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Abstract:  
Some researchers have addressed the problem of aggregating individual 
preferences or rankings by seeking  a ranking that is closest to the individual 
rankings. Their methods differ according to the notion of distance that they use. The 
best known method of this sort is due to Kemeny. The first part of this paper offers a 
brief survey of some of these methods. Another way of approaching the aggregation 
of rankings is as a problem of optimal statistical inference, in which an expected loss 
is minimised. This approach requires a loss function, a concept closely related the 
notion of distance between rankings. The second part of this paper examines two 
classes of parametric functions and proposes one class for the optimal statistical 
inference problem. 
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1 Introduction

The question of how best to aggregate individual preferences or rankings is one of the oldest

and best-known in the social sciences. Some researchers have addressed the issue by seeking

a ranking that is ‘closest’ to the individual rankings. Their methods differ according to the

notion of distance that they use. The best known method of this sort is due to Kemeny

(1959). Other methods are due to Bogart (1975), Cook and Seiford (1978), and Cook and

Seiford (1982). The first part of this paper offers a brief survey of some of these methods.

Another way of approaching the aggregation of rankings is as a problem of optimal

statistical inference, in which an expected loss is minimised. This approach requires a loss

function, a concept closely related to the notion of distance between rankings. The second

part of this paper examines two classes of parametric functions and proposes one class for

the optimal statistical inference problem.

This approach can be traced back to Condorcet (1785), whose objective was to justify

the majority principle. It may be cast as follows. There is a true or objective order on the

set of candidates. If a panel of judges is asked for their opinion about the true order, they

may not come out with the correct answer because they are imperfect observers. However, if

they are right more often than they are wrong, then the opinion of the majority yields a most

probable order. As the number of judges increases, the opinion of the majority converges to

the true order.

Condorcet’s rigorous formulation of this proposition is one of the earliest applications of

the calculus of probability and of the maximum likelihood approach to inference. He assumed

that every voter chooses the best of two alternatives with a probability larger than one half,

and that this judgment is independent between pairs and voters. If the binary relation

obtained by applying the simple majority rule to each pair of alternatives is consistent, then

it is the solution to the problem, that is, the most probable order.

Condorcet was perfectly aware that the binary relation resulting from his procedure may

contain cycles, a phenomenon sometimes referred to as the Condorcet paradox. He proposed

a method for breaking these cycles but unfortunately this method gives consistent results

only for the case of three alternatives. Young (1988) shows that a correct application of the

maximum likelihood principle leads to the selection of the Kemeny orders. When it exists,

that is, in the absence of cycles in the majority relation, the Condorcet ranking is the unique

Kemeny ranking.
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Drissi and Truchon (2004) relax the assumption that the probability of comparing cor-

rectly two alternatives is the same for any pair of alternatives. They let the probability

increase with the distance between two alternatives in the allegedly true ranking, thus allow-

ing for the possibility that it may be more difficult to correctly rank two alternatives that

are ‘close’ than two that are far apart in the true ranking. They postulate a two-parameter

probability function to represent the competence of the judges and they analyze the behav-

iour of the resulting maximum likelihood rule as a function of these parameters. A most

likely order is not necessarily a Kemeny order.

From the point of view of statistical decision theory, the maximum likelihood approach

assumes implicitly that all errors with respect to the true order have the same weight. For

example, if the true order on the set {a, b, c, d} is abcd, this loss function says that choosing
dcba and abdc are equally costly. Yet, it is unlikely that a decision maker would view reversing

the last two candidates as being as serious an error as reversing the entire ranking. Gordon

and Truchon (2007) formalise and make explicit the optimal inference problem facing the

decision maker by introducing a loss function in the aggregation problem. The objective is

then to find a ranking that minimises the expected loss.

The loss function is also the key concept in Truchon and Gordon (2006), who take the

point of view of a decision maker who must adopt an aggregation rule that will be used over

a long period. Having a loss function and a probabilistic model of the individual rankings,

she can compute the ex ante expected loss, or the risk, of a given aggregation rule. She

can choose a rule on this basis. Truchon and Gordon perform these computations for five

aggregation rules.

The distances surveyed in the first part of this paper could be used as loss functions in an

expected loss approach. However they have a serious drawback: all errors of the same kind

are assigned the same loss whether they concern a top ranked or a bottom ranked alternative

in the reference order. Going back to the above example, bacd and abdc would have the same

loss with respect to the true order abcd.

