
 

     
Bellemare : Corresponding author. Département d’économique, Université Laval 
cbellemare@ecn.ulaval.ca 
Bissonnette : Department of Econometrics and OR, Tilburg University 
l.bissonnette@uvt.nl 
Kröger : Département d’économique, Université Laval 
skroger@ecn.ulaval.ca 
 
An OX code with files implementing all the procedures discussed in this paper can be downloaded at 
http://w3.ecn.ulaval.ca/~cbellemare. We thank Jim Cox and the Economic Science Laboratory in Tucson for 
financial and technical support, Urs Fischbacher for his support in programming the experiment, and Wafa 
Hakim for her research assistance in conducting the experiment. We are thankful for comments from Keisuke 
Hirano, Arthur van Soest, and participants at the ESA European meetings in Nottingham and in Tucson. 

 

 

 

 

 
Cahier de recherche/Working Paper 07-34 
 
 
 
 
Flexible Approximation of Subjective Expectations using 
Probability Questions – An Application to the Investment Game – 

 
Charles Bellemare 
Luc Bissonnette 
Sabine Kröger 
 
 
 
Octobre/October 2007 



Abstract:  
We use spline interpolation to approximate the subjective cumulative distribution 
function of an economic agent over the future realization of a continuous (possibly 
censored) random variable. The method proposed exploits information collected 
using a small number of probabillity questions on expectations and requires a weak 
prior knowledge of the shape of the underlying distribution. We find that eliciting 4 or 
5 points on the cumulative distribution function of an agent is sufficient to accurately 
approximate a wide variety of underlying distributions. We show that estimated 
moments of general functions of the random variable can be computed analytically 
and/or using standard simulation techniques. We illustrate the usefulness of the 
method by estimating a simple method to asses the impact of expectations on 
investment decisions in a commonly used trust game. 
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1 Introduction

The measurement of subjective expectations has recently attracted a lot of attention

amongst empirical economists. These measurements have proven useful to elicit

knowledge of economic agents and experts on the future realization of various eco-

nomic variables (e.g. Dominitz and Manski (1997), Engelberg, Manski, and Williams

(2006), McKenzie, Gibson, and Stillman (2007)). Subjective expectations data can also

be used to improve the empirical content of stochastic models of choice under un-

certainty. These models typically relate the distribution of choices to the distribu-

tions of preferences and expectations in the population. Without placing much struc-

ture on the problem, preferences and expectations often cannot both be recovered

from the choice distribution alone. The degree of underidentification is often severe

(see Magnac and Thesmar (2002) for a discussion of this problem in structural dy-

namic decision making, and Manski (2002) for experimental games of proposal and

response). The combination of subjective expectations and choice data allows em-

pirical researchers to recover preferences under relatively mild assumptions on how

agents evaluate the likelihood of future events (see Delavande (2005), Nyarko and

Schotter (2002) and Bellemare, Kröger, and van Soest (2005)).

For many reasons it has recently been advocated to infer expectations from subjec-

tive probability distributions. First, probabilistic measurement of distributions pro-

vide more information on the uncertainty faced by an agent. This additional informa-

tion can be used by researchers to estimate models of choice under uncertainty (e.g.

with risk aversion) where other features of the distribution play an important role.

Second, deriving expectations from probability distributions overcomes the problems

of interpreting answers given to direct questions on expectations. In particular, there

is evidence that agents reveal different features of their subjective distribution (mean,

median, or other quantiles) when asked for their best point prediction of a future

event (see Manski (2004) for a review of these issues). Whereas elicitation of discrete

probability distributions requires asking respondents to place probability mass on
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each possible realization of the random variable, elicitation of subjective probability

distributions of continuous random variables requires some form of approximation.

Current approaches typically ask respondents to report several points of their subjec-

tive cumulative distribution function and look for the set of parameters of a paramet-

ric distribution (e.g. a normal or log-normal distribution) which provides the best fit

to these data points (e.g. Dominitz and Manski (1997)). The disadvantages of para-

metric assumptions are well known (see Pagan and Ullah (1999)). One of the main

concerns is that misspecification of the underlying distribution may lead to biased

forecasts and inferences.

In this paper, we present a flexible method to approximate the subjective probabil-

ity distributions of continuous random variables using agents’ answers to a small set

of probability questions. The method proposed is based on approximating an indi-

vidual’s subjective cumulative distribution function using spline interpolation. The

method is simple to apply and does not require that subjective distributions belong

to a particular parametric family of distributions. Moreover, the method can accom-

modate censored distributions in a very natural way. We evaluate the quality of our

flexible approximation in relation to the number of data points collected and the de-

gree of the interpolating polynomial. We find that 4 or 5 probability questions are

sufficient to provide a very good approximation of symmetric, asymmetric, and bi-

modal distributions. Moreover, the cubic spline interpolation outperforms both the

quadratic and linear spline interpolations.

As mentioned previously, the fitted distributions can be used either to charac-

terize the knowledge of agents, or alternatively to predict behavior using stochastic

choice models. In the later case, the estimation of econometric models of choice un-

der uncertainty often involves the computation of E(h(x; η)), where h(·) denotes a

function which depends on a vector of unknown parameters η to be estimated using

the choice data. In the estimation of structural dynamic models, h(x; η) represents the

maximum of future value functions and η represents a vector of preference parame-

ters. In static models, h(·) can represent the utility function of a risk (or loss) averse
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agent, and η denotes a risk (or loss) aversion parameter. In the important special case

where E(h(x; η)) = E(xη), we show how the expectation can be computed analyti-

cally using the estimated spline. However, such analytical solutions do not exist for

more general functions h(·). To handle these cases, we present a simple algorithm

which allows to generate a sequence of random draws from the approximated dis-

tribution. Given a sequence of draws, approximation of E(h(x; η)) can be achieved

using standard simulation techniques (e.g. Train, 2003).

