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1 Introduction

1.1 The social choice problem

The question of how best to aggregate individual preferences or rankings is one of the oldest

and best-known in the social sciences. Many organization must rank candidates for a posi-

tion, a scholarship or a prize on the basis of rankings or preferences expressed by a panel of

voters, judges or experts. Other organizations seek to rank investment projects on the basis

of multiple criteria such as short term and long term profitability, social impact, environ-

mental impact, and so on. In some democratic bodies or societies, the goal is the aggregation

of individual preferences, expressed as orders or pre-orders, into a collective preference. In

judged sports such as figure skating, diving, synchronized swimming and gymnastics, the

task is the aggregation of individual assessments of the performance by a panel of judges

into a final ranking.

All the above problems are formally the same. There is a set of candidates or alternatives

to be ranked, a set of voters, judges or experts who are asked to provide individual rankings

of these candidates. Or there are rankings that have been obtained by applying different

criteria to the alternatives.1 These rankings must then be aggregated according to some

rule.

It is well known, at least since Condorcet (1785), that it may be difficult to aggregate

individual rankings into a coherent order. Some two centuries later, Arrow (1963) crystallized

this difficulty into his famous Impossibility Theorem, which demonstrates that there is no way

of transforming individual preferences into a coherent social order that respects apparently

innocuous regularity conditions. But as the abundant literature that his theorem has spurred

testifies, Arrow’s result does not imply that the social choice problem is any less relevant. It

merely points to the difficulty of adopting a satisfactory aggregation rule.

In this study, we adopt the point of view of a decision maker, for instance the International

Skating Union (ISU), who must adopt an aggregation rule that will be used over a long period.

This decision maker has a measure of how bad an erroneous ranking may be, more precisely

a loss function. Having a probabilistic model of the individual rankings, she can compute

the ex ante expected loss, or the risk, of a given aggregation rule. She can choose a rule

on this basis. We perform these computations for five aggregation rules: the Borda rule,

the Kemeny rule, which can be seen as originating from the Condorcet maximum likelihood

1See for instance Arrow and Raynaud (1986).
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approach to vote aggregation, a more general maximum likelihood (ML) rule and two rules

that were used in figure skating prior to the Torino 2006 Olympic Games.

1.2 A Monte Carlo approach

Analytical computation of the risk for a given rule requires evaluating the probabilities and

the associated losses of all possible outcomes. If the number of candidates is large - as is the

case for the figure skating example that motivates this study - computing probabilities and

losses for each element in the sample space is prohibitive. To circumvent this difficulty, we

use Monte Carlo methods to estimate the risk for the high-dimension problems of interest

in this study.

We generate a sample of profiles by having fictitious voters cast their votes according to

a distribution function based on the binary approach of Condorcet as extended by Drissi

and Truchon (2004). According to this approach there exists a true social order but judges

observe it with error; they simply have a probability greater than one half of correctly

ordering two alternatives in any pair. Drissi and Truchon (2004) let this probability increase

with the distance between the two alternatives in the ‘true’ ranking, and propose a two-

parameter logistic probability function to represent to competence of the judges. Since the

binary approach does not guarantee that a given profile will be consistent, we discard draws

that yield cycles.

In our analysis, we use the family of parametric loss functions proposed by Gordon and

Truchon (2007). Given a profile of consistent rankings, we apply the five ranking rules

retained for this study and we compute the associated losses for different values of the

parameters of the loss function. Taking the sample mean yields an array of ex ante expected

losses, which runs across the set of rules and the set of parameters of the loss function. This

exercise is repeated for different values of the parameters of the probability function. These

simulations are done for the case in which there are 3 and 9 judges, and where the number

of alternatives ranges from 3 to 10 (sometimes 12 and 20). For computational reasons, this

number is kept below 7 (sometimes 8) with the ML rule.

1.3 Summary of the results

Our results suggest that it is difficult to conclude that one rule performs better in all circum-

stances. It is generally the case that if the parameters of the probability function are known

with certainty, then the ML rule does best. In practice, of course, this rule is not feasible,
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since the form of the probability distribution is not known in advance. On the other hand,

it does appear that if the ML rule is applied using parameter combinations that are ‘close’

to the true values, then this ‘quasi-ML’ rule still does well when compared to other rules.

As for the Borda rule, it does well with increasing probabilities but poorly with constant

probabilities.

1.4 Contents

The paper is structured as follows. Section 2 presents the aggregation problem, the statisti-

cal model for generating votes, and formalises the criteria for evaluating aggregation rules.

Section 3 describes the modelling choices, including those of the parameters of the probabil-

ity function and those of the loss function. It also summarizes the social choice rules that

are evaluated in this study. Section 4 discusses the results and Section 5 concludes. A more

detailed description of the results is relegated to an appendix.

2 Methodology

2.1 Vote aggregation: notation and definitions

Let A = {1, 2, . . . ,m} be a set of alternatives or candidates to be ranked. We denote by B
the set of binary relations on A, by B∗ be the set of complete and asymmetric binary relations
on A, by R the subset of complete weak orders or rankings (reflexive and transitive binary

relations) on A and by L the subset of linear orders (complete, transitive and asymmetric
binary relations) on A. Note that L ⊂ R ⊂ B and L ⊂ B∗ ⊂ B.2 A complete weak order on
A can be represented by a vector r = (r1, r2, r3, . . .) or x = (x1, x2, x3, . . .) where r1 and x1

are the rank of alternative 1, r2 and x2 the rank of 2, and so on.3

Let there be a set J = {1, 2, . . . , n} of voters or judges. For each judge j, we generate a
linear order xj ∈ L, also called a vote, on the set A. Equivalently, a vote xj can be represented
by an (m×m) binary matrix Xj =

£
xjst
¤
s,t∈A where:

xjst =

(
1 if xjs < xjt

0 otherwise

2Withm alternatives, the cardinality of B∗ and L are 2m(m−1)
2 andm! respectively. The difference between

the two is the number of cyclic binary relations in B∗.
3Throughout, we shall use r to represent the true order on A and x to represent a vote on A.
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Conversely, given a binary representation Xj of a linear order, we get the representation xj

by setting xjs = m−Pm
t=1 x

j
st.
4 We shall use the two representations interchangeably.

A profile of votes is an array X = (x1, . . . , xn) ∈ Ln. A profile may also be written in the

binary form X = (X1, . . . , Xn) . Once the voters or judges have cast their votes, the problem

is to aggregate these votes into a final ranking. We formalize this idea in the following

definition.

Definition 1 An aggregation or ranking rule is a function Γ : Ln → R that assigns to each

profile X a final ranking Γ (X) of the alternatives. Γs (X) represents the rank of alternative

s in the final ranking Γ (X) .

2.2 Statistical models of voter choice

As in Gordon and Truchon (2007), this study adopts the Condorcet approach to the social

choice problem in supposing that the true social order exists, but that judges observe it with

error. As in Drissi and Truchon (2004), we let the probability that a judge orders correctly

two alternatives increase with the distance between the two alternatives in the allegedly true

ranking. This incorporates the possibility that voters or judges will have a better chance to

rank correctly two alternatives when one is very good and the other very bad than when

facing two similar alternatives.

Formally, there exists a non-decreasing function p : {1, . . . ,m− 1}→ ¡
1
2
, 1
¢
such that if

r ∈ L is the true social order on A, then the vote of judge j on a pair of alternatives (s, t)

is a random variable x̃jst ∈ {0, 1} with marginal distribution:

Pr
¡
x̃jst = 1 | r

¢
=

(
p (rt − rs) if rs < rt

1− p (rs − rt) if rs > rt
(1)

Pr
¡
x̃jst = 0 | r

¢
= 1− Pr ¡x̃jst = 1 | r¢

Put simply, p (rt − rs) is the probability that a judge orders alternatives s before t when s

has a higher rank than t in the true order, that is, when rs < rt.