In many situations, an error on a bottom ranked alternative in the true ranking would be

of less consequence than the same error on a top ranked alternative. In the second part of

the paper, we define, discuss, illustrate and compare two classes of parametric functions that

offer much latitude in this respect. They also allow for some forms of concavity or convexity,

as one may wish. The second class, which is an extension of the Kemeny metric on the set

of rankings, is the class of loss functions used by Gordon and Truchon (2007) and Truchon

and Gordon (2006).
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We start with the definition of the aggregation problem. We then present a survey of

some distance-based aggregation rule. The two classes of loss functions are discusses in the

last section.

2 The aggregation problem

Let A = {1, 2, . . . ,m} be a set of alternatives or candidates to be ranked. We denote by B
the set of binary relations on A, by B∗ be the set of complete and asymmetric binary relations
on A, by R the subset of complete weak orders or rankings (reflexive and transitive binary

relations) on A and by L the subset of linear orders (complete, transitive and asymmetric
binary relations) on A. Note that L ⊂ R ⊂ B and L ⊂ B∗ ⊂ B.1 A complete weak order on
A can be represented by a vector r = (r1, r2, r3, . . .) or x = (x1, x2, x3, . . .) where r1 and x1

are the rank of alternative 1, r2 and x2 the rank of 2, and so on.2

Let there be a set J = {1, 2, . . . , n} of voters or judges. Each judge j has a weak order
xj ∈ R, also called a vote, on the set A. Equivalently, a vote xj can be represented by an
(m×m) binary matrix Xj =

£
xjst
¤
s,t∈A where:

xjst =

(
1 if s 6= t and xjs ≤ xjt

0 otherwise

Conversely, given a binary representation Xj of a weak order, we get the representation xj

by setting xjs = m−Pm
t=1 x

j
st. We shall use the two representations interchangeably.

3

A profile of votes is an array X = (x1, . . . , xn) ∈ Rn. A profile may also be written in the

binary form X = (X1, . . . , Xn) . Once the voters or judges have cast their votes, the problem

is to aggregate these votes into a final ranking. We formalize this idea in the following

definition.

Definition 1 An aggregation rule is a correspondence Γ : Rn → R that assigns to each

profile R, a final ranking or a subset of final rankings Γ(X) of the alternatives. Γs(X)

represents the rank of alternative s in the final ranking Γ(X) .

1Withm alternatives, the cardinality of B∗ and L are 2m(m−1)
2 andm! respectively. The difference between

the two is the number of cyclic binary relations in B∗.
2Throughout, we shall use r to represent the true order on A and x to represent a vote on A.
3There is an abuse of notation in using xs to represent elements of a vector and xst to represent elements

of a matrix but, given the one-to-one correspondence between the xj and the Xj , this should entail no
confusion. Naming both judges and alternatives as 1, 2, 3, . . . is also an abuse of notation but this allows for
simpler notations in the remaining of the paper.
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Before embarking on the presentation of genuine aggregation rules, let us consider the

correspondence M : Rn → B defined by sM(X) t ⇔ Pn
j=1 x

j
st >

Pn
j=1 x

j
ts. The binary

relationM (X) is the majority relation issued from profile X. This relation is not necessarily

transitive: it may contain cycles. It is not necessarily complete either except when n is odd.

Thus, M is not an aggregation rule. Yet, if M (X) is a linear order, it is of special interest.

Definition 2 Given a profileX, ifM (X) is a linear order, it is called the Condorcet ranking.

AlthoughM is not necessarily an aggregation rule, it is often considered as desirable that

an aggregation rule gives a result that agrees with the Condorcet ranking whenever possible.

This prompts the following definition.

Definition 3 An aggregation rule Γ : Rn → R has the Condorcet property or is Condorcet

consistent if Γ (X) =M (X) for every profile X such that M (X) is a linear order.

3 Distance-based aggregation rules

Suppose that we are given a metric d on R, that is, a function d : R2 → R satisfying the
three following axioms:

Axiom 1 Given r, r̂ ∈ R, d (r, r̂) ≥ 0 and d (r, r̂) = 0 if r = r̂.

Axiom 2 Given r, r̂ ∈ R, d (r, r̂) = d (r̂, r) .

Axiom 3 Given r, r̃, r̂ ∈ R, d (r, r̂) ≤ d (r, r̃) + d (r̃, r̂).

Given d, let us define the function δ : Rn+1 → R by:

δ (r,X) =
nX

j=1

d
¡
r, xj

¢
δ (r,X) is a “distance” between profile X and the weak order r. Given a metric d on R
and its derived “distance” δ between orders and profiles, we can define an aggregation rule

Γδ : Rn → R by:

Γδ(X) = argmin
r∈R

δ (r,X)

Several rules of this sort have been proposed in the literature. One of them is the well known

Kemeny rule.
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3.1 The Kemeny Rule

The first metric for weak orders has been proposed by Kemeny and Snell (1962). They

derive this metric from the following axioms, in addition to the usual axioms of a metric.