In the second part of the paper we illustrate the usefulness of the method by esti-

mating a simple choice model of investment behavior in a modified version of a well

known two players game (Berg, Dickhaut, and McCabe, 1995). In this game, a first

player can decide to ”invest” or not his endowment. The endowment, if invested, is

multiplied by a factor of two and transferred to a second player. This second player

must decide how much he will return to the first player. Thus, for the first player,

the investment decision involves uncertainty over the amount that the second player

will return to him. The investment behavior in this game is often used to infer a

player’s propensity to trust others. The importance of trust in economics draws on

recent evidence suggesting that trust may be an important determinant of economic

growth and organizational efficiency (see e.g., Zak and Knack, 2001; La Porta, de

Silanes, Schleifer, and Vishny, 1997). Interestingly, trust is generally defined as a per-

son’s expectations over the actions taken by others which can affect his or her own

well-being.1 This suggests that it is possible to evaluate the relationship between trust

and investments in an experimental context by directly relating expectations of first

players concerning the amounts returned (taken as a measure of their trust) and their

investment behavior. To proceed, we specify a simple model where expectations and

social preferences of first players can both determine investment behavior. We find

1For example, the New Oxford Dictionary of English defines trust as “Firm belief in the reliability,

truth, ability, or strength of someone or something.” The Collins English dictionary states that “If you

trust someone, you believe that they are honest and sincere and will not deliberately do anything to

harm you.”
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that players who invest their endowment have significantly higher expected returns

than non-investors. Nevertheless, the expected profit from investing is found to be

too small to explain the majority of the observed investment decisions. Our model re-

sults suggest that social preferences play a significant role in determining investment

behavior. This result adds to recent evidence suggesting that other factors determine

part of the investment behavior (e.g. Cox (2004), Barr (2003), Karlan (2005)).

The rest of the paper is organized as follows. Section 2 presents the method pro-

posed. Section 3 analyzes the quality of the approximation for several distributions.

Section 4 presents the application of the method to the investment game. Section 5

concludes.

2 Flexible Approximation of Distributions and Expecta-

tions

2.1 Subjective Distributions

We propose to approximate the subjective cumulative distribution function F(x|i) =

Pr(X ≤ x|i) over the realization of the real-valued variable X for a respondent i using

cubic spline interpolation. A cubic spline is a piecewise polynomial function defined

on n intervals [xj−1, xj] for j = 1, . . . , n. For each interval, respondent i is asked to

state his subjective probability that X will materialize in the corresponding interval.

The probability mass in each interval can be used to form a set of knots , denoted

by {(xj, F(xj|i)) : j = 0, 1, . . . , n} where xj denote the end points of each of the n

intervals, and 0 ≤ F(xj|i) ≤ 1 are the associated points on the subjective cumulative

distribution function. The later are derived using the probability mass placed by a

respondent in each of the n intervals.

We model F (x| i) using cubic spline interpolation which assumes that the func-

tion F (x| i) is defined by aj + bjx + cjx2 + djx3 on interval j where (aj, bj, cj, dj) are the
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interval-specific polynomial coefficients. The spline function is constructed by sim-

ply connecting the different polynomials at the relevant knots. The set
{
(aj, bj, cj, dj) : j = 1, . . . , n

}
contains the 4n unknown polynomial coefficients to be

estimated.2 The polynomials connect at knots. In order to estimate the set of poly-

nomial coefficients, the interpolation exploits the assumed continuity at the interior

knots. This gives rise to 2n equations

F(xj−1|i) = aj + bjxj−1 + cjx2
j−1 + djx3

j−1 for j = 1, 2, . . . , n

F(xj|i) = aj + bjxj + cjx2
j + djx3

j for j = 1, 2, . . . , n.

Next, the assumption that F(x|i) is twice differentiable at the interior nodes implies

the following 2(n− 1) equations

bj + 2cjxj + 3djx2
j = bj+1 + 2cj+1xj + 3dj+1x2

j for j = 1, 2 . . . , (n− 1)

2cj + 6djxj = 2cj+1 + 6dj+1xj for j = 1, 2, . . . , (n− 1).

Two more conditions, so called boundary conditions, are needed in order to es-

timate the polynomial coefficients of the cubic spline. There is very little guidance

in the literature to chose these boundary conditions. Here, we chose to impose that

F′′(x0|i) = F′′(xn|i) = 0, yielding what is known as a natural cubic spline (see Judd

(1998)).3 This provides a system of 4n linear equations in the 4n unknown parame-

ters. The estimated parameters
{
(âj, b̂j, ĉj, d̂j) : j = 1, . . . , n

}
can then be used to com-

pute the estimated cumulative distribution function for a given respondent.4 Panel

a) in Figure 1 illustrates the approximation. The dots in the Figure represent the data

points collected from a hypothetical respondent. The bold line represents the cubic

spline interpolation.

2Of course, it would be possible to fit higher order polynomials. This would require additional

assumptions on the degree of smoothness of the function f (x).
3We also experimented with a boundary condition restricting the first derivative at x0. We found

that the estimated cubic spline is in many cases very similar.
4See Judd (1998) for a more general presentation of splines.
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Censoring

The spline interpolation can be further generalized to allow for censoring at the lower

end x0 and upper end xn of the distribution. Such corner solutions occur frequently

in experimental games where players can for example return any amount inside a

specified range. Section 4 presents an application with censored distributions. The

method proposed can accommodate censoring with only minor modifications. Panel

b) in Figure 1 illustrates the approximation of a censored distribution where a hypo-

thetical respondent places subjective probability on values of x0 and xn occurring. As

we can see, the spline simply starts above 0 at x0 and ends below 1 at xn.