4There is an abuse of notation in using xs to represent elements of a vector and xst to represent elements
of a matrix but, given the one-to-one correspondence between the xj and the Xj , this should entail no
confusion. Naming both judges and alternatives as 1, 2, 3, . . . is also an abuse of notation but this allows for
simpler notations in the remaining of the paper.
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If the votes Xj are taken from B∗, that is, if cycles are permitted but not ties, and if the
elements of the binary matrix Xj are independently distributed, then the distribution of the

whole matrix Xj is: cPr ¡Xj | r,B∗¢ = Y
s,t∈A
rs<rt

Pr
¡
x̃jst = xjst | r

¢
(2)

If we denote by Pr(L|r) the probability of generating an order from (2), then:

Pr(L|r) =
X
Xj∈L

cPr(Xj|r,B∗)

The probability of drawing an order from L is therefore:

Pr(Xj|r,L) =

Pr(Xj|r,B∗)
Pr(L|r) if Xj ∈ L

0 if Xj ∈ B∗\L
(3)

Restricting the sample space to L, that is, imposing transitivity, implies that the elements
of Xj are no longer independently distributed, even though the joint probabilities are still

based on the product of the individual marginal probabilities. Consider the case wherem = 3

and where we know that a judge has ranked alternative s ahead of t and t ahead of u. Even

if the marginal probability of ranking u ahead of s is some 0 < p̂su < 1, transitivity implies

that the conditional probability that the judge will rank s in front of u is equal to one.

A more satisfactory approach might have consisted in specifying a probabilistic model

on L directly. Given the number of alternatives that we shall consider, this would have
represented a daunting task. The binary approach, which is often used in the literature on

social choice, together with the elimination of incoherent relations, is adopted for practical

reasons.5 As we shall see in subsection 3.1, this choice allows us to specify a parsimonious

parametric model.

Finally, we suppose that judges produce their orders independently according to (1-3 ),

so that the probability of a given profile X is:

f(X|r) =
nY

j=1

Pr(Xj|r,L) (4)

5On this point, see also Remark 2 in Drissi and Truchon (2004).
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2.3 Criteria for evaluating aggregation rules

An aggregation or ranking rule is usually chosen in advance and is often used over a long

period. A question of interest is thus how different ranking rules could fare in repeated

applications. In other words, what is the ex ante expected loss or risk of a ranking rule?

This is the question addressed in this paper. As in Gordon and Truchon (2007), we begin

by making explicit the concepts of loss and risk.

Definition 2 A loss function is a mapping d : R2 → R+ such that d (r, r̂) > 0 ∀r̂ 6= r and

d (r, r) = 0 ∀r. The value d (r, r̂) is the loss resulting from the selection of the ranking r̂ when
r is the true order.

Definition 3 Given a true order r, a distribution function f ( · | r) on profiles, and a loss
function d, the risk or the ex ante expected loss of an aggregation rule Γ is given by:

ρ (Γ; f, d, r) =
X
X∈Ln

f (X | r) d (r,Γ (X)) (5)

Suppose that a set of aggregation rules G ≡ {Γ1,Γ2, . . . ,ΓG} is available to the decision
maker. For a given combination (f, d, r,G),an optimal social choice rule is a solution Γ∗ to

the problem:

min
Γ∈G

ρ (Γ; f, d, r) (6)

In this paper, we are concerned not only with the optimal rule but with the relative

performance of all members of G as we vary the parameters of the model.

2.4 Summary of the problem

If a decision maker adopts the Condorcet approach of positing the existence of a true social

order that is observed with error, and if she is obliged to decide upon a fixed aggregation

rule Γ before the votes are observed, then she must specify:

i) a statistical model for the votes,

ii) a set of aggregation rules,

iii) a family of loss functions.

Since there is little reason to believe that a single aggregation rule will be optimal in

all settings, care must be taken to ensure that the assumptions are plausible in the setting

under study.
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3 Modelling choices

Although the techniques described here can be applied to any social choice problem, an

exhaustive search over all combinations of statistical models and loss functions is beyond the

scope of any single study. The context that we have in mind is the ranking of competitors

in figure skating; see Truchon (2004), and Gordon and Truchon (2007). It should be noted

that assumptions that we believe are plausible in the context of figure skating may not be

appropriate in other applications.

3.1 Statistical model

To generate the votes, we adopt the two-parameter logistic probability function used by Drissi

and Truchon (2004) and Gordon and Truchon (2007). That is, we let the term p (rt − rs) in

(1), which is the probability that a judge j ranks s before t when rs < rt, take the form

pαβst (r) =
exp(α+ β(rt − rs − 1))

1 + exp(α+ β(rt − rs − 1)) (7)

with α > 0 and β ≥ 0. If β > 0, this probability increases with the distance between s and

t in the true order, measured by rt − rs. The larger β, the higher this rate. With β = 0, the

probability is constant. And the larger α, the larger the probability. Thus, the distribution

function defined by (4) takes a parametric form, say fαβ(X|r). The values for α and β used

in this study, as well as their implications for the choice probabilities, are listed in Table 1.

Parameters Distance between alternatives
α β 1 2 3 4 5 6 7 8 9 10 11
0.4 1 0.60 0.80 0.92 0.97 0.99 1.00 1.00 1.00 1.00 1.00 1.00
0.4 0 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60
1.1 0 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75
2.2 0 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90
1.0 0.3 0.73 0.79 0.83 0.87 0.90 0.92 0.94 0.96 0.97 0.98 0.98
1.1 0.9 0.75 0.88 0.95 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00

Table 1: Distribution function parameters and choice probabilities

3.2 Aggregation rules

We apply four or five (depending on the number of alternatives) aggregation rules to the

votes generated according to the above statistical model. The first is the well-known Borda
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rule, which was in use in the Académie des sciences de France from 1770 until Napoléon’s

election to this institution. The second rule is due to Kemeny (1959). It yields orders that

have a minimal total number of disagreements with the orders in the profile. Moreover, as

shown by Young (1988), the Kemeny rule may be seen as the result of the Condorcet maxi-

mum likelihood approach with a constant probability of correctly ordering two alternatives.

Drissi and Truchon (2004) extends this approach by having this probability increase with

the distance between the two alternatives in the allegedly true ranking. They propose the

probability function defined by (7) to represent the competence of the judges. This yields a

more general maximum likelihood rule. This is the third rule used in this study when the

number of alternatives is not too large.

The final two rules are less well known, and are taken from figure skating. Most fans know

that skaters are ranked from the scores that they receive from a panel of judges. However,

it is less well known that, prior to the Torino 2006 Olympic Games, the scores of each judge

j, a real number between 0 and 6, merely served to establish a ranking rj (ordinals) for this

judge. Then, an aggregation or ranking rule, defined by the International Skating Union

(ISU), was applied to the profile thus obtained to arrive at a final ranking. There have

been at least two such rules. The first one, which we label ISU-94, was used from at least

1982 until 1998. It was replaced in 1998 by a rule that we label ISU-98. It was in use at

the Salt Lake City 2002 Olympic Games, but was replaced prior the Torino 2006 Games.6

The ISU-94 and ISU-98 rules remain nevertheless very interesting, because, inter alia, of

the controversies that arose from their use. The Borda rule is a component of these two

rules. A variant of the Copeland (1951) rule, which is also often discussed in the literature

on aggregation of votes, is a component of the ISU-98 rule.7

3.2.1 The Borda rule

Given a profile X and alternative s, let b∗(s) =
Pn

j=1 (m− xjs) . This number is the Borda

score of s. Given the correspondence between xj and Xj, we also have (m− xjs) =
Pm

t=1 x
j
st

so that b∗(s) =
Pn

j=1

Pm
t=1 x

j
st. Let also b(s) =

Pn
j=1 x

j
s. Clearly, b

∗(s) = mn − b(s) . The

Borda rule consists in ordering alternatives according to the b(s) or inversely to the b∗(s) .8

6The scoring method itself is different and the aggregation rule is now cardinal, more precisely additive,
rather than ordinal.

7More on the two ISU rules can be found in Truchon (2004). The ISU-94 rule has also been studied
extensively by Bassett and Persky (1994).

8Formally, the numbers b(s) and b∗(s) depend on X. We drop this argument for the sake of simplicity.
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Definition 4 The Borda rule is the function B : Ln → R defined by:

∀s, t ∈ A : Bs(X) ≤ Bt(X)⇔ b(s) ≤ b(t)⇔ b∗(s) ≥ b∗(t)

B (X) is the Borda ranking.