Kemeny (1959) gave a summary of the results of Kemeny and Snell before the publication

of the book. One of their axioms involves the following notion of betweenness.

Definition 4 (Kemeny-Snell) Given r, r̃, r̂ ∈ R, one says that r̃ is between r and r̂ and one

writes [r, r̃, r̂] if ∀s, t ∈ A : r̃s < r̃t ⇒ rs < rt or r̂s < r̂t and r̃s = r̃t ⇒ (rs − rt) (r̂s − r̂t) ≤ 0.

Axiom 4 Given r, r̃, r̂ ∈ R, d (r, r̂) = d (r, r̃) + d (r̃, r̂) whenever [r, r̃, r̂] .

Axiom 5 d (σ (r) , σ (r̂)) = d (r, r̂) for every permutation σ of the elements of r and r̂.

Axiom 6 If an alternative is added to A and if this alternative is ranked first or last relative
to both r and r̂, so that r and r̂ become r∗ and r̂∗ respectively, then,4

d (r∗, r̂∗) = d (r, r̂) .

Axiom 7 min
r,r̂∈R

d (r, r̂) ∈ {0, 1} , that is, the minimum positive distance is 1.

Kemeny and Snell show that there is a unique metric, satisfying Axioms 1 to 7. This is

the Kemeny metric defined as follows. Let γst : R2 → R, be a function defined for every
couple of alternatives (s, t) and every pair of weak orders (r, r̂) by:

γst (r, r̂) =


2 if rs < rt and r̂s > r̂t

1 if rs < rt and r̂s = r̂t

1 if rs = rt and r̂s > r̂t

0 otherwise

Then, the Kemeny metric on R is the function dK : R2 → R defined by:

dK (r, r̂) =
X
s∈A

X
t∈A

γst (r, r̂)

Using this metric, we get the Kemeny “distance” δK between a weak order r and a profile

X:

δK (r,X) =
nX

j=1

dK
¡
r, xj

¢
4This formulation is from Cook and Seiford (1978) (See the next subsection). Given the invariance to

permutations, it is equivalent to the formulation of Kemeny and Snell.
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Kemeny points out that given a profile X, there are two methods of finding a “consensus”

ranking. They consist in minimizing
Pn

j=1 d
K (r, xj) and

Pn
j=1 d

K (r, xj)
2 respectively, with

respect to r. Kemeny and Snell call the solutions to the two minimization problem median

rankings and mean rankings respectively.5

Nowadays, the name of Kemeny is associated with the first problem, the one that consists

in minimizing the total number of disagreements with the rankings of the voters. This is the

Kemeny rule.

Definition 5 The Kemeny rule is the correspondence K : Rn → L that assigns to each
profile X, the subset K (X) = argminr∈L δK (r,X). The elements of K (X) are the Kemeny

orders.

Remark 1 Bogart (1973 and 1975) extends the characterization of dK by Kemeny and Snell
to partial and non transitive binary relations. Ali, Cook, and Kress (1986) gave a similar

characterization eleven years later.

Remark 2 Bogart (1975) points out the well known fact that if the majority relationM (X)

is a linear order, then, it is the unique Kemeny order. This suggests that if M (X) contains

cycles, then, the solution to6

min
r∈L

dK (r,M (X))

might be a Kemeny order. Bogart shows that this is not the case.

Example 1 LetA = {a, b, c, d} and suppose there are 10 voters with the linear order bdac, 10
others with cdab and 1 with abcd. Then, M (X) = {(a, b) , (a, c) , (b, c) , (b, d) , (c, d) , (d, a)} .
M (X) gives the cycle abcda. The closest linear order toM (X) according to dK is abcd. Yet,

this is not the closest linear order to the profile, that is, it does not minimizes
Pn

j=1 d
K (r, xj) .

Indeed, dK (abcd,M (X)) = 2. However,
Pn

j=1 d
K (abcd, xj) = 140 while

Pn
j=1 d

K (r, xj) =

106 for r = dabc, bdac, and bcda. These three linear orders are Kemeny orders.

5To be more precise, given a profileR, they define them as the median and the mean of the set
©
r1, . . . , rn

ª
.

6Here, r and M (R) must be seen as subsets of X2 and the definition of γst changed for:

γst (r, r̂) =


2 if (s, t) ∈ r and (t, s) ∈ r̂
1 if (s, t) ∈ r and (s, t) , (t, s) ∈ r̂
1 if (s, t) , (t, s) ∈ r and (t, s) ∈ r̂
0 otherwise
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The function dK is an l1 metric. With a different set of axioms, Bogart (1975) obtains

an l2 metric on R, defined by:

d2K (r, r̂) =
1√
2

ÃX
s∈A

X
t∈A

(γst (r, r̂))
2

! 1
2

Again, one obtains a corresponding “distance” δ2K from this metric. Bogart calls the ele-

ments of argminr∈R δ2K (r,X) “mean rankings” but these rankings may be different from

those of Kemeny and Snell (1962) since they are obtained with respect to a different dis-

tance.7

3.2 A Median Ranking Rule

Using essentially the same axioms as those of Kemeny and Snell (1962), Cook and Seiford

(1978) derive another l1 metric on R. The reason for obtaining a different metric for ap-
parently the same set of axioms is their use of a different definition of betweenness. Thus,

Axiom 4 has not the same meaning in both papers.

Definition 6 (Cook-Seiford) Given r, r̃, r̂ ∈ R, on says that r̃ is between r and r̂ and one

writes [r, r̃, r̂] if ∀s : rs ≤ r̃s ≤ r̂s or rs ≥ r̃s ≥ r̂s.

Moreover, they use the following convention, borrowed from Kendall (1970), to represent

weak orders. If two alternatives s and t tie for say rank k, then rs = rt = k +
1

2
. More

generally, if κ alternatives s1, . . . , sκ tie for say rank k, then rs1 = · · · = rsκ = k+
κ− 1
2

and

the rank of the next alternative not involved in this tie is k + κ. With this convention, we

always have
Pm

s=1 rs =
m (m+ 1)

2
. For example, if there are only 3 alternatives and they all

tie, then r1 = r2 = r3 = 2.

Cook and Seiford show that the unique metric satisfying Axioms 1-7 is the function

dCS : R2 → R defined by:

dCS (r, r̂) =
mX
s=1

|rs − r̂s|

7Indeed, without loss of generality, we could as well define

d2K (r̂, r) =
X
s∈A

X
t∈A

(γst (r̂, r))
2

which must not be confounded with
¡P

s∈A
P

t∈A γst (r̂, r)
¢2
as in Kemeny and Snell (1962).
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Using dCS, they then get the “distance” δCS between weak orders and profiles:

δCS (r,X) =
nX

j=1

dCS
¡
r, xj

¢
Then, given a profile X, median rankings, with respect to dCS, are the elements of:

MED (X) = argmin
r∈R

δCS (r,X)

Thus, a median ranking, with respect to dCS, minimizes the sum of the absolute differences

with the ranks in the xj.

Remark 3 The metric dCS is quite different in spirit from dK. The basic ingredient in dCS

is the absolute difference in ranks while in dK it is the number of reversals in the position of

s with respect to all other alternatives in r̂ as compared to its position in r (|rs − r̂s| versusP
s∈A γst (r, r̂)). Examples 2 and 3 below illustrate this difference. Their first objective

is however to show that the definitions of betweenness of Kemeny-Snell and Cook-Seiford

are completely independent from one another. Example 4 further illustrates the difference

between dK and dCS.8

Example 2 Let:
r = (3, 2, 1, 4, 5, 6)

r̃ = (2, 3, 1, 4, 5, 6)

r̂ = (3, 4, 5, 6, 2, 1)

Then, [r, r̃, r̂] according to Kemeny and Snell but not according to Cook and Seiford. We

have dK (r, r̂) = 24 = 2 + 22 = dK (r, r̃) + dK (r̃, r̂) as requested by Axiom 4. However, it

is not requested that dCS (r, r̂) = dCS (r, r̃) + dCS (r̃, r̂) and, as a matter of fact, we have

dCS (r, r̂) = 16 < 2 + 16 = dCS (r, r̃) + dCS (r̃, r̂) .

Example 3 Let:
r = (3, 2, 1, 4, 5, 6)

r̃ = (3, 4, 1, 2, 5, 6)

r̂ = (6, 5, 1, 2, 3, 4)

8Curiously, Cook and Seiford do not say a word on this difference and the reason for it.
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Then, [r, r̃, r̂] according to Cook and Seiford but not according to Kemeny and Snell. Indeed,

r̃1 < r̃2, r1 > r2, and r̂1 > r̂2. We have dCS (r, r̂) = 12 = 4 + 8 = dCS (r, r̃) + dCS (r̃, r̂) as

requested by Axiom 4. However, it is not requested that dK (r, r̂) = dK (r, r̃)+dK (r̃, r̂) and,

as a matter of fact, we have dK (r, r̂) = 12 < 6 + 10 = dK (r, r̃) + dK (r̃, r̂) .

In Example 3, removing alternative 3 and rescaling or not the ranks of the other alterna-

tives would change none of the distances computed with dCS and dK . This is in accordance

with Axiom 6.

Example 4 Let r = (1, 2, 3) , r̃ = (3, 1, 2) and r̂ = (3, 2, 1) . Note that [r, r̃, r̂] according to

Kemeny and Snell but not according to Cook and Seiford. Then, dCS (r, r̃) = 4, dCS (r, r̂) = 4

and dCS (r̃, r̂) = 2; dK (r, r̃) = 4, dK (r, r̂) = 6 and dK (r̃, r̂) = 2. Note that dCS (r, r̃) =

dCS (r, r̂) but dK (r, r̃) < dK (r, r̂) .9

3.3 The Minimum Variance Rule

Cook and Seiford (1982) define an l2 metric on R by:

d2 (r, r̂) =
mX
s=1

(rs − r̂s)
2

This yields

δ2 (r,X) =
nX

j=1

d2
¡
r, xj

¢
and another aggregation rule, which Cook and Seiford (1982) call the Minimum Variance

Method :

MV (X) = argmin
r∈R

δ2 (r,X)

Members of MV (X) are called mean rankings, with respect to d2.

Remark 4 Let b̄(s) =
1

n

Pn
j=1 x

j
s. A Borda ranking can be defined as a weak order r such

that:

∀s, t ∈ A : rs ≤ rt ⇔ b̄ (s) ≤ b̄ (t)

In plain words, a Borda ranking is defined from the average ranks given by the voters. In

statistics, it is well known that the sample mean is the point estimate that minimizes the

9We leave open the question as to if it is possible to have dCS (r, r̃) < dCS (r, r̂) and dK (r, r̃) < dK (r, r̂) .
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squared errors. This led Kendall (1970, p. 101 and 114) to claim and “show” that a Borda

ranking is actually a mean ranking as defined above. Using geometry, Cook and Seiford

(1982) show that Kendall’s claim and proof is true only if ties are ruled out, that is, if R is

replaced by L. This can be seen with the following example.

Example 5 Let m = 3, n = 3, r1 = (2, 3, 1) , r2 = (3, 2, 1) , and r3 =

µ
3

2
,
3

2
, 3

¶
. Thus,

b̄ =

µ
13

6
,
13

6
,
5

3

¶
and the Borda ranking is r∗ = (2.5, 2.5, 1) . However, MV (X) = {r̃} =

{(2, 2, 2)} . Indeed, Pm
s=1

¡
b̄ (s)− r∗s

¢2
=
4

6
while

Pm
s=1

¡
b̄ (s)− r̃s

¢2
=
1

6
. 10

4 From metrics to loss functions

A metric may be used as a loss function in an expected loss approach. That is, the number

d (r, r̂) may be seen as the loss resulting from the selection of the ranking r̂ when r is the true

ranking. Then, given a profile X, a posterior distribution function π (· | X) on the set R, the
expected loss resulting from the selection of a ranking r̂ is given by:

P
r∈R π (r | X) d (r, r̂) .

An optimal ranking minimizes this expected loss. The aggregation rule that yields these

optimal rankings has more statistical flavour than the ones reviewed in the previous section.

Such a rule is defined in Gordon and Truchon (2007) and given the name minimum expected

loss (MEL) rule.

Another question of interest is how different ranking rules Γ, taken form a set G, could
fare in repeated uses. In other words, what is the ex ante expected loss or the risk of these

rules? This is the question addressed in Truchon and Gordon (2006). Instead of starting with

a given profile and the associated posterior distribution of the true rankings, they take as

given the true ranking r and its associated distribution, say f (· | r) , of the profiles X ∈ Ln

and compute the risk
P

X∈Ln f (X | r) d (r,Γ(X)) of each aggregation rule Γ ∈ G.
Two types of metric on R have been presented in the previous section. Their basic

ingredient are respectively the terms |r̂s − rs| and
P

t∈A γst (r, r̂) , s ∈ A. The latter is the

number of reversals in the position of s in r̂ with respect to other alternatives ranked after

s in r.11 Any of these metrics could be used in an expected loss approach. However, they

10r∗ is also the unique ranking satisfying the Extended Condorcet Criterion defined in Truchon (2004).
Thus, the Minimum Variance Method does not satisfy this criterion.
11Note that if r = (1, 2, 3, 4) is the true ranking on {a, b, c, d}, then Pt∈{a,b,c,d} γ2t (r, r̂) = 2 with r̂ =

(3, 4, 2, 1) as well as with r̂ = (4, 3, 2, 1) . Thus, the fact that alternatives a and b are better ranked in the

10



all have a drawback for this purpose. All errors of the same kind are assigned the same loss

whether they concern a top ranked or a bottom ranked alternative in the reference order.

In many situations, an error on a bottom ranked alternative in the true ranking would

be of less consequence than the same error on a top ranked alternative. For example, if

abcd is the true ranking on A = {a, b, c, d} then, an error on alternative a represents a

greater loss than the same error on alternative b, and an error on alternative b represents

a greater loss than the same error on alternative c, and so on. Thus, a good loss function

should be decreasing with respect to rs itself, that is, the rank of alternative s in the true

ranking, for a fixed value of |r̂s − rs| or
P

t∈A γst (r, r̂) . In addition to being increasing with

respect to |r̂s − rs| or
P

t∈A γst (r, r̂) and decreasing with respect to rs, we may wish that d

be concave, that is, increase at a decreasing rate, with respect to |r̂s − rs| or
P

t∈A γst (r, r̂),

or alternatively be convex. We may have similar desiderata for the change with respect to

rs.

We define two classes of parametric functions that offer much latitude in this respect.

However, they are not necessarily metrics onR. The first is the class of functions dηθ : R2 →
R+ defined by:

dηθ (r, r̂) =
X
s∈A

|r̂s − rs|η (m− rs + 1)
θ , η ≥ 0, θ ≥ 0

The second class is given by the functions dK
ηθ
defined as follows:

dK
ηθ
(r, r̂) =

X
s∈A

ÃX
t∈A

γst (r, r̂)

!η

(m− rs + 1)
θ , η ≥ 0, θ ≥ 0

With these functions, the rate at which the loss increases with the term |r̂s − rs| or the
partial sum

P
s∈A γst (r, r̂) is controlled by the parameter η. Moreover, these numbers are

weighted by the term (m− rs + 1)
θ, which takes into account the place in the true ranking

where an error occurs.

The members of the first class are concave or convex with respect to |r̂s − rs| if η < 1

or η > 1 respectively. They are concave or convex with respect to rs if θ < 1 or θ > 1

respectively. We also know that these functions are quasiconcave. An increase in |r̂s − rs|
may be compensated by an increase in rs but the rate at which this compensation takes

place diminishes with the size of |r̂s − rs| .12 The same remark, with |r̂s − rs| replaced byP
s∈A γst (r, r̂) , applies to the members of the second class.

first r̂ while their order is reversed in the second is not taken into account in this partial sum. However, it
will be accounted for in the complete sum.
12Of course, this language is completely correct with continuous instead of discrete arguments.
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Remark 5 The Kemeny metric is a particular case of dK
ηθ
. Indeed, dK = dK1,0. With the

convention 00 = 0, the naive function dN defined by

dN (r, r̂) =

(
κ if r̂ 6= r

0 if r̂ = r

for some κ > 0, which is the implicit loss function in the maximum likelihood approach, may

be seen as a particular case of both dηθ and dK
ηθ
, namely:

dN = d00 = dK00

Remark 6 • All members of these two classes satisfy Axiom 5 of a Kemeny metric

defined in the previous section. Indeed, let σ be a permutation of the elements of r

and r̂. Clearly,

mX
s=1

|r̂s − rs|η (m− rs + 1)
θ =

mX
s=1

¯̄
r̂σ(s) − rσ(s)

¯̄η ¡
m− rσ(s) + 1

¢θ
and similarly for dK

ηθ
.

• It is easy to check that they also satisfy Axiom 6.

• On the other hand, Axiom 2 of a metric does not hold, except when θ = 0, since

interchanging r and r̂ change the term (m− rs + 1) .

• Axiom 3 is akin to subadditivity, which is implied by concavity. Thus, both dηθ and

dK
ηθ
satisfy Axiom 3 when θ = 0 and η ≤ 1. However, Axiom 3 is violated for θ = 0 and

η > 1. For θ > 0, the picture is more complex. Thus, it may well be that Axiom 3 is

violated even with η ≤ 1.
• Axiom 4 does not hold even when θ = 0 and η ≤ 1. Finally, there is no assurance that
the minimum positive distance is 1. Thus, Axiom 7 does not hold. Of course, this

normalization could be restored but it is not important.

Remark 7 The metrics dSC and d2 defined in sections 3.2 and 3.3 are particular cases of

the above functions: dSC = d10, d
2 = d20. However, d2K is not a particular case of dK

ηθ
since

the exponent in d2K applies to (2γst (r, r̂)) and not to the partial sum.

Tables 3 to 8 of the Appendix illustrate the behavior of dηθ and dK
ηθ
for the case of

four alternatives and for twelve pairs of values of the parameters, those corresponding to

the cases of Table 2. The true order is taken as (1, 2, 3, 4) . Without loss of generality, the
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distance between any order and the true order is divided by the maximum distance. Thus,

the distance range is always [0, 1] , which facilitates the comparisons. For each pair of values

of the parameters, the orders have been ranked in order of increasing distance with respect

to the true order.

With dK
ηθ
, the maximum distance is always attained for (4, 3, 2, 1) . Actually, this is true

for any number of alternatives. That is, if (1, . . . ,m) is the true order, then the maximum

distance is always attained for (m, . . . , 1) , whatever the values of the parameters. Indeed, if

(1, . . . ,m) is the true order, then
P

t6=s γst (r, r̂) =
P

t>s γst (r, r̂) and for any s, the last term

is maximal for r̂ = (m, . . . , 1) . The picture is different with dηθ as can be seen from Tables

3 to 5.

We shall argue against the adoption of dηθ. First, for η = 1
2
, it can be noted that simply

inverting the last two alternatives or the second and the third alternatives in the true ranking

produces a loss larger than 0.21. This is too large a value, compared to the largest loss of 1.

In addition, (4, 3, 2, 1) is not the error that receives the maximum penalty. Thus, we believe

that this function, with η = 1
2
, should be discarded. It should also be discarded for the other

values of the parameters for which (4, 3, 2, 1) does not produce the largest loss, that is, for

(η, θ) =
¡
1, 1

2

¢
, (1, 1) , (1, 2) , (2, 1) , (2, 2) . For (η, θ) = (1, 0) , (2, 0) , the function is not very

discriminating. It produces many ties.

For
¡
2, 1

2

¢
, the functions behaves strangely. For example, let {a, b, c, d} be the set of

alternatives and abcd be the true order and consider the four orders in Table 1, together

with their distance from the true one, according to d
2, 12

and dK
2, 12

. They are taken from

Tables 5 and 8 respectively. With d
2, 12

, it appears that inverting c and d is worst than

inverting a and b. The function dK
2, 12

has a better behaviour in this respect.

r d
2, 12

dK
2, 12

cabd (2, 3, 1, 4) 0.311 0.142

cbad (3, 2, 1, 4) 0.453 0.369

dabc (2, 3, 4, 1) 0.469 0.195

dbac (3, 2, 4, 1) 0.611 0.423

Table 1: Comparison of d2, 1
2
and dK

2, 1
2

There are other anomalies of this kind with d
2, 12

. For all these reasons, it seems preferable

to use dK
ηθ
in the expected loss approach. One can always find some strange behavior with
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this function as for dηθ. Yet, as a whole, dKηθ behaves better than dηθ, at least for some values

of the parameters.

Table 2 suggests eight pairs of values, indicated by an X, that could be appropriate in

the expected loss approach. They were retained in Truchon and Gordon (2006) together

with (0, 0) . Table 2 includes (η, θ) = (1, 0) , because these values correspond to the Kemeny

metric. Note however that dK
ηθ
is not very discriminating for θ = 0, producing many ties.

Thus, (η, θ) = (2, 0) is not among the suggestions. For η = 1
2
, simply inverting the last

two alternatives or the second and the third alternatives in the true ranking produces a loss

larger than 0.2.We have objected to the use of dηθ with η = 1
2
for this reason. Yet, retaining

dK
ηθ
with the pair

¡
1
2
, 1
¢
could be interesting for the sake of comparisons.

Increasing η above 1, for a given value of θ, reduces the relative cost of making a particular

inversion error. This is because increasing η increases the cost of completely reversing the

true order proportionally more than is the case with any other error. Thus, values of η

greater than 2 are clearly implausible; the costs of making a mistake at the top end of the

ranking are higher than what large values of η would seem to imply. Maybe that even η = 2

is too high; Gordon and Truchon (2007) did not retain this value.

Low values of θ are also probably less plausible in the expected loss approach. Interme-

diate values for these parameters, for example 1
4
, 3
2
, are probably not necessary to verify the

robustness of any result to the specification of the parameters.

θ

0 1
2

1 2
1
2

X

η 1 X X X X

2 X X X

Table 2: Suggested values for the parameters (indicated by an X)

14



References

Ali, I., Cook, W.D., and M. Kress (1986): “On the Minimum Violations Ranking of a
Tournament,” Management Science, 32, 660-972.

Arrow, K.J. (1963): Social Choice and Individual Values, second edition, New York: Wiley.

Borda, J.C. de (1784): Mémoire sur les élections au scrutin, Histoire de L’Académie Royale
des Sciences.

Bogart, K.P. (1973): “Preference Structures I: Distances Between Transitive Preference Re-
lations,” Journal of Mathematical Sociology, 3, 49-67.

Bogart, K.P. (1975): “Preference Structures II: Distance Between Asymmetric Relations,”
SIAM Journal of Applied Mathematics, 29, 254-262.

Cook, W.D. and L.M. Seiford (1978): “Priority Ranking and Consensus Information,” Man-
agement Science, 24, 1721-1732.

Cook, W.D. and L.M. Seiford (1982): “On the Borda-Kendall Consensus Method for Priority
Ranking Problems,” Management Science; 28, 621-637.

Condorcet, Marquis de (1785): Essai sur l’Application de l’Analyse à la Probabilité des
Décisions Rendues à Probabilité des Voix, Paris: De l’Imprimerie Royale.

Gordon, S. and M. Truchon (2007): “Social choice, optimal inference and figure skating”,
Social Choice and Welfare, forthcoming. See also Cahier de Recherche 06-24, Centre
interuniversitaire sur le risque, les politiques économiques et l’emploi (CIRPÉE).
http://132.203.59.36/CIRPEE/cahierscirpee/2006/2006.htm

Kemeny, J. (1959): “Mathematics without Numbers,” Daedalus, 88, 571-591.

Kemeny, J. and J.L. Snell (1962): Mathematical Models in the Social Sciences, Boston: Ginn.

Kendall, M.G. (1970): Rank Correlation Methods, fourth edition, London: Griffin.

Truchon, M. (2004): “Aggregation of Rankings in Figure Skating,” Cahier de Recherche,
0402, Département d’Économique, Université Laval.

Truchon, M. and S. Gordon (2006): “Statistical Comparison of Aggregation Rules for
Votes,” Cahier de Recherche 06-25, Centre interuniversitaire sur le risque, les politiques
économiques et l’emploi (CIRPÉE).
http://132.203.59.36/CIRPEE/cahierscirpee/2006/2006.htm



Appendix: Behavior of loss functions

η = 1
2

θ = 0

Order dηθ

(1, 2, 3, 4) 0.000

(1, 2, 4, 3) 0.354

(1, 3, 2, 4) 0.354

(2, 1, 3, 4) 0.354

(1, 4, 3, 2) 0.500

(3, 2, 1, 4) 0.500

(1, 3, 4, 2) 0.604

(1, 4, 2, 3) 0.604

(2, 3, 1, 4) 0.604

(3, 1, 2, 4) 0.604

(4, 2, 3, 1) 0.612

(2, 1, 4, 3) 0.707

(2, 4, 3, 1) 0.733

(3, 2, 4, 1) 0.733

(4, 1, 3, 2) 0.733

(4, 2, 1, 3) 0.733

(2, 3, 4, 1) 0.837

(4, 1, 2, 3) 0.837

(2, 4, 1, 3) 0.854

(3, 1, 4, 2) 0.854

(4, 3, 2, 1) 0.966

(3, 4, 2, 1) 0.983

(4, 3, 1, 2) 0.983

(3, 4, 1, 2) 1.000

η = 1
2

θ = 1
2

Order dηθ

(1, 2, 3, 4) 0.000

(1, 2, 4, 3) 0.278

(1, 3, 2, 4) 0.362

(2, 1, 3, 4) 0.429

(1, 4, 3, 2) 0.445

(1, 3, 4, 2) 0.525

(3, 2, 1, 4) 0.555

(1, 4, 2, 3) 0.560

(4, 2, 3, 1) 0.598

(2, 3, 1, 4) 0.659

(3, 1, 2, 4) 0.687

(3, 2, 4, 1) 0.687

(2, 1, 4, 3) 0.707

(2, 4, 3, 1) 0.711

(4, 2, 1, 3) 0.744

(4, 1, 3, 2) 0.761

(2, 3, 4, 1) 0.791

(3, 1, 4, 2) 0.850

(2, 4, 1, 3) 0.857

(4, 1, 2, 3) 0.876

(4, 3, 2, 1) 0.960

(3, 4, 2, 1) 0.969

(4, 3, 1, 2) 0.991

(3, 4, 1, 2) 1.000

η = 1
2

θ = 1

Order dηθ

(1, 2, 3, 4) 0.000

(1, 2, 4, 3) 0.212

(1, 3, 2, 4) 0.353

(1, 4, 3, 2) 0.399

(1, 3, 4, 2) 0.453

(2, 1, 3, 4) 0.494

(1, 4, 2, 3) 0.511

(3, 2, 1, 4) 0.599

(4, 2, 3, 1) 0.611

(3, 2, 4, 1) 0.663

(2, 3, 1, 4) 0.694

(2, 4, 3, 1) 0.704

(2, 1, 4, 3) 0.706

(3, 1, 2, