212,0.0211) (0.0034,0.0030)

A: bivariate normal, B: two independent inverse Gaussian. Std dev: standard deviation. C1: Gaussian copula and C2: Gumbel-hougaard copula
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Table 3: Mean and standard deviation of L2 error for the density function estimators.

local linear Modified Gamma

C1 C2 copula1 copula2

n=250 Mean 0.012974 0.0079014 0.010251 0.0057428

Std dev 0.003387 0.0028255 0.003392 0.0025296

C n=500 Mean 0.010664 0.0056661 0.008506 0.0041128

Std dev 0.002698 0.0019947 0.002478 0.0016608

n=1000 Mean 0.009642 0.0043516 0.007751 0.0031983

Std dev 0.001666 0.0011871 0.001596 0.0010523

n=250 Mean 0.038121 0.021344 0.031011 0.015433

Std dev 0.008557 0.005397 0.008063 0.005286

D n=500 Mean 0.032594 0.015909 0.027420 0.011366

Std dev 0.006742 0.003951 0.005949 0.003374

n=1000 Mean 0.028969 0.012132 0.025543 0.009474

Std dev 0.005695 0.003006 0.005362 0.002471

C: truncated bivariate normal with one boundary problem, D:truncated bivariate normal

with two boundary problems. Std dev: standard deviation. Copula1: Gaussian copula

and Copula2: Gumbel-hougaard copula
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Table 4: Mean and standard deviation of theoretical and LSCV Bandwidths for the semiparamatric

estimator with Gaussian copula.

local linear Modified Gamma

Mean Std dev Mean Std dev

n=250 C1 (0.1442,0.6034) (0.0698,0.1520) (0.0694,0.0120) (0.0560,0.0056)

C2 (0.1987,0.6642) (0.1013,0.1329) (0.0801,0.0159) (0.0513,0.0069)

LSCV (0.1641,0.4193) (0.0689,0.2643) (0.0766,0.0173) (0.0441,0.0070)

C n=500 C1 (0.1249,0.4609) (0.0548,0.1046) (0.0718,0.0076) (0.0461,0.0029)

C2 (0.1507,0.5468) (0.0540,0.1275) (0.0727,0.0110) (0.0364,0.0041)

LSCV (0.1477,0.3769) (0.0615,0.2362) (0.0689,0.0126) (0.0299,0.0056)

n=1000 C1 (0.1042,0.3778) (0.0456,0.1171) (0.0784,0.0052) (0.0477,0.0017)

C2 (0.1309,0.4633) (0.0449,0.1008) (0.0697,0.0081) (0.0335,0.0027)

LSCV (0.1315,0.3129) (0.0496,0.2106) (0.0584,0.0099) (0.0324,0.0041)

n=250 C1 (0.1989,0.1633) (0.0931,0.0929) (0.0502,0.0443) (0.0285,0.0289)

C2 (0.2379,0.2051) (0.0954,0.0939) (0.0554,0.0501) (0.0299,0.0321)

LSCV (0.1321,0.1237) (0.0618,0.0570) (0.0696,0.0769) (0.0380,0.0379)

D n=500 C1 (0.1346,0.1212) (0.0573,0.0555) (0.0409,0.0352) (0.0287,0.0229)

C2 (0.1610,0.1459) (0.0630,0.0578) (0.0415,0.0389) (0.0238,0.0214)

LSCV (0.1091,0.1086) (0.0467,0.0377) (0.0616,0.0677) (0.0310,0.0287)

n=1000 C1 (0.1057,0.1054) (0.0462,0.0450) (0.0335,0.0358) (0.0244,0.0239)

C2 (0.1245,0.1242) (0.0474,0.0445) (0.0366,0.0357) (0.0218,0.0211)

LSCV (0.0952,0.1001) (0.0361,0.0327) (0.0550,0.0552) (0.0244,0.0233)

C: truncated bivariate normal with one boundary problem, D:truncated bivariate normal with

two boundary problems. Std dev: standard deviation. Copula1: Gaussian copula and Copula2:

Gumbel-hougaard copula
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Finally, we also give the mean and standard deviations for the copula parameters. Table 5 and

6 reports the correlation coefficient of the Gaussian copula and the Kendall’s tau of the Gumbel-

Hougaard copula. From these tables we can for example see that both the correlation and the

Table 5: Mean and standard deviation of theta parameter for Gaussian copula.