3.2.2 The Kemeny Rule

The definition of the rule involves the Kemeny “distance” between a linear order and a

profile. First, let γst : L2 → R, be a function defined for every couple of alternatives (s, t)
and every pair of linear orders (r, x) by:

γst (r, x) =

(
1 if rs < rt and xs > xt

0 otherwise

Then, the Kemeny metric on L is the function dK : L2 → R defined by:9

dK (r, x) =
X
s∈A

X
t∈A

γst (r, x)

Finally, the Kemeny “distance” δK between a linear order x and a profile X is given by:

δK (r,X) =
nX

j=1

dK
¡
r, xj

¢
Kemeny (1959) points out that, given a profile X, there are two methods of finding

a “consensus” ranking. They consist in minimizing
Pn

j=1 d
K (r, xj) and

Pn
j=1 d

K (r, xj)
2

respectively, with respect to r. Kemeny and Snell (1962) call the solutions to the two mini-

mization problem median rankings and mean rankings respectively.10 Nowadays, the name

of Kemeny is associated with the first problem. This is the Kemeny rule.

Definition 5 The Kemeny rule is the correspondence11 K : Ln → L that assigns to each
profile X, the subset K(X) = argminr∈L δK(r,X). The elements of K(X) are Kemeny

orders.

The value of δK(r,X) is the total number of disagreements between r and the rankings in

profile X. Thus, a Kemeny order has a minimal total number of disagreements with X. See

the Appendix for the computation of Kemeny orders and the handling of their multiplicity.

9We restrict the definition to the space L since we work with profiles of linear orders and since the search
with the Kemeny rule is done within this space.
10To be more precise, given a profile X =

¡
x1, . . . , xn

¢
, they define them as the median and the mean of

the set
©
x1, . . . , xn

ª
.

11Contrary to the rules previously defined, we now have a correspondence instead of a single value function.
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3.2.3 The Maximum Likelihood rule

The Maximum Likelihood approach to vote aggregation dates back to Condorcet (1785),

who vehemently opposed Borda’s rule, indeed all scoring rules. He pointed out their major

flaw: they can top-rank a candidate that can be defeated by each of the other candidates

in pairwise votes or comparisons. As an alternative, Condorcet proposed that candidates

be ranked on the basis of these pairwise votes. His objective was to justify the majority

principle. On this, he was certainly inspired by Rousseau (1762) in his Social Contract, for

whom the opinion of the majority is legitimate because it expresses the “general will.”

When in the popular assembly a law is proposed, what the people is asked
is not exactly whether it approves or rejects the proposal, but whether it is in
conformity with the general will, which is their will. Each man, in giving his
vote, states his opinion on that point; and the general will is found by counting
votes. When therefore the opinion that is contrary to my own prevails, this
proves neither more nor less that I was mistaken and that what I thought to be
the general will was not so. [Rousseau (1913), p. 93]

Condorcet’s objective was to formulate this proposition rigorously, using the calculus of

probability, which was new at the time of his writing. His approach may be cast as follows.

There is a true or objective order on the set of candidates. Judges may have different opinions

because they are imperfect observers. However, if they are right more often than they are

wrong, then the opinion of the majority yields a most probable order. As the number of

judges increases, the opinion of the majority converges to the true order.12

Condorcet was perfectly aware that the binary relation resulting from his procedure may

contain cycles, a phenomenon sometimes referred to as the Condorcet paradox. He proposed

a method for breaking these cycles but unfortunately this method gives consistent results

only for the case of three alternatives. Young (1988) shows that a correct application of the

maximum likelihood principle leads to the selection of the Kemeny orders. When it exists,

that is, in the absence of cycles in the majority relation, the Condorcet order is the unique

Kemeny order. As Young (1995) points out, the Kemeny rule can also be seen as a way of

compromising between conflicting opinions.

12In figure skating, which inspired this paper, this is a legitimate point of view since the intent of the ISU
regulations is clearly to have judges furnish an evaluation of the relative merits of the competitors in terms
of scores. They are even instructed on how to subtract points for different types of mistakes.
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Given the distribution function fαβ( · |r) for profiles, we may define the likelihood function
L( · ;X) by:

L(r;X,α, β) ≡ fαβ(X|r)
This is simply the distribution function re-interpreted as a function of r, givenX.AMaximum

Likelihood estimator for the social order is a solution to the problem:

max
r∈L

L(r;X,α, β) (8)

Definition 6 The correspondence ML ( · ;α, β) : Ln → R that assigns to each profile X,

the subset ML (X,α, β) = argmaxr∈L L(r;X,α, β) is the Maximum Likelihood (ML) rule

corresponding to the distribution function fαβ( · |r).
In order to take into account the fact that, in real applications, the true parameters of

the distribution function are not known with certainty, we also solve the problem (8) using

parameters
³
α̂, β̂

´
that are different from the values (α, β) used to simulate the profiles.13

Since ML
³
X; α̂, β̂

´
is conditioned on the choice of

³
α̂, β̂

´
, it is not, strictly speaking,

a set of true ML estimators. In principle, both r and (α, β) should be estimated jointly, but

since maximizing the likelihood over both r and (α, β) would require a round of numerical

optimization at each of them! elements in L, this technique could only be used in applications
where m is quite small. In this study, we are obliged to solve (8) for each draw of the Monte

Carlo study, a task that requires m! evaluations of the likelihood function. Note also that

even if the true (α, β) were known, the properties ofML ( · ;α, β) could only be analyzed for
small values of m.

For β̂ = 0, the Kemeny and the ML rules coincide, but not when β̂ > 0,. Moreover, the

Condorcet order, when it exists, is not necessarily a most likely order in this more general

model.

Another likelihood-based rule is the minimum expected loss (MEL) estimator developed

in Gordon and Truchon (2007). However, since each application of the MEL rule involves

running an application of a Markov chain Monte Carlo algorithm, it is not yet feasible to

evaluate the ex ante risk of the MEL rule.

13The ML rule in Drissi and Truchon (2004) sets
³
α̂, β̂

´
= (α, β).
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3.2.4 The ISU-94 Rule

This is essentially rule 371 of the ISU Regulations of 1982 and 1994 - hence the name ISU-94.

Its definition involves four principles or criteria. When a principle has been applied, the next

one is used only if there remain ties between some competitors.

Formally, the first criterion is the median rank ρ (s) of each skater s, that is, the smallest

rank such that a majority of judges have placed skater s at one of the ranks 1, . . . , ρ (s)

(par. 1, 2, 6)14: the smaller the median rank the better. If two skaters, say s and t, obtain

the same median rank, one tries to break the tie by reverting to the numbers of judges nρ (s)

and nρ (t) who gave the median or a better rank to s and t respectively (par. 3): the more

the better. If this is not sufficient to break all ties, one then tries to do so by using the sum

of ranks of tied skaters according to the judges who gave the median rank or a better rank

to these competitors (par. 4). For skater s, this number is written as bρ (s): the smaller the

better. If there still remains some ties after applying this third criterion, one uses the sum of

ranks given to s by all judges (par. 5), or equivalently the Borda scores b (s), as a breaking

criterion. Finally, if all ties are not resolved after these four principles have been applied,

competitors who tie for a rank obtain the same rank (par. 10).

These criteria are defined as follows. First, given a profile X, let:

Ji (s) = {j ∈ J : xjs ≤ i} and ni (s) = |Ji (s)|

Then, ρ (s) = min
i∈{1,...,m}

i such that ni (s) >
|J |
2
=

n

2
,

Next, for the sake of simplicity, we write Jρ (s) = Jρ(s) (s) and nρ (s) = nρ(s) (s)

Finally, let bρ (s) =
P

j∈Jρ(s)
xjs and recall that b (s) =

P
j∈J

xjs.

Note that
b(s)

n
is the mean rank of skater s while

bρ(s)

nρ(s)
is the mean rank of skater s

according to the judges of Jρ (s) . Now, for each candidate s ∈ A, define the vector u(s) ∈ R4
by

u(s) = (ρ (s) , n− nρ(s) , bρ(s) , b(s))

and let ≤c be the lexicographic weak order15 on R4. We can now give the definition of the
ISU-94 rule.