2.2 Subjective Expectations

Summary statistics of an uncensored variable X can be directly estimated from the

fitted subjective cumulative distribution function. It is simple to show that the t-th

moment of X can be computed analytically using

Êt(X) =
n

∑
j=1


 b̂jxt+1

t + 1
+

2ĉjxt+2

t + 2
+

3d̂jxt+3

t + 3

∣∣∣∣∣

xj

xj−1


 . (1)

In the case of censoring from below at x0 and from above at xn, a slight modification

of (1) yields

Êt(X) = x0F̂(x0) +
n

∑
j=1


 b̂jxt+1

t + 1
+

2ĉjxt+2

t + 2
+

3d̂jxt+3

t + 3

∣∣∣∣∣

xj

xj−1


 + xn(P̂r(X = xn)). (2)

A slightly more difficult task consists of approximating the subjective expected

value E(h(X; η)) =
∫

h(x; η)dF(x|i) of any function h(·) known up to some known

finite vector of parameters η when no closed form expression exist. One example of

h(·) is a utility function of an agent with constant absolute risk aversion, such that

η denotes the risk aversion parameter. In structural dynamic econometric models,

7



h(·) denotes the maximum of future value functions, and η a vector of preference

parameters (see Rust (1994)).

In such cases, numerical integration will need to be performed. In the recent

years, simulation methods have proven useful to approximate expectations in dif-

ferent econometric models (see Train (2003)). As long as the estimated piecewise

polynomial function F̂(x|i) is monotonically increasing, an arbitrary number of ran-

dom draws can be taken from the fitted cumulative distribution function and used to

approximate E(h(X; η)). In line with existing simulation based methods, we propose

to generate draws by simply inverting the estimated piecewise polynomial function

F̂(x|i).5 In particular, a sequence of draws {x̂s : s = 1, 2, ..., S} from the estimated

subjective distribution of subject i is obtained using {x̂s = F̂−1(µs|i) : s = 1, 2, ..., S}
where {µs|s = 1, 2, ..., S} represents a sequence of i.i.d draws taken from a uniform

[0,1] distribution. The approximated expectations are obtained using

Ê(h(X; η)) ≈ 1
S

S

∑
s=1

h(x̂s; η). (3)

As is well known, the precision of the approximation increases with the number of

draws S. See Train (2003) for a detailed overview of simulation techniques and their

overall efficiency.

2.3 Monotonicity

The cubic spline approximation does not generally guarantee that the approximated

cumulative distribution function is monotonically increasing. This is particularly

problematic when drawing from an approximated distribution, as generating {x̂s :

s = 1, 2, ..., S} requires that the inverse of the approximated function F(·|i) be unique.

Non-monotonicity is likely to occur when respondents place no probability mass in

5We also experimented with quadrature techniques to integrate over h(x; η) (see Judd (1998)). We

found that the simulation approach was computationally faster and more stable than quadrature.
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one or more intervals. Such a problem is represented in panel (a) of Figure 2. There,

the spline approximation is fitted to data such that no probability mass is placed be-

tween x̂1 and x̂3. As can be seen, the requirement that the spline be continuous at the

knots results in a non-monotone approximation. As a result, inverting draw µ (or any

draw in the same neighborhood) does not produce a unique solution.

Perhaps the simplest way to correct for non-monotonicity is to use the Hyman

filter (Hyman, 1983). This filter works in two steps. In a first step, define f̂ ′(xi)

as the estimated value of the first derivative of the spline function at the point xi.

Next, define Si−1/2 = (F̂(xi|i) − F̂(xi−1|i))/(xi − xi−1) and Si+1/2 = (F̂(xi+1|i) −
F̂(xi|i))/(xi+1 − xi) respectively as the left-hand side slope connecting with the pre-

vious knot (F̂(xi−1|i), xi−1) and right-hand side slope connecting with the following

knot (F̂(xi+1|i), xi+1). Boor and Schwarz (1977) have shown that if an estimated func-

tion satisfies the following criteria

0 ≤ f̂ ′(xi) ≤ 3 min(Si−1/2, Si+1/2), (4)

then it is monotone on the interval [xi, xi+1]. The criteria (4) can thus be used to

identify all points where monotonicity is violated. In a second step, the condition

of the equality of the second derivatives at each of the knots where monotonicity is

violated is replaced by

f̂ ′xi
= min

[
max

(
0, f̂ ′(xi)

)
, 3 min

(
Si−1/2, Si+1/2

)]
.

Applying the two steps to the example in Figure 2 produces the spline interpolation

presented in panel (b). As we can see, the Hyman filter effectively corrects the non-

monotonicity present in panel (a). The problem of invertibility is reduced to a single

point on the vertical axis, where the cumulative distribution function levels off. In the

(unlikely) event that a draw µ is taken at that point of the vertical axis, we propose

to select with equal probability either the lower bound x̂1 or upper bound x̂3 of the

interval as the corresponding draw from the fitted distribution. As long as enough

draws are taken from the fitted distribution, this randomization is unlikely to have

an important effect on the approximation.
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3 Goodness of fit

3.1 Approximated Distributions

To be effective, the approach proposed should be able to fit a wide range of distri-

butions with a reasonably small set of questions (knots). In this section, we evaluate

how well the approach proposed fits three different distributions: a symmetric dis-

tribution, an asymmetric distribution, and a bimodal distribution. The symmetric

distribution is chosen to be a standard normal N(0,1). The asymmetric distribution is

chosen to be a chi-square distribution with 3 degrees of freedom. This distribution is

severely skewed to the left and is unimodal. For the bimodal distribution, the density

f (x) was chosen to be sin(x)+1
A defined over the [0,3π] interval, where A = 2 + 3π

insures that the function integrates to 1 over its domain. This density function has

two modes: the first at π/2 and the second at 5π/2.