T=250 T=500 T=1000

A Mean 0.49866 0.49750 0.50065

Standard deviation 0.04127 0.03205 0.02317

B Mean 0.00697 0.00050 -0.00238

Standard deviation 0.06417 0.04269 0.03159

C Mean 0.28569 0.29145 0.29048

Standard deviation 0.06529 0.04117 0.02998

D Mean 0.52692 0.53138 0.53231

Standard deviation 0.04948 0.03286 0.02578

A: normal, B: Inverse Gaussian, C: truncated normal (one boundary

problem), D: truncated normal (two boundary problems).

Kendall’s tau are close to zero model A and that the standard deviations decrease with the sample

size. Note that the correlation for model D is not underestimated since the dependence reduces

because of the truncation at the origin.

5 Application

We collect data for 558 companies from Compustat for the year 2005. The first variable (Compustat

item 24, denoted C24) is the price of the stock of the company when the books are closed at the

end of the accounting year with mean 75.167, standard deviation 103.13 and skewness 2.1295. The

second variable (Compustat item 25,denoted C25) is the number of shares that can be bought on the

stock market with mean 21.953, standard deviation 20.302 and skewness 1.1237. The correlation

between the two variables is 0.33392. Figure 4 shows the scatter plot and the semiparametric density

estimates using the Gumbel-Hougaard copula with modified gamma kernels where the bandwidth

parameters are selected by the univariate LSCV method and are respectively equal to b1 = 0.15

18



Table 6: Mean and standard deviation of theta parameter for Gumbel-Hougaard copula.

T=250 T=500 T=1000

A Mean 0.33433 0.33546 0.33615

Standard deviation 0.03711 0.02922 0.01681

B Mean 0.00843 0.00554 0.00532

Standard deviation 0.04099 0.03105 0.02042

C Mean 0.17811 0.18028 0.17997

Standard deviation 0.04462 0.02990 0.02057

D Mean 0.31227 0.3136 0.31597

Standard deviation 0.03589 0.0241 0.01949

A: normal, B: Inverse Gaussian, C: truncated normal (one boundary

problem), D: truncated normal (two boundary problems).

and b2 = 4. We also show the estimated marginal densities that constitute the semiparametric

estimator. The Kendall’s tau is equal to 0.2423. We remark a high concentration close to the

origin, hence the Gaussian kernel is not consistent for such data.

We investigate next the behavior of these two variables conditional on current assets (Compustat

item 4, denoted C4) and on dividends per share by ex-date (Compustat item 26, denoted C26) by

comparing the densities. Figure 5 displays the semiparametric estimator with the modified gamma

kernel for densities of C24-C25 for companies with zero dividends and zero debt and the density

of C24-C25 with positive dividends and positive debts. For the densities conditional to dividends

it is visually clear that they are different. However, for the densities conditional to debt it is less

obvious if they are different. Therefore, we perform the following test

H0 : f(x, y|Z = 0) = f(x, y|Z = 1), H1 : f(x, y|Z = 0) 6= f(x, y|Z = 1) (20)

where f(x, y|Z = 0) (resp. f(x, y|Z = 1)) is the joint density of C24-C25 for companies with zero

debt. We consider as test statistic

T1 = sup |f(x, y|Z = 0) − f(x, y|Z = 1)|.

To evaluate the P-value of the test we use the nonparametric bootstrap by doing B = 5000 replica-

tions. We did not consider the following test statistic T2 =
∫

(f(x, y|Z = 0) − f(x, y|Z = 1))2 dxdy
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(b) Gamma kernel estimator for C24-C25 density
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(c) Gamma kernel estimator for C24 density
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Figure 4: Scatter plot and gamma kernel density estimator for C24-C25 data. The bottom: gamma

kernel density estimator for the C24 and C25
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(a) Gamma kernel estimator density for C24-C25

with dividend=0
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(b) Gamma kernel estimator density for C24-C25

with dividend> 0
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(c) Gamma kernel estimator density for C24-C25

with debt=0
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(d) Gamma kernel estimator density for C24-C25

with debt> 0

Figure 5: Gamma kernel density estimator for C24-C25 data conditional to dividends and debt
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since the nonparametric bootstrap is not consistent here, see Rémillard and Scaillet (2006). For

more details on bootstrap conditions see also Bickel and Freedman (1981) and Bickel, Götze, and

Zwet (1997). The p-value for the test is 0.4646 so we do not reject the null hypothesis that both

densities are the same.

6 Conclusion

This paper proposes a multivariate semiparametric density estimation method which is robust to

both the boundary and the curse of dimension problem. The estimator combines gamma or lo-

cal linear kernels the support of which matches that one of the underlying multivariate density,

and semiparametric copulas. This leads to an estimator which is easy to implement. We derive

asymptotic properties such as the mean integrated squared error, uniform strong consistency and

asymptotic normality. In the simulations, we compare the finite sample performance of the (modi-

fied) gamma and the local linear estimator for the marginal densities using the Gaussian and the

Gumbel-Hougaard copula. We find that the models in the simulation study are preferably estimated

using the modified gamma Gumbel-Hougaard semiparametric estimator. We also learn from the

simulations that the univariate least squares cross validation technique to select bandwidths for the

marginal density estimators works well. Therefore, bandwidth selection for our estimator can be

done in a computational straightforward manner. In the application, we estimate the joint density

of the stock price and the total number of shares outstanding using data of 558 US companies

observed in 2005 and we test if the density depends on the fact that dividends are paid out or not,

and on the fact that there is debt outstanding or not.

Appendix

We give the proofs for the semiparametric estimator using the gamma kernel estimator.

Proof of proposition 1

The proof of proposition 1 is straightforward from the proof of the result on the mean squared

error in Liebscher (2005) for the standard kernel and with the same bandwidth, the bias and the

variance of the gamma kernel in the univariate case and the fact that

KG(b, t)(x) ≤
√

1

2πxb
. (21)
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Proof of Proposition 2

The semiparametric estimator can be expressed as:

f̂sp(x) = f(x) + γθ(F1(x1), ..., Fd(xd))

d
∑

j=1

(

f̂j(xj) − fj(xj)
)

j−1
∏

l=1

fl(xl)

d
∏

k=j+1

f̂k(xk) + γ̄(x)

d
∏

j=1

f̂j(xj)(22)

where
∏0

j=1 =
∏d

j=d+1 = 1 and

γ̄(x) = γθ̂(Fn1(x1), ..., Fnd(xd)) − γθ(F1(x1), ..., Fd(xd)).

Under the continuity of the distribution functions F1(x1), ..., Fd(xd)

sup
xj

(

|F̂nj(xj) − Fj(xj)|
)

a.s.−→ 0. forj = 1, ..., d. (23)

Under assumption P1 and P2, and 23 we have,

sup
x∈I

(|γ̄(x)|) a.s.−→ 0.

Hence, using the uniform weak consistence of f̂j(j = 1, ..., d)

sup
x



γ̄(x)

d
∏

j=1

f̂j(xj)





a.s.−→ 0. (24)

From Bouezmarni and Scaillet (2005), under assumption B3 and the continuity of density functions

fi, ..., fd we have

sup
xj

(

|f̂j(xj) − fj(xj)|
)

a.s.−→ 0. for i = 1, ..., d.

Therefore

sup
x



γθ

d
∑

j=1

(

f̂j(xj) − fj(xj)
)

j−1
∏

l=1

fl(xl)
d
∏

k=j+1

f̂k(xk)





a.s.−→ 0. (25)

The uniform strong consistency of the semiparametric estimator with gamma kernel can be

deduced from (22), (24) and (25).
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Proof of Proposition 3

From assumption P1 and P3 and using the consistency of the empirical distribution F̂nj and the

density estimators f̂j, j = 1, ..., d, we have

∣

∣

∣

∣

∣

∣

γ̄(x)

d
∏

j=1

f̂j(xj)

∣

∣

∣

∣

∣

∣

= OIP (n−1/2
√

ln(n)). (26)

Therefore and from (22),

|f̂sp(x) − f(x)| = γθ(F1(x1), ..., Fd(xd))

d
∑

j=1

(

f̂j(xj) − fj(xj)
)

j−1
∏

l=1

fl(xl)

d
∏

k=j+1

f̂k(xk)

+OIP (n−1/2
√

ln(n))

= γθ(F1(x1), ..., Fd(xd))







n
∑

i=1

Ui +
d
∑

j=1

(

IE(f̂j(xj)) − fj(xj)
)

f̃j(x)







Ψj (27)

+OIP (n−1/2
√

ln(n))

where

Ui =
1

n

d
∑

j=1

(

KG(bj ,X
j
i )(xj) − IE

(

KG(bj ,X
j
i )(xj)

))

f̃j(x)

and

Ψj =

d
∏

l=j+1

f̂l(xl)fl(xl)
−1.

Note that using the consistency of f̂l(xl) we get

Ψj
IP−→ 1, for j = 1, ..., d. (28)

Denote α = n1/2





d
∑

j=1

V ∗
j b

−1/2
j





−1/2

.

Using the expectation of the gamma kernel estimator in the univariate case

d
∑

j=1

(

IE(f̂j(xj)) − fj(xj)
)

f̃j(x) =

d
∑

j=1

bj(f
′

j(xj) +
1

2
xjf

′′

j (xj))f̃j(x) + O(

d
∑

j=1

b2
j ). (29)

Hence, from (12) and by omitting Fj in γθ(F1(x1), ..., Fd(xd))

α



γθ

d
∑

j=1

(

IE(f̂j(xj)) − fj(xj)
)

f̃j(x)



 = α

d
∑

j=1

bjBj + O(n− 2

5 ). (30)
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Now, it remains to prove

Sn = αγθ

n
∑

i=1

Ui
D−→ N(0, 1). (31)

To do this, we apply Liapunov central limit proposition to independent random variables Vi = αγθUi

and show that Var(Sn) = 1 + o(1) and limn
∑n

i=1 IE|Vi|3 = 0. We calculate the variance of Ui.

Var(Ui) =
1

n2

d
∑

j=1

f̃2
j (x)Var

(

KG(bj ,X
j
i )(xj)

)

+
2

n2

d
∑

j=1

∑

l>j

f̃j(x)f̃l(x)Cov
(

KG(bj ,X
j
i )(xj),KG(bl,X

l
i)(xl)

)

On the one hand,

Var
(

KG(bj ,X
j
i )(xj)

)

= (2
√

π)−1b
−1/2
j fj(xj)x

−1/2
j (32)

On the other hand, we can show that

Cov
(

KG(bj ,X
j
i )(xj),KG(bl,X

l
i)(xl)

)

= O(1). (33)

Therefore,

Var(Sn) =
α2γ2

θ

n

d
∑

j=1

f̃2
j (x)(2

√
π)−1b

−1/2
j fj(xj)x

−1/2
j + o(1). (34)

Now, using inequality (21), the variance of KG(bj ,X
j
i )(xj) in (32) and (12)

IE|Vi|3 ≤ α3γ3
θ

n3

d
∑

j=1

f̃3
j (x)

∫

K3
G(bj , t)(xj)fj(t)dt

= O(n− 7

5 ). (35)

Hence,

lim
n

n
∑

i=1

IE|Vi|3 = O(n−2/5) (36)

Therefore we have the asymptotic normality of Sn. Proposition 3 can be deduced from (27), (28),

(30) and(31).
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