14These are the paragraphs of rule 371 of the regulations. They are reproduced in Truchon (2004).
15Let us first define <c . For a, b ∈ RL, a <c b if ∃k ∈ {1, . . . , L} : ak < bk and al = bl ∀l < k.
Then, a ≤c b if either a = b or a <c b. The reader can check that ≤c is transitive.
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Definition 7 The ISU-94 rule is the function ISU94 : Ln → R defined by:

∀s, t ∈ A : ISU94
s (X) ≤ ISU94

t (X)⇔ u(s) ≤c u(t)

ISU94(X) is the ISU-94 ranking.

Note that if u(s) = u(t) for some s and t, then s and t obtain the same rank. Table 2

illustrates the computation of the four criteria of this rule.

Profile Criteria-94
s 1 2 3 4 5 ρ nρ bρ b
A 1 2 1 2 2 2 5 8 8
B 2 1 3 2 1 2 4 6 9
C 5 4 2 4 3 4 4 13 18
D 3 3 4 5 4 4 4 14 19
E 4 5 5 1 5 5 5 20 20

Final
s ranking
A 1
B 2
C 3
D 4
E 5

Table 2: Illustration of the ISU-94 rule

3.2.5 The ISU-98 Rule

This rule16 represents an important simplification with respect to the ISU-94 rule. Now,

skaters are first ranked according to the numbers of other skaters that they defeat according

to a majority of judges, or with whom they tie. The Borda rule is once again used to break

ties according to the first criterion.17

Formally, let µst : Ln → R, be a function defined for every pair of alternatives (s, t) and
every profile X, by:

µst(R) =

(
1 if

Pn
j=1 x

j
st ≥

Pn
j=1 x

j
ts

0 otherwise

Then, for each alternative s, let:

c∗(s) =
X

t∈A\{s}
µst(X)

16This rule is described and illustrated in Communication No. 997 of the ISU, available on the web site
www.isu.org.
17This combination of the Copeland and the Borda rules is all the more curious that they may rank

candidates in reverse orders. See Straffin (1980) and Moulin (1988, Exercice 9.1).

13



This number is the Copeland score of s. This is the number of alternatives over which s

gets a strict majority of votes or with which it ties.18 Let v(s) = (c∗(s) , b∗(s)) . The formal

definition of the ISU-98 rule is the following.

Definition 8 The ISU-98 rule is the function ISU98 : Ln → R defined by:

∀s, t ∈ A : ISU98
s (X) ≤ ISU98

t (X)⇔ v(s) ≥c v(t)

ISU98(X) is the ISU-98 ranking.

Put simply, skaters are first ranked according to their Copeland scores c∗(s). If two

skaters, say s and t, obtain the same Copeland score, one tries to break the tie by comparing

the Borda scores b∗(s) and b∗(t). Finally, if all ties are not resolved after the application of

these two criteria, that is, if v(s) = v(t) for some s and t, competitors who tie for a rank

obtain the same rank. Table 3 illustrates the application of this rule. Note that we use the

binary matrix
hPn

j=1 x
j
st

i
s,t∈A

as the starting point since we can easily compute the number

of wins under the majority rule from this matrix. Accordingly, b∗ instead of b is the breaking

criterion. Recall that b∗(s) + b(s) = mn.

Profile
s 1 2 3 4 5 6 7 8
A 1 5 1 4 3 3 3 3
B 2 2 3 3 5 2 4 1
C 3 4 4 1 1 4 5 2
D 4 3 2 5 2 5 1 4
E 5 1 5 2 4 1 2 5

Binary matrix Criteria-98
s A B C D E c∗ b∗

A 0 4 4 5 4 4 17
B 4 0 6 5 3 3 18
C 4 2 0 5 5 3 16
D 3 3 3 0 5 1 14
E 4 5 3 3 0 2 15

Final
s ranking
A 1
B 2
C 3
D 5
E 4

Table 3: Illustration of the ISU-98 rule

18Strictly speaking, the Copeland rule is defined with:

µst(X) =


1 if

Pn
j=1 x

j
st >

Pn
j=1 x

j
ts

1
2 if

Pn
j=1 x

j
st =

Pn
j=1 x

j
ts

0 otherwise

That is, a tie is given half the weight of a win. For the difference that it makes, see Truchon (2004).
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3.3 Loss functions

We use the family of parametric loss functions presented in Gordon and Truchon (2007):

dηθ (r, r̂) =
X
t∈A

ÃX
t∈A

γst (r, r̂)

!η

(m− rs + 1)
θ , η ≥ 0, θ ≥ 0 (9)

Note that d1,0 is the Kemeny metric. With the convention 00 = 0, d00 is the naive or

degenerate distance dN defined by

dN (r, r̂) =

(
κ if r̂ 6= r

0 if r̂ = r

for some κ > 0.

In order to get some intuition for plausible choices of η and θ, we consider the case where

there are m = 4 alternatives. The errors associated with incorrectly reversing the first- and

second-ranked, the second- and third-ranked and the third- and fourth-ranked alternatives

are presented in Table 4. In order to keep a common scale, the loss associated with reversing

the true order (that is, getting each of the 28 possible pairwise rankings wrong) is normalized

to 1. In our judgement, the combinations in bold reflect the most plausible range of variation

in the loss function parameters in (9), except maybe those for which η = 2; see Gordon and

Truchon (2007) for a more detailed discussion. However, we retain the combinations with

η = 2, in order to test for the robustness of the results to the value of η.We also include the

naive distance, represented by d00.

3.4 Simulation methodology

Without loss of generality, the simulations are done under the assumption that the true order

is r = (1, 2, . . . ,m) . Thus, we may drop r from fαβ( · |r) and dηθ (r, · ) , and write the risk
defined in (5), that is, the ex ante expected loss of an aggregation rule Γ, given fαβ and dηθ,

as:

ρ
¡
Γ; fαβ, dηθ

¢
=
X
X∈Ln

fαβ(X)dηθ (Γ (X)) (10)

Computing the risk in (10) associated with a given aggregation rule using purely ana-

lytical techniques requires evaluating fαβ(X) at every profile in Ln, and is only feasible for

low-dimension problems, that is, with a small number of alternatives and few judges. In this

study, we use Monte Carlo sampling techniques to estimate the population expectation in

(10). In each experiment, we choose:
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Parameters Ranking error
η θ 1st ↔ 2nd 2nd ↔ 3rd 3rd ↔ 4th

0.5 0.0 0.241 0.241 0.241
0.5 0.5 0.273 0.236 0.193
0.5 1.0 0.304 0.228 0.152
0.5 2.0 0.360 0.203 0.090
1.0 0.0 0.167 0.167 0.167
1.0 0.5 0.184 0.159 0.130
1.0 1.0 0.200 0.150 0.100
1.0 2.0 0.229 0.129 0.057
2.0 0.0 0.071 0.071 0.071
2.0 0.5 0.076 0.066 0.054
2.0 1.0 0.080 0.060 0.040
2.0 2.0 0.087 0.049 0.022

Table 4: Loss function parameters and implications for costs of errors

i) a number of alternatives m ∈ {3, 4, 5, 6, 7, 8, 9, 10, 12, 20},
ii) a number of judges n ∈ {3, 9},
iii) a combination of parameters for the probability function from Table 1,

iv) a combination of parameters for the loss function from those in bold in Table 4.

We then simulate K profiles from the chosen statistical model. More precisely, for each

voter j and each pair of alternatives (s, t) such that s < t, we draw u ∈ [0, 1] from a uniform
distribution. If u < pαβst , we set ν

j
st = 1 and νjts = 0. Otherwise, we set ν

i
st = 0 and νjts = 1.

Draws that do not correspond to an order are discarded. We repeat the process for each

judge, to obtain a profile X. Repeating K times yields a sample Ωαβmn.