We fitted each cumulative distribution function using 4 to 6 knots. With 4 knots,

the domain of the random variable is split into 3 intervals, requiring 3 probability

questions. For 6 knots, the domain is split into 5 intervals requiring as many proba-

bility questions. Boundary knots (the first and last knots) are assumed to be known

by the analysts (either by experimental design or prior information on the range of

possible values).6 Boundary knots of the normal distribution were chosen to be 3 and

-3, those of the chi-square distribution are chosen to be 0 and 15, while those of the

sinus function are chosen to be 0 and 3π. All knots are equally spaced between the

boundary knots. Using these knots, we fit the underlying distributions using three

different forms of interpolations: linear interpolation, quadratic splines, and cubic

splines. Quadratic splines are similar to cubic splines but exploit a lower degree of

differentiability in the underlying function. Details on the computation of quadratic

splines are similar to those of cubic splines and can be found in the appendix.

6In the case where X is income, a natural interval is [0, max(X)], where max(X) denotes an empiri-

cally relevant maximal income level.
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Results for the standard normal distribution are reported in Figure 3. We find that

the linear and quadratic spline interpolation have difficulties capturing the curvature

of the function with only 4 knots. The cubic spline on the other end already provides

a reasonable fit. As expected, the goodness of fit increases with the number of knots

for all three interpolations. With 6 knots, the cubic spline sill outperforms the other

two interpolations at the lower and upper tails of the distribution.

Figure 4 reports results for the chi-square distribution. While the cubic spline

clearly outperforms the other two interpolations with 4 knots, all three interpolations

have some problems fitting the lower end of the distribution. Slight problems remain

in the lower hand of the distribution when we increase the number of knots from 4 to

6.

Finally, Figure 5 presents the fitted bimodal sinus distribution. We find that the

cubic spline interpolation has more difficulties fitting this bimodal distribution than

the other two distributions. All three interpolations provide poor fits with 4 and 5

knots. With 6 knots, the cubic spline interpolation clearly outperforms the other two

interpolations, and manages to provide a very good fit.

3.2 Approximated Expectations

We next asses the bias of the expected value inferred from the approximated cumu-

lative distributions. To simplify the comparisons across the three distributions, we

computed the bias of each approximated distribution relative to the theoretical vari-

ance of the underlying true distribution. The approximated expectation is computed

using (1). Table 1 presents the results. As expected, the (standardized) bias of the

approximated means diminish with the number of knots. We do not find that the

approximation systematically overestimates or underestimates the true mean of any

of the three distributions. Furthermore, the bias is relatively small in all three cases

when 5 and 6 knots are used. This is especially true of the cubic spline interpolation.
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4 Empirical illustration : the investment game

4.1 Experimental design and procedure

Our experimental design is a modified version of the two player investment game

of Berg, Dickhaut and McCabe (1995). In our experiment, a first player and a sec-

ond player were both endowed with 6$US.7 Contrary to Berg, Dickhaut and McCabe

(1995), we restricted the decision space of first players to two choices: investing all

or none of the endowment. If the first player invested his endowment, that amount

was doubled and added to the endowment of the second player. In turn, the second

player had the opportunity to return any amount from his augmented endowment

tot he first player. By doubling investments, a surplus is generated, opening up the

possibility that second players reward first players who invested. We used a binary

version of the game because we wanted to elicit the first players’ subjective distri-

bution functions about second player behavior for every possible choice they could

make. Expending the choice set of first players is in principle possible, but this will

require asking each participant to answer many more questions on their beliefs (see

below).

Before observing the investment decision, second players had to decide how much

to return to the first player if that player invested his endowment, and how much to

return if the first player did not invest his endowment. The decision which corre-

sponded to the actual choice of the first player was chosen to be the effective action

and determined the payoff of both participants. This method of eliciting the com-

plete strategy of a player has the advantage of gathering choice data of all decisions

which may occur.8 After all participants made their decisions, first and second play-

7The complete content of the computer screens can be downloaded from

http://w3.ecn.ulaval.ca/∼cbellemare.
8There is no clear evidence that the possibility of direct reaction by a second player to a choice of a

first player (“hot” environment) triggers stronger responses in various two player games (see McLeish

and Oxoby (2004) and Brandts and Charness (2000)).
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ers were randomly matched and payoffs were computed based on the decisions of

the pair. Participants were informed about the outcome only after completion of the

experiment.

After making their decisions, all first players were asked to answer questions con-

cerning their subjective beliefs. Players were not rewarded for the accuracy of their

beliefs.9 Before stating their beliefs, they were further reminded of the decision tasks

and given examples to clarify the belief elicitation procedure. First players could go

forward and backward between the screens used to elicit beliefs, but they could not

go back to change their decisions.

All first players had to state their subjective beliefs in two scenarios. We first asked

them to consider what would happen if they did not invest their endowment. For that

scenario, second players could return any amount between 0$ and their personal en-

dowment of 6$. To elicit beliefs, first players had to state how many of 100 second

players would return 0$,10 and how many would return amounts in the following

intervals {(0, 1], (1, 2], (2, 3], (3, 4], (4, 5], (5, 6]}.11,12 By allowing first players to place

a positive probability on getting back 0, we allow their subjective distribution func-

tions to be censored from below. The elicitation of distribution functions conditional

on first players investing their endowment followed a similar line. In this case, sec-

ond players receive 12$ from investors (the investment of 6$ multiplied by 2) which

is added to their own personal endowment of 6$. Hence, they could choose to return

any amount between 0$ and 18$. To elicit beliefs, first players had to state how many

9Friedman and Massaro (1998) and Sonnemans and Offerman (2001) find insignificant differences

between elicited beliefs of paid and unpaid subjects.
10This follows Hoffrage, Lindsey, Hertwig, and Gigerenzer (2000) who find that people are better at

working with natural frequencies than with percent probabilities.
11Winkler (1967) found that respondents had more difficulties stating beliefs in cdf rather than in

pdf form. We tested direct elicitation of cdfs in a pilot session with 22 subjects and come to the same

conclusion. The level of noise appeared lower when participants formulated their beliefs in terms of

intervals of the density function rather than as points on the cumulative distribution function.
12If the probability mass entered exceeded 100, players where automatically instructing to go back

and adjust their answers.
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of 100 second players would return 0$, and how many would return amounts in the

following intervals {(0, 3], (3, 6], (6, 9], (9, 12], (12, 15], (15, 18]}.

Another issue concerns the order in which the decisions and belief questions were

presented to players. Asking beliefs after the actual choice raises the concern that

decision makers state beliefs to rationalize their decisions. In order to detect these

potential problems, we randomized approximately one third of all participants in

our experiment to a group of “observers,” who did not make any decisions but who

answered the belief questions after having read the same instructions as all other

participants. Comparing the answers of observers and first players thus provides

an indication of the influence decision making has on stated beliefs.13 Observers

received each 6$ for their participation.

At the end of the experiment, all participants were informed about the outcome of

the experiment and their final payoffs. They were also asked to fill a post-experimental

questionnaire gathering information on basic background characteristics and their

personal comments. Before leaving the laboratory, all participants received their pay-

off from the experiment in a sealed envelope with their ID number. The experiment

was conducted in May 2005 at the Economic Science Laboratory at the University of

Arizona using the software zTree (Fischbacher (2007)). Participants were recruited via

email and were mainly students in finance, business administration, economics, and

engineering. Participants received a 5$ show-up fee upon arrival at the laboratory.

In total 122 participants interacted in the 9 sessions of the experiment. Roles were

assigned randomly. We observed 38 pairs of first-second players as well as 46 ob-

servers. An experimental session lasted on average 60 minutes, and, including their

show up fee, participants earned on average 12.18$ (9.92$ as first players, 15.87$ as

second players, and 11.00$ as observers).

13Examples of past research using observers are Dawes, McTavish and Shaklee (1977) and Offerman,

Sonnemans and Schram (1996).
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4.2 Data

24 of the 38 first players (63%) invested their endowment. This proportion is in line

with existing studies on the investment game with binary proposals and a multiplier

of two (e.g. see Dufwenberg and Gneezy (2000)).

Figure 6 presents the estimated cumulative distribution functions of subjective

beliefs for four sending players considering the event of investing. This figure high-

lights the flexibility of our method to adapt to different sets of beliefs. The dark points

in each graph represent the knots used to compute the cubic spline interpolation.

These knots are derived from the answers each first player gave to the 7 probabil-

ity questions. We present below each graph a histogram of the reported probability

mass placed on receiving nothing and in each of the subsequent 6 intervals. We see

that the first probability distribution appears symmetric and could be well approxi-

mated by some known distribution (e.g. normal). The probability distributions of the

other players are clearly non standard and exhibit a mixture of discrete (with a signif-

icant probability on getting back nothing) and continuous distributions. The second

probability distribution is bimodal, placing a high probability on either getting back

nothing or getting back between 6$ and 12$. The third distribution is unimodal but

skewed to the left. The fourth distribution is also skewed to the left but places close

to 70% probability on getting back nothing in the event of investing. Despite these

differences, the cubic spline approximation has no problem accommodating any of

the four sets of data points. Finally, the violations of monotonicity of the fitted cu-

mulative distribution functions of first players are relatively minor. Of the 76 fitted

distributions (two for each of the 38 first players), only 12 present small visible viola-

tions of monotonicity on subsets of the distributions.14

14Graphs of all the fitted distributions are available upon request.
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First Players vs. Observers

We first investigate whether stated beliefs of first players appear to have been influ-

enced by their decisions. To proceed, we compare the stated beliefs of first players

when considering investing and not investing with the corresponding beliefs of par-

ticipants in the observer treatment. In the later case, participants stated their beliefs

without making any prior or subsequent decisions. Hence, a comparison of the be-

liefs of both groups provides an indication of how decision making can affect stated

beliefs. Figure 7 presents the average beliefs of observers (light bars, N = 46) along

side those of first players (dark bars, N = 38). We find that beliefs of all first players

and observers are remarkably similar, both when they consider investing and when

they consider not investing. Chi-square tests do not reject the null hypothesis that

distributions are the same between treatments, both when investing (p-value = 0.549)

and when not investing (p-value = 0.218). These results suggest that the stated beliefs

of first players where not significantly affected by their decisions.15

Subjective beliefs vs. realizations : aggregate differences

Figure 8 presents the discrete subjective probability distributions averaged over all

first players (dark bars, N = 38) and actual return decisions averaged over all second

players (light bars, N = 38), contingent on investing and not investing.16. To compare

with the distribution of observed responses, we discretized the amounts second play-

ers return to the same intervals used to elicit beliefs of first players. The left graph of

Figure 8 presents the comparison in the event that first players invest. The right hand

graph presents the comparison in the event that first players do not invest. Quali-

tatively, the subjective and realized distributions are very similar. On average, first

players placed a 68.4% probability of getting nothing from the second players when

15Similar results are obtained by Offerman, Sonnemans, and Schram (1996).
16Because of the strategy method, we observe two decisions for each second player: how much they

return if first players invest and how much to return if first players do not invest.
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they consider not investing their endowment. In comparison, the objective probabil-

ity of this event is 89.6%. When first players consider investing their endowment, the

average subjective and realized distributions are similar for amounts returned of 3$

or less. On the other hand, first players on average underpredict the probability of

receiving between 3$ and 9$ (30.4% versus an objective 47.9%), but overpredict the

probability of receiving amounts above 9$ (8.5% versus an objective 2.1%).