In a second step, we apply the aggregation rules described in subsection 3.2, that is,

the ISU-94, the ISU-98, the Borda, and the Kemeny rules19 to each profile. With 3 to 6

(sometimes 7) alternatives, we also apply the maximum likelihood rule ML
³
· , α̂, β̂

´
.20 We

19The ISU-94, the ISU-98 and the Borda rules yields a unique ranking. However, there may be more than
one Kemeny order. In this case, the mean Kemeny ranking, defined in the Appendix, has been retained
when it existed. Otherwise, a ranking close to the Copeland ranking has been chosen.
20As is the case for the Kemeny rule, there may be more than one maximum likelihood order. The mean

maximum likelihood ranking has been retained when it existed. Otherwise, a ranking close to the chosen
Kemeny ranking has been retained. See the Appendix for more on this point.
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always start with
³
α̂, β̂

´
= (α, β) but we also try other values of β̂ to check for the robustness

of the rule.21 These four of five rules make up the set G.
Finally, for each rule Γg ∈ G and each loss function dηθ, we compute the statistic:

ρ̂(Γg;Ωαβmn, dηθ) =
1

K

X
X∈Ωαβmn

dηθ (Γg (X)) (11)

This statistic is a simulation-consistent estimator for the risk associated with a given ag-

gregation rule. The value of K is set so that the standard errors are below 1% (2% in one

subset of simulations) of their corresponding estimates.

Five sets of simulations were performed. In the first, the number of judges is 3 and the

number of alternatives ranges from 3 to 10 and then jumps to 12 and 20. The values of the

parameters for simulating the votes are α = 1.1 and β = 0.9. In the second, the number of

judges is raised to 9, as in figure skating, and the the number of alternatives ranges from

3 to 10 and 12. The third set is similar to the second, except that α = 1 and β = 0.3. In

the fourth set, β = 0 and three different values are used for α, namely 1.1, 2.2 and 0.4. The

number of alternatives ranges from 3 to 10 when α = 1.1 and from 3 to 6 otherwise. In the

last set, α = 0.4 and β = 1, that is, we go back to variable probabilities, but with a lower

competency for the judges. The respective characteristics of the five sets of simulations are

given in Table 5. Note that the fourth set is broken into three subsets.

21The set of maximizers of the likelihood function is invariant to a multiplication of
³
α̂, β̂

´
by a positive

scalar γ. Thus, we vary only β̂. However, the choice of the absolute values of the parameters α and β in the
vote generating function is not innocuous. The larger these values, the larger the probabilities of correctly
ordering two alternatives, the larger the probability that a judge selects the true ranking or at least a ranking
close to the true one, and the smaller the probability of a cycle in her vote.
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Set or subset 1 2 3 4.1 4.2 4.3 5

number of judges 3 9 9 9 9 9 9

number of alternatives 3-10, 12, 20 3-10, 12 3-10, 12 3-10 3-6 3-6 3-6

parameters of the

probability function

α = 1.1

β = 0.9

α = 1.1

β = 0.9

α = 1.0

β = 0.3

α=1.1

β=0

α=2.2

β=0

α=0.4

β=0

α=0.4

β=1

parameters of the

maximum likelihood rule

α̂ = 1.1

β̂ = 0.9

α̂ = 1.1

β̂=0.9,. . ., 3

α̂ = 1.0

β̂=0.3, 0.5

α̂=1.1

β̂=1

α̂=2.2

β̂=1

α̂=1.1

β̂=1

α̂=0.4

β̂=1, 3

number of alt. with

maximum likelihood rule
3-7 3-6 3-6 3-6 3-6 3-6 3-6

precision 1% 1% 1% 1% 2% 1% 1%

Table 5: Description of the simulations

4 The results in brief

In assessing the behavior of the different rules, four facts should be taken into account:

• ML (0) and the Kemeny rule coincide,

• ML
³
β̂
´
and the Borda rule coincide when β̂ = α̂, which, in our case, means β̂ = α,22

• the Kemeny and the ISU-98 rules are both Condorcet consistent, that is, they select
the Condorcet order when it exists;23 thus, we can expect them to give similar results,

• ML
³
β̂
´
should do best with β̂ = β and thus, ML be decreasing from 0 to β and

increasing afterward.

As it turned out, ML
³
β̂
´
did best, not only in the ML family, but against all other

rules, with a minor exception24. Because of the four facts mentioned above, the relative

position of the Borda, the Kemeny and the ISU-98 rules, in terms of expected loss, depends

on the relative values of α and β. So do the relative position of the Borda and the ISU-94

rules and the discrepancy between the Borda and theML (β) rules. A priori, we cannot say

much about the ISU-94 rule.

22This assertion is proved in Truchon (2006) under the hypothesis that a subset of most likely orders
that differ only by the permutation of adjacent alternatives, are replaced by a single ranking in which these
alternatives tie.
23It is well known that the Borda rule is not Condorcet consistent. The ISU-94 rule is not either. See

Remark 5 in Truchon (2004) for a proof.
24The exception is for the case (α, β) = (1.0, 0.3) and η = 2. See Table 11 in Appendix B. The explanation

is given there.
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Figures 1 to 4 illustrate four typical behaviors. Expected losses are those obtained for

six alternatives, nine judge and η = θ = 1. The figures have been drawn from a few values

of β̂, hence the lack of smoothness. From these figures, we note the following:

• When β (the rate of increase in the probability) is large, ML (0) is large compared to

ML (β) . Thus, the Kemeny and the ISU-98 rules give large and similar expected losses

sinceML (0) and the Kemeny rule coincide and since the Kemeny and the ISU-98 rules

are both Condorcet consistent. This is the case in Figures 1 and 2. The ISU-94 rule

fares better than the Kemeny and the ISU-98 rules in one case and slightly worst in

the other.

• When β is low, as in Figures 3 and 4, ML (0) is close to ML (β) . Thus, the Kemeny

rule yields an expected loss close to what ML (β) gives. As a consequence, it does

almost25 always better than the maximum likelihood rule. The ISU-98 rule is the only

one that does better but by a very small margin. Then, the chance is high that the

ISU-94 rule will give a larger expected loss, as is the case in these two figures. The

Borda rule does worst due to the facts that β < α and that ML is an increasing

function past β.

• When α and β are close to each other, as in Figure 2, the Borda rule fares well since

it has an expected loss close to ML (β) , which is the smallest of all. This leaves little

room for the other rules. Thus, the chances are that the two ISU and the Kemeny

rules give a much larger expected loss than all others, except ML
³
β̂
´
for values of β̂

far from β. This is what we observe in Figure 2.

• The Borda rule may also fare relatively well when β is much larger than α, as in Figure
1, provided that α is large enough, which it must be for the probability of correctly

ordering two alternatives to be larger than one half. The performance of the maximum

likelihood rule also appears to be robust to the value of β̂ above β.

• When α is much larger than β, as in Figures 3 and 4, the Borda rule yields a large

expected loss, compared to ML (β) . The reason is that the Borda rule coincides with

ML (α) but, when β̂ reaches α, the expected loss given by ML has increased by a

large amount. Typically, all other rules will do better than Borda, except ML
³
β̂
´
for

β̂ > α.

25The rare exceptions seem to be due to the different handling of multiple Kemeny and most likely orders.
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Appendix B presents a full description of the simulations. Here are a few additional

points that are worth mentioning here.

• The few simulations that were done with three judges generated results that are

sometimes quite different from those obtained with nine judges. For example, with

(α, β) = (1.1, 0.9) and less than 6 alternatives, the Borda rule produces the largest

expected loss of all rules. Its performance improves as the number of alternatives

increases. With 8 alternatives and more, it becomes the best rule.

• Setting η = 2 improves the performance of the Borda rule. The reason is that most

errors under the Borda rule consist in declaring ex aequo two adjacent alternatives in

the true order and that kind of error is worth a penalty of 1
2
compared to 1 for an

inversion. These penalties entering the function ( · )η , the result is a lower expected
loss with η = 2 than with η = 1.

• Except for the Borda rule, the value of θ has an important impact on the expected
losses but not on the rankings of the rules in terms of these losses. This may be an

indication that, under all rules, most errors involve essentially the same alternatives

or close alternatives in the true order. Increasing θ from 1 to 2 is often beneficial to

the Borda rule. This is an other indication that this rule often produces ties between

alternatives.

5 Conclusion

If it is supposed that a true social order exists, but that individual voters observe it with

error, then the social choice problem is one of optimal inference. This study - along with

the companion paper of Gordon and Truchon (2007) - formalises and extends Condorcet’s

framework in two directions. Firstly, we make the choice-theoretic nature of the problem

more explicit by specifying a loss function that describes the consequences of choosing an

incorrect social ranking. Secondly, we extend the usual constant-probability case to one in

which voters find it easier to distinguish alternatives that are far apart, and more difficult

to correctly order similar alternatives.26

This study develops a statistical procedure for the ex ante evaluation of vote aggrega-

tion rules. In our Monte Carlo application, we specify both the distribution function that

26In Gordon and Truchon (2007), there is actually a third extension that consist in taking into account the
possibility that judges may have a bias for alternatives with certain features, such as a shared nationality.
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generates individual votes and a loss function that can be used to evaluate the expected loss

associated with a given decision rule.

We find that the maximum likelihood (ML) rule, with the correct form and the true

parameters of the vote distribution function, generally outperforms its competitors, that is,

the Borda, the Kemeny and two rules that have been used for many years in figure skating.

Moreover, ML seems to be somewhat robust to the value of β̂ when α is small. However, its

feasibility in real-world applications, where the form and the parameters of the distribution

function are not known, is limited. In addition, the computational burden forbids the use of

ML with a large number of alternatives, such as in figure skating.

The performance of the other rules varies considerably with the value of the parameters

of the probability function used to generate the votes. For example, the Borda rule does

well with increasing probabilities but poorly with constant probabilities. It appears that no

single vote aggregation rule can be expected to perform best in all circumstances.
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Figure 1: Typical expected losses as a function of β̂ when α = 0.4 and β = 1
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Figure 2: Typical expected losses as a function of β̂ when α = 1.1 and β = 0.9
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Figure 3: Typical expected losses as a function of β̂ when α = 1 and β = 0.3
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Figure 4: Typical expected losses as a function of β̂ when α = 1.1 and β = 0
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Appendices

A Finding Kemeny orders and choosing among them

Finding a Kemeny order by considering all possible permutations of the skaters, as the
definition suggests, may prove prohibitive when the number of competitors is large as in figure
skating. There are many contributions in the literature that address this specific problem.27

Whatever the method used, Truchon (2004) shows that one way to ease the task it to break
the problem into many subproblems, using an extension of Condorcet Consistency that he
calls the Extended Condorcet Criterion (XCC). In essence, this criterion says that if the set
of alternatives can be partitioned in such a way that all members of a subset of this partition
defeat all alternatives belonging to subsets with a higher index, then the former should obtain
a better rank than the latter. Such a partition is called a Condorcet partition. The finest
Condorcet partition can be found by first ordering alternatives according to another rule that
satisfies XCC, such as the Copeland rule. For most practical applications, a Kemeny order
on each subset of the finest Condorcet partition can be found by simple enumeration. Then,
a complete Kemeny order is obtained by juxtaposing the Kemeny orders on the subsets of
the partition. This is the approach adopted in our study. However, this approach does not
extend to theML rule since this rule does not satisfy XCC. For this reason, we have to limit
the number of alternatives to 6 or 7 when applying this rule.
The Kemeny rule may yield more than one order. This occurrence can sometimes be

resolved by reverting to the concept of the mean Kemeny ranking also taken from Truchon
(2004). Given a set of Kemeny orders

©
r̂1, . . . , r̂k

ª
, consider the weak order r̃ defined by:

∀s, t ∈ A : r̃s ≤ r̃t ⇔
kX

q=1

r̂qs ≤
kX

q=1

r̂qt

This weak order is a ranking according to the mean ranks of alternatives over all Kemeny
orders. It will be called the mean Kemeny ranking if and only it weakly agrees with at least
one order in

©
r̂1, . . . , r̂k

ª
, that is, if there exists an order r̂q ∈ ©r̂1, . . . , r̂kª such that:

∀s, t ∈ A : r̂qs < r̂qt ⇒ r̃s ≤ r̃t

We may define a mean ML ranking in a similar manner.

27Several of these contributions are based on mathematical programming. See Truchon (2004) for some
references.
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B Description of the results

The complete results of the simulations, that is, the expected losses, are available upon re-
quest from the authors. Here, we only present the main highlights of these results. There are
five subsections corresponding to the five sets of simulations. In the tables of this appendix,
the notation Y ≺ Z stands for rule Y yields a lower expected loss than rule Z, Y ∼ Z means
that the expected losses are the same under Y and Z, and B,K, I94, I98 represent the Borda,
the Kemeny, the ISU-94 and the ISU-98 rules respectively. ML represents the maximum
likelihood rule with

³
α̂, β̂

´
= (α, β) whileML

³
β̂
´
represents the same rule for the specified

value of β̂ and for α̂ = α.

B.1 Simulations with three judges and (α, β) = (1.1, 0.9)

The main highlights of these simulations are:

• Save the Borda rule, increasing η has a relatively small effect on the expected loss.
This is an indication that most errors consist in inverting adjacent alternatives in the
true order.

• In the case of Borda, the impact of increasing η is also small but it goes in the reverse
direction. It causes the expected error to decrease. This is a confirmation that most
errors consist in declaring ex aequo two adjacent alternatives in the true order. Recall
that tying two adjacent alternatives is worth a penalty of 1

2
compared to 1 for an

inversion, hence the decrease in the size of the error as the parameter η increases.

• The Borda rule always produces the largest proportion of erroneous rankings. This
translates into the worst expected loss for this rule when (η, θ) = (0, 0) or (1

2
, 1). But,

for η = 2, the expected loss is always smaller under this rule than under any other
rule, for the reason given above.

• Table 6 shows the relation between the different rules for the other values of the para-
meters, that is, (η, θ) = (1, 0) ,

¡
1, 1

2

¢
, (1, 1) , (1, 2) .

• From this table, one can note that, for 3 alternatives, all rules other than Borda give
the same expected losses.

• With the number of alternatives ranging from 4 to 7, the expected loss is always smaller
under the maximum likelihood rule than under any other rule. This was to be expected
since this rule incorporates the hypothesis used in generating the profiles.
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Alternatives Relations between rules

3 ML ∼ I98 ∼ I94 ∼ K ≺ B

4-5 ML ≺ I98 ≺ I94 ≺ K ≺ B

6 ML ≺ I98 ≺ B ≺ I94 ≺ K

7 ML ≺ B ≺ I98 ≺ I94 ≺ K

8-20 B ≺ I98 ≺ I94 ≺ K

Table 6: Relation between different rules in terms of expected loss with 3 judges and η = 1

• As we increase the number of alternatives, the Borda rule gets a better position with
respect to the other rules. The relation between the other rules does not change. Given
that the ISU-98 and the Kemeny rules are both Condorcet consistent while the ISU-94
is not, the fact that the ISU-94 rule gives expected losses between those obtained with
the two others is somewhat puzzling. However, it must be said that the two ISU and
the Kemeny rules produce results that are not markedly different from one another.

• In terms of the naive distance, the order between the two ISU and the Kemeny rules
is not always the one described above. This is also often the case with η = 1

2
. This

illustrates the usefulness of a more subtle distance between rankings.

• For (η, θ) = ¡2, 1
2

¢
, (2, 1) , (2, 2) , the relations of Table 6 are changed by simply moving

the Borda rule at the head.

• Increasing θ has an important impact on the expected losses but not on the rankings
of the rules in terms of these losses.

• The expected loss under all loss functions increases with the number of alternatives
as there is more scope for errors from the judges. The standard error also increases
with the number of alternatives but not in proportion to the expected loss, especially
for the naive distance. As a consequence, the size of the sample to meet 1% precision
decreases with the number of alternatives.

• Table 7 gives the theoretical probabilities of cycles (rounded to 3 digits) for 3 to 10
alternatives and the observed fractions of cycles in the simulations.28 As expected,
they are close to each other. For 12 alternatives, we give only the observed fractions
of cycles since computing the theoretical probability is prohibitive in this case.

28The theoretical probability of a cycle is 1 minus the sum of the probabilities over the set of orders.
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Number of alternatives 3 4 5 6 7 8 9 10 12

Probability of cycles 0.122 0.273 0.411 0.527 0.622 0.698 0.759 0.8075

Frequency of cycles 0.121 0.274 0.409 0.527 0.622 0.698 0.759 0.8081 0.878

Table 7: Probabilities and empirical frequencies of cycles with α = 1.1, β = 0.9

B.2 Simulations with nine judges and (α, β) = (1.1, 0.9)

The main highlights of these simulations and the main differences with those of three judges
are:

• The expected losses are markedly smaller than the corresponding losses with three
judges. Condorcet (1785) showed that the larger the number of judges, the higher the
probability that the majority rule under the binary approach yields the true order.
In as much as the ISU-98, the Kemeny and the maximum likelihood rules respect the
view of the majority on each pair of alternatives when these views are consistent, these
results are not surprising at least for these rules.

• The standard errors are also smaller than the corresponding ones with three judges
but the diminution is not as marked as it is for the means. Hence, larger samples have
been required to meet 1% precision.

• The behavior of the Borda rule with respect to the parameter η is similar to what we
observed with three judges. It is also similar for the other rules, except that, this time,
the ISU-94 rule behaves more like the Borda rule, producing a lower expected loss as
η increases. This is an indication that, with these two rules, most errors consist in
declaring ex aequo two adjacent alternatives in the true order.

• For less than seven alternatives, the maximum likelihood rule has been applied with
more than one pair of values for the parameters. This allows us to test for the robustness
of this rule with respect to its parameters.

• Table 8 shows the relation between the rules for (η, θ) = (1, 0) , ¡1, 1
2

¢
, (1, 1) , (1, 2) .

• For (η, θ) = ¡2, 1
2

¢
, (2, 1) , (2, 2) , the relations of Table 8 are changed by simply moving

the Borda rule at the head in the cases of 3 to 6 alternatives.

• It can be observed that, when applied, the maximum likelihood rule with
³
α̂, β̂

´
=

(α, β) gives expected losses smaller than any other rule. However, its performance
deteriorates as β̂ is increased above β.
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Alternatives Relations between rules

3 ML (0.9) ≺ B ≺ML (1.5) ≺ I94 ≺ I98 ≺ K ≺ML (1.75) ∼ML (2)

4 ML (0.9) ≺ B ≺ I94 ≺ML (2) ∼ML (2.5) ≺ I98 ≺ K ≺ML (3)

5 ML (0.9) ≺ B ≺ML (1.5) ≺ I94 ≺ I98 ≺ K ≺ML (1.75)

6 ML (0.9) ≺ B ≺ML (2) ∼ML (2.5) ≺ I94 ≺ I98 ≺ K ≺ML (3)

7-10, 12 B ≺ I94 ≺ I98 ≺ K

Table 8: Relation between different rules in terms of expected loss, α = 1.1, β = 0.9, η = 1

• With 3 and 5 alternatives and β̂ = 1.5, the maximum likelihood rule gives a better
result than all other rules, save the Borda rule. With β̂ = 1.75, the expected loss under
the maximum likelihood rule becomes worst than under all other rules. With 4 and 6
alternatives, we have the same kind of pattern but with β̂ = 2.5 and 3 instead of 1.5
and 1.75 respectively. Thus, the deterioration of the maximum likelihood rule arises
for a larger value of β̂. It would be interesting to know if this difference is typical of the
odd and even numbers of alternatives but we did not apply the maximum likelihood
rule for larger numbers of alternatives.

• Turning to larger numbers of alternatives (≥ 7), the ISU-94 rule does slightly better
than the ISU-98 and the latter does slightly better than the Kemeny rule. This order
is different from the one observed with three judges. However, the differences are not
marked, specially between the ISU-98 and the Kemeny rules.29 Again, these two rules
being Condorcet consistent, it is not surprising that they give similar results. What
is more surprising is that the ISU-94 does better. Note that the relation between the
rules also holds for (η, θ) = (1

2
, 1) when there are more than six alternatives. This is

not the case with the naive distance.

• Increasing θ has again an important impact on the expected losses but not on the
rankings of the rules in terms of these losses.

• For 3 alternatives, different rules give different expected losses, contrary to what we
had with 3 judges.

• What was said about expected losses, standard errors and the size of the samples with
respect to the number of alternatives, with three judges, remains true with nine judges.

29However, the difference in the expected losses is, most of the time, significant with a high degree of
confidence.
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• The theoretical probabilities of cycles are of course the same and the empirical fre-
quencies sensibly the same.30

B.3 Simulations with nine judges and (α, β) = (1.0, 0.3)

The main highlights of these simulations and the main differences with the preceding are:

• The competency of the judges being lower, their votes are more erratic, resulting in
larger expected losses, roughly twice as large as those obtained with (α, β) = (1.1, 0.9) .

• The standard errors are also larger but the increase is not as marked as it is for the
means. Hence, smaller samples have been required to meet 1% precision.

• As a result of the lower competency of the judges, the theoretical probabilities of cycles
and the empirical frequencies are considerably larger.31 See Table 9.

Number of alternatives 3 4 5 6 7 8 9 10 12

Probability of cycles 0.171 0.428 0.657 0.815 0.908 0.957 0.980 0.992

Frequency of cycles 0.171 0.427 0.656 0.815 0.908 0.956 0.981 0.992 0.999

Table 9: Probabilities and empirical frequencies of cycles with α = 1, β = 0.3

• Table 10 shows the relation between the rules for (η, θ) = (0, 0) , ¡1
2
, 1
¢
, (1, 0) ,

¡
1, 1

2

¢
,

(1, 1) , (1, 2) . Here, ML
³
β̂
´
represents the maximum likelihood rule for the specified

value of β̂ and for α̂ = 1.

• The ∗ indicate exceptions:

— For 4 to 6 alternatives and the pair (η, θ) = (0, 0) , the relation betweenML (0.5)

and I94 is inverted.

— For 9 alternatives and the pairs (1, 0) ,
¡
1, 1

2

¢
, the relation between I94 and B is

inverted.

— For 10 and 12 alternatives and the pairs (1, 0) ,
¡
1, 1

2

¢
, (1, 1) , the relation between

I94 and B is inverted.

30To give an example of the impact of the possibility of cycles in individual rankings, with 9 judges and
10 alternatives, close to 5 millions of binary matrices have been drawn in order to obtain 105 000 polls of
consistent rankings (orders).
31As a result, with 12 alternatives, more than 209 millions of binary matrices have been drawn in order

to obtain 33 000 polls of consistent rankings (orders).
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Alternatives Relations between rules

3 ML (0.3) ≺ I98 ≺ K ≺ML (0.5) ≺ I94 ≺ B ≺ML (1.5)

4-6 ML (0.3) ≺ I98 ≺ K ≺ML (0.5) ≺∗ I94 ≺ B ≺ML (1.5)

7-8 I98 ≺ K ≺ I94 ≺ B

9-10, 12 I98 ≺ K ≺ I94 ≺∗ B

Table 10: Relation between different rules in terms of expected loss, α = 1, β = 0.3, η 6= 2

• There is a striking difference between the above relations and those of Table 8 obtained
with (α, β) = (1.1, 0.9) . The Borda rule, which was the second best performer, after

the maximum likelihood rule with
³
α̂, β̂

´
= (α, β) , is now the worst. The ISU-94 rule

also gives worst results and becomes the second worst.

• Again, when applied, the maximum likelihood rule with
³
α̂, β̂

´
= (α, β) gives expected

losses smaller than any other rule. However, its performance deteriorates as β̂ is
increased above β. It becomes worst than Kemeny with β̂ = 0.5 and worst of all with
β̂ = 1.5.

• Table 11 shows the relation between the rules for (η, θ) = ¡2, 1
2

¢
, (2, 1) , (2, 2) .

Alternatives Relations between rules

3 ML (0.5) ≺ B ≺ML (0.3) ≺ I98 ≺ K ≺ I94 ≺ML (1.5)

4-6 ML (0.5) ≺ML (0.3) ≺ I98 ≺ K ≺ B ≺ I94 ≺ML (1.5)

7 I98 ≺ K ≺ B ≺ I94

8-10, 12 B ≺∗ I98 ≺ K ≺ I94

Table 11: Relation between different rules in terms of expected loss, α = 1, β = 0.3, η = 2

• There are two exceptions as indicated by the ∗ : For 9 and 12 alternatives and (η, θ) =
(2, 2) , the relation between B and I98 is inverted.

• With η = 2 instead of 1, the performance of the Borda rule improves. This rule jumps
to the first place for 8 alternatives and more. The improvement is marginal for 4 to 7
alternatives. The performance of ML (0.5) also improves to the point of becoming the
best of all, even better that ML (0.3) .
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• The reason for the better performance ofML (0.5) and B when η = 2 is due to the fact
that these two rules produce more ties than the other rules. For example, in the case
of 3 alternatives, the first 200 profiles produced more errors in the ML (0.5) ranking
than in ML (0.3) but 3 of the errors under ML (0.5) were ties while there were no ties
under ML (0.3) . Since the penalty entering the function ( · )η is 1

2
for a tie instead of

1, the result is a lower expected loss with η = 2 than with η = 1.

B.4 Simulations with nine judges and a constant probability

In the preceding subsections, we saw that the maximum likelihood rule with
³
α̂, β̂

´
= (α, β)

does better than the Kemeny rule, with the minor exception mentioned in the last point
above. Recall that the Kemeny rule is the maximum likelihood rule with β̂ = 0. However,
increasing β̂ above β causes the performance of the maximum likelihood rule to deteriorate.
At some point, it becomes worst than that of the Kemeny rule. We now examine three
subsets of simulations where votes are generated with constant probabilities, that is, β = 0.

Simulations with a constant probability of 0.75

In the first subset of simulations, the votes have been cast with α = 1.1 and β = 0. This
means that the probability of correctly ordering two alternatives is 0.75, the same as the
probability of correctly ordering two adjacent alternatives with α = 1.1 and β = 0.9. The
maximum likelihood rule has been applied with α̂ = 1.1 and β̂ = 0.1, 0.3, 0.5, 1.0. The
main highlights of these simulations and the main differences with the preceding are:

• Keeping the probability constant means that judges vote in a more erratic way, which
translates into larger expected losses compared to those with α = 1.1 and β = 0.9.

With 3 alternatives, the expected losses are almost twice as large as those with in-
creasing probabilities. The deterioration is slightly worst for the Borda rule. With 6
alternatives, they are more than twice as large, and almost three times for the Borda
rule.

• Except for the case of three alternatives, expected losses are also larger than those
obtained with α = 1 and β = 0.3 and the difference increases with the number of
alternatives. The increase is more marked for the Borda rule. For three alternatives,
expected losses under the Borda rule are also larger than those obtained with α = 1

and β = 0.3 but they are smaller for all other rules.
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• For 4 to 6 alternatives, the relation between the rules, in terms of expected loss, is the
following for all values of η and θ, with two minor exceptions:

I98 ≺ K ≺ML (0.3) ≺ML (0.5) ≺ I94 ≺ML (1) ≺ B ≺ML (1.2)

The two minor exceptions concern the relation I98 ≺ K in the case of 4 alternatives.
It becomes I98 ∼ K when η = 0 and K ≺ I98 when η = 1

2
.

• For 3 alternatives, this relation is changed by movingML (0.3) ahead of K when η = 2
and by having both rules tie when η = 1.

• Introducing ML (0.1) into the picture has the following impact. In the case of 3
alternatives,ML (0.1) gives exactly the same expected loss asK. For 4 to 6 alternatives,
ML (0.1) comes between I98 and K and sometimes before I98 depending on the values
of η and θ.

• Thus, contrary to what was to be expected, the maximum likelihood rule with a low
value of β̂ (0.1 or 0.3) gives a slightly better result than the Kemeny rule. As far as
we can see, this is due to the handling of multiple rankings produced by the two rules.
However, the performance of the ML rule gets worst as β̂ increases. With β̂ = 0.5, it
is still better than that of the ISU-94 rule but it gets worst than the latter, yet with
β̂ = 1, it remains better than the Borda rule.

• For 7 to 10 alternatives, the relation is

I98 ≺ K ≺ I94 ≺ B

except that I98 Â K when there are 7 and 8 alternatives.32

• The above relations are similar to those obtained with (α, β) = (1.0, 0.3) and η = 1.

The striking fact is that they remain the same with η = 2, due to the bad behavior of
the Borda rule.

Simulations with a constant probability of 0.9

In the second subset, the votes have been cast with α = 2.2 and β = 0, that is, with a
constant probability of 0.9. This high probability results in more votes that are identical to

32In the case of 9 alternatives, half a billion of binary matrices have been drawn in order to obtain 36 000
polls of consistent rankings (orders). For 10 alternatives, only 2 278 polls have been generated after four
days of computing, due to the very high frequency of cycles. Hence, the precision is only 3.4%.
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the true order. As a result, all rules select the true order most of the time. The fraction
of erroneous rankings is less than 1%, with one exception. The Borda rule is again and by
far the worst performer. The maximum likelihood rule has been applied with α̂ = 2.2 and
β̂ = 1 or, equivalently, α̂ = 1.1 and β̂ = 0.5. Thus, the rate of increase in the probabilities
is weak. Yet, in all cases, the Kemeny rule gives a lower expected loss than the maximum
likelihood rule. The relation between the rules in terms of expected losses is the following
for the four numbers of alternatives considered and all values of η and θ :

I98 ∼ K ≺ML (0.5) ≺ I94 ≺ B

This relation indicates that the Kemeny and the ISU-98 rules give expected losses that are
equal or not significantly different. The explanation is straightforward. Most votes being
identical to the true order, there is a Condorcet order with most profiles and both rules being
Condorcet consistent, select this order.
This subset of simulations has been done with a precision of 2% instead of 1%. As

remarked before, the lower the expected loss, the larger the number of profiles required
to achieve a given degree of precision. The reason is that the variance does not decrease
proportionally to the expected loss. In this case, more than one million of draws have been
necessary to achieve a precision of 2%. These numbers would have had to be multiplied by
4 to achieve a precision of 1%.

Simulations with a constant probability of 0.6

In the third subset, the votes have been cast with α = 0.4 and β = 0, that is, with a
constant probability of 0.6. This means that the competency of the judges in assessing the
true order is very low. As a result, all rules do badly in terms of the expected losses. One
cannot ask rules to aggregate bad votes into something close to the true order. With three
alternatives, all rules miss the true order more than 50% of the time. With six alternatives,
this percentage is higher. With the naive distance, the relation between the rules is:

I98 ≺ K ≺ML (1) ≺ I94 ≺ B

However, this relation varies when a more general distance is used and it also changes with
the values of the parameters. In short, everything is more erratic in this case.

B.5 Simulations with nine judges and (α, β) = (0.4, 1)

In the preceding subsection, we saw that lowering β could have a non-negligible impact on
the relative performances of the rules. The impact was most important for the Borda rule,
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whose performance passed from one of the best to the worst when β was set to 0. We now
examine what happens when α is decreased while β retains the same value. We report the
results of simulations with α = 0.4 and β = 1. This amounts to a lower competency for the
judges. Again, the number of judges is 9 and the number of alternatives ranges from 3 to 6.
The maximum likelihood rule has been applied with

³
α̂, β̂

´
= (α, β) = (0.4, 1) but also

with
³
α̂, β̂

´
= (0.4, 3) , (0.4, 0.2) , (0.4, 0.6) . The most striking fact about the results is that,

not only did the maximum likelihood rule perform better than all other rules, except when
η = 2, but this performance appears to be robust to the choice of the parameters, as long as
β̂ > α. Setting β̂ = 3 increases the expected loss under the maximum likelihood rule only
slightly without changing the relative position of this rule with respect to others. Setting
β̂ = 7 produces the same expected losses as β̂ = 3. For β̂ < α, ML does worst than B. This
was to be expected since ML and B are identical when β̂ = α. The relation between the
rules, in terms of expected losses when η 6= 2, is now:

ML (1) ≺ML (3) ≺ML (0.6) ≺ B ≺ML (0.2) ≺ I94 ≺ I98 ≺ K

When, η = 2, Borda takes the head. The reason is again that ties get a penalty of 1
2
. This

is not very different from what we had with α = 1.1, β = 0.9. The main difference is again
the robustness of the maximum likelihood rule with respect to the choice of the parameters
α̂ and β̂.
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