Subjective beliefs vs. realizations : individual differences

To explore the heterogeneity in beliefs, we computed for each first player the dif-

ference between their subjective expectations (computed using equation (2)) and the

average amount returned by second players both when first players invest and do

not invest their endowment. Figure 9 presents the distribution of those differences in

the event where first players invest (left graph) and not invest (right graph). Positive

(negative) values on the horizontal axis represent first players who have subjective

expectations exceeding (falling short of) the observed average behavior of second

players.

In the event that first players invest, we find substantial dispersion in the expec-

tations across players, with an important fraction of first players having expectations

which are both below and above the observed average responses. In the event that

first players do not invest, we find lower dispersion in expectations, with a substantial

part of the distribution centered around the average observed second player behav-

ior. Hence, a substantial fraction of players correctly anticipated that they can expect

to receive very little in the event of not investing, whereas there is much more disper-

sion in individual beliefs in the event of investing relative to what actually occurred.

Investors vs. Non-investors

To gain some insights on whether investors and non-investors trusted the second

player differently, we compare the distributions of beliefs of investors with the dis-
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tributions of beliefs of non-investors (N = 14). Figure 10 presents the average sub-

jective belief distributions of investors (light bars, N = 24) and non investors (dark

bars, N = 14). We find that both groups had similar beliefs about second players’ be-

havior if they consider not investing their endowment. In particular, both investors

and non investors place a very high probability of getting nothing back from second

players. Differences between both groups emerge when we look at their beliefs in the

event of investing their endowment. There, non investors placed a 48.3% probability

on getting nothing back from second players, substantially less than the 24.6% prob-

ability placed by investors as a whole. Moreover, investors placed significantly more

probability than non investors on getting back any positive amount. These results

indicate that investors believed they would get higher returns when investing their

endowment than non-investors, evoking the idea that they trusted relatively more

that second players would not behave in a purely self-interested manner. In fact, the

decision of investors could be motivated by pure expected money maximization if the

expected returns in the event of investing are greater than 6$ plus the (low) expected

return in the event of not investing. The belief data reveals a very different picture:

81.5% of investors have expected final payoffs which are lower when they invest than

when they do not invest. These numbers are comparable to those found elsewhere in

the literature (see Dufwenberg and Gneezy, 2000; Ashraf, Bohnet and Piankov, 2006).

This suggests that a model where agents maximize expected earnings would not be

sufficient to explain the proportion of investments observed.

4.3 A Simple Model of Choice

The results of the previous section suggest that differences in expectations alone are

not sufficient to explain investment behavior. To formally test this hypothesis, we

next specify and estimate a simple structural model of investment behavior.

We start by assuming that the utility of not investing for player i is given by ukeep
i =

β(w + rkeep
i ), where rkeep

i denotes the amount the second player returns to first player
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i when i does not invest, w denotes the monetary endowment that the first player

keeps when he does not invest, and β measures the marginal utility of income.17 The

amount returned when not investing rkeep
i can vary between 0 and the endowment w

of the second player.

When first players invest, they forego and amount w which is then doubled and

transferred to the second player they are matched with. As a result, a surplus of w

is created when investing. We model the utility of investing for player i as uinvest
i =

βrinvest
i + θ, where rinvest

i denotes the amount returned to the investor, and θ denotes

the first players’ utility attached to creating a surplus of w when investing. Recent

studies suggest that concerns for social efficiency may be particularly important (see

Charness and Rabin (2002), Engelmann and Strobel (2004)).18 In terms of our model,

this would imply that θ > 0. The amount returned rinvest
i can vary between 0 and the

wealth of the second player. The later is given by the sum of his endowment w and

2w, the investment of sending players doubled. Thus, second players can return an

amount between 0 and 3w (see Section 4 on the experimental design).

We next assume that first players make their decisions by comparing their sub-

jective expected utilities of investing and not investing. The expected utilities of not

investing and investing are given by

E
(

ukeep
i

)
= β

(
w + E

(
rkeep

i

))
(5)

E
(

uinvest
i

)
= βE

(
rinvest

i

)
+ θ, (6)

17To investigate whether the risk neutrality hypothesis is reasonable, we asked participants to play

at the end of the experiment a sequence of lotteries similar to that proposed by Holt and Laury (2002).

In particular, each participant was asked to choose 10 times between two binary lotteries. Because

the risk of winning low and high payoffs varied across the 10 choices, the decisions of an individual

identifies a tight range around his coefficient of risk aversion (see Holt and Laury (2002) for details).

We found no significant relationship between measured risk preferences and investment behavior.

Similar results have been found by Eckel and Wilson (2004) and Houser, Schunk, and Winter (2006).
18The preferences estimated are equivalent to preferences with linear altruism ui = γxi + αxj with

γ = β + α, α = θ/w, and where xi and xj respectively denote income of player i and j.
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where the expectations are computed with respect to the subjective distribution func-

tions of first player i. To allow for the fact that some first players will make sub-

optimal choices, we add standard normal error terms εinvest
i and ε

keep
i to the true

expected utilities E(uinvest
i ) and E(ukeep

i ), and assume that first player i chooses the

option j ∈ {keep, invest} that maximizes E(uj
i) + ε

j
i rather than E(uj

i).

4.4 Inference without Information on Subjective Expectations

Before estimating η = (β, θ) using both the choice and expectations data, we first

estimate the region of (β, θ) that can be identified using only the choice data alone.

The following is based on the analysis of the binary choice model with linear utilities

discussed in Manski (2007). The idea is to characterize the set of values of (β, θ)

which are consistent with the observed choice distribution. In the special case of

the binary choice model with linear utilities, it can be shown that this set is convex

(Manski, 2007). To estimate this set, we first consider the extreme case where all

first players expect to receive with probability 1 the highest possible amount when

investing (rinvest = 3w) and the lowest possible amount when not investing (rkeep =

0). This gives rise to the largest payoff difference between investing and not investing.

In this case, the decision rule is to invest when

β(2w) + θ + εi > 0. (7)

A second extreme case occurs when all first players expect to receive with prob-

ability 1 the lowest amount possible when investing (rinvest = 0), and the highest

possible amount when they do not invest (rkeep = w). This gives rise to the smallest

payoff difference between investing and not investing. In this case, the decision rule

is to invest when

β(−2w) + θ + εi > 0. (8)
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Assuming that errors εi are statistically independent of each other and follow a

standard normal distribution, aggregating inequalities (7) and (8) across the popu-

lation yields the following set of inequalities relating the population probability of

investing to the model parameters

Φ (β(−2w) + θ) ≤ Pr(invest) ≤ Φ (β(2w) + θ) (9)

where Φ(·) denotes the standard normal cumulative distribution. The identification

region for (β, θ) is the set of parameter values that satisfy inequalities (9).

The shaded area in Figure 11 represents the identified region estimated by re-

placing Pr(invest) with the proportion of investments observed in our sample. It is

immediate from (9) that θ is point-identified and equal to Φ−1(Pr(invest)) when ex-

pectations have no influence on the decision process (β = 0). Otherwise, the observed

proportion of investments is compatible with any combination of β > 0 and θ within

the shaded area. We can easily see that the identified range of the social preference

parameter θ increases with β, the strength of the effect of expectations on investment

behavior. This suggests that a wide range of social preferences are possibly consistent

with the choice data.

It is possible to reduce the size of the identified region by making further assump-

tions. For instance, it is plausible to assume that E(rinvest) ≥ E(rkeep), which says that

players do not expect to receive less when they invest as opposed to when they do

not invest. Under this assumption, inequality (7) is unchanged, but inequality (8) is

replaced by

β(−w) + θ + εi > 0. (10)

Aggregating inequalities (7) and (10) across the population produces a new set of in-

equalities relating the population probability of investing and the model parameters

Φ (β(−w) + θ) ≤ Pr(invest) ≤ Φ (β(2w) + θ) . (11)

The smaller identified region derived from (11) is given by the dark shaded area in the

Figure (11). As expected, the new area is a strict subset of the area derived previously.
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Nevertheless, a wide range of values of β and θ remain consistent with the observed

choice behavior.

Another way to reduce the size of the identification region is to assume that first

players have objectively correct (rational) expectations. This would imply that E
(
rinvest

i
)

and E
(

rkeep
i

)
both coincide with observed average second player behavior, rinvest and

rkeep, and are common for all players. Then, the identification region is a line, connect-

ing all values of β and θ which solve

Φ
(

β(rinvest − rkeep)− βw + θ
)

= Pr(invest). (12)

The dashed straight line in Figure (11) represents the estimated identified region as-

suming rational expectations, estimated by replacing rinvest and rkeep with the corre-

sponding sample averages. While the rational expectations assumption effectively

reduces the identified region to a single line, this assumption is unlikely to hold in

our experiment since the beliefs of first players differ in important ways from the

observed average behavior of second players (see Section 4.2).

4.5 Estimation results

The upper part of Table 2 presents the model parameters estimated by maximum like-

lihood using linear, quadratic, and cubic spline interpolation.19 For all interpolations,

the subjective expectations are computed analytically (see Section 2.2). For the cubic

spline interpolation, we compare our results both when we impose and when we do

not impose monotonicity of the estimated cumulative distribution functions.

Results are relatively similar across the different interpolations. This is consistent

with the analysis of section 3 which indicated that, with 6 knots, linear, quadratic,

and cubic interpolations provide similar fits to all the distributions considered. Since

19We also estimated models including measures of dispersion of the individual subjective distribu-

tions (subjective variances, interquartile ranges). These models produced insignificant increases in the

log-likelihood.
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7 knots are used in the experiment, differences across the three forms of interpolations

are possibly even smaller. Accordingly, we will discuss the estimates obtained using

the cubic spline approximation which imposes monotonicity using the Hyman filter.

Because β measures the marginal utility of earnings, it is reasonable to assume

that it can take only non-negative values. We find that the estimated value of β is

0.117 and is significant at the 5% level against the one-sided alternative that β > 0.

This suggests that differences in expectations between investing and not investing

have a significant impact on the propensity to invest. We further find that the social

preference parameter θ is 0.569 and significant at the 5% level against a two-sided

alternative.20 Others have reached similar conclusions by comparing the investment

behavior across multiple treatments where expectations are manipulated by the ex-

perimenters (e.g. Cox (2004)). Our approach requires a single treatment, at the ex-

pense of having to collect subjective probability data.

It is interesting to highlight that we obtain similar conclusions when using the cu-

bic spline approximation without restricting the approximated distribution functions

to be monotonic. This is consistent with our previous observation (see Section 4.2)

that monotonicity is not severely violated in our data.

5 Conclusion

In this paper we proposed a flexible and simple method to approximate subjective

probability distributions using answers to a small set of probability questions. We

showed that 4 or 5 probability questions provide sufficient information to approxi-

mate well a wide variety of distributions. This suggests that the approach proposed

is relatively inexpensive to implement in practice in areas where data on subjective

20The standard errors reported in the table are possibly a little conservative as they do do not account

for noise in the approximated expectations. Furthermore, both parameters remain significant when we

perform our tests using bootstrapped critical values derived from the empirical distribution functions

of both test statistics (500 bootstrap repetitions).
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probability distributions are either already available or easily collectable (e.g. in ex-

perimental games of proposal and response).

We also showed how to compute subjective expectations of functionals of the ran-

dom variable using the approximated distributions. While we focused on expecta-

tions of such functionals, the approach presented here can be easily extended to ap-

proximate any other points of these functionals (e.g. quantiles).

We illustrated the usefulness of the approach by measuring beliefs of first players

concerning second player behavior in the investment game. In this way, we obtained

a direct measure of first players’ trust independently of their investment decision,

allowing us to investigate whether trust is a significant determinant of investments.

We found that differences in trust do have a significant effect on investment decisions.

However, trust alone is insufficient to explain the majority of investments, suggesting

that other factors – altruism or efficiency concerns – also affect investments in the

game.

One limitation of the approach proposed is that the data collected is analyzed as

if it were free of measurement error. Future research should explore ways to control

for possible measurement error in the reported probabilities before using the spline

interpolation. Furthermore, the choice of equidistant knots used in the paper was

made for simplicity and is in no way optimal. Future work should also look at meth-

ods to chose more efficiently these knots in order to provide accurate approximations

requiring possibly less probability questions.
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A Quadratic Splines

The quadratic spline interpolation is based on the assumption that the function F (x| i)
is, on interval j, defined by aj + bjx + cjx2 where (aj, bj, cj) are the interval polynomial

coefficients. The set
{
(aj, bj, cj) : j = 1, 2, . . . , n

}
contains the 3n unknown polynomial

coefficients to be estimated. In order to estimate the set of polynomial coefficients, the

interpolation exploits the continuity at the interior knots. This gives rise to 2n equa-

tions

F(xj−1|i) = aj + bjxj−1 + cjx2
j−1 for j = 1, 2, . . . , n

F(xj|i) = aj + bjxj + cjx2
j for j = 1, 2, . . . , n.

Next, the assumption that F(x|i) is continuous at the interior nodes implies the fol-

lowing n− 1 equations

bj + 2cjxj + 3djx2
j = bj+1 + 2cj+1xj for j = 1, 2 . . . , (n− 1)

One boundary condition is needed in order to estimate the polynomial coefficients

of the quadratic spline. We tried many boundary conditions and found that the best

results were obtained when imposing F′′(xn|i) = 0. This boundary condition restricts

the interpolation to be linear on the last segment of the spline.

As with cubic spline, summary statistics can be directly estimated from the fitted

subjective cumulative distribution function. For instance, the t-th moment of X, in the

case of censoring from below at x0 and from above at xn, can be computed analytically

using

Êt(X) = x0F̂(x0) +
n

∑
j=1


 b̂jxt+1

t + 1
+

2ĉjxt+2

t + 2

∣∣∣∣∣

xj

xj−1


 + xn(1− F̂(xn)) (13)

25



B Figures

1

x0 x
n

1

x0 x
n

(a) (b)

1

µ2

µ1

x0 x
nx̃1x̃

1

2
x̃

2

2
x̃

3

2

1

µ2

µ1

x0 x
nx̃1x̃

1

2

(a) (b)

1
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(Panel (b)) cumulative distribution of a hypothetical respondent. Dots represent data

points collected using answers to probability questions. Bold line represents the fitted

distribution.
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Figure 3: Fitted normal distributions using linear, quadratic and cubic spline interpo-

lations for 4, 5, and 6 knots. The full line represents the true distribution. The dashed

line represents fitted distributions using the number of knots (dark points).
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Figure 7: Subjective beliefs about the amount returned of all first players (dark bars,
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invest (left panel) and in the event they would invest (right panel).
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C Tables

Linear Quadratic Cubic

Standard normal distribution

4 knots 0.000 0.175 0.000

5 knots 0.000 0.000 0.000

6 knots 0.000 -0.002 0.000

χ2
3 distribution

4 knots 0.076 -0.018 0.008

5 knots 0.037 -0.017 -0.006

6 knots 0.020 -0.012 -0.008

Bimodal distribution

4 knots 0.000 -0.019 0.000

5 knots 0.000 0.000 0.000

6 knots 0.000 0.003 0.000

Table 1: Bias of approximated expectations relative to the theoretical variances of

the underlying distributions. The chi-square distribution is truncated to the [0,15]

interval, while the bimodal density if given by f (x) = sin(x)+1
A where A = 2 + 3π and

is truncated to the [0,3π] interval.
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Interpolation Linear Quadratic Cubic Cubic

Monotonicity imposed - - No Yes

β 0.121** 0.116** 0.116** 0.116**

(0.066) (0.064) (0.065) (0.065)

θ 0.578** 0.566** 0.569** 0.569**

(0.241) (0.239) (0.241) (0.241)

Table 2: Maximum likelihood estimates of the model parameters with asymptotic

standard errors in parenthesis. Significance at the 5% level is denoted by ’**’, whereby

the estimate of β is evaluated against the one-sided alternative that β > 0 and the

estimate of θ is evaluated against the two-sided alternative that θ 6= 0.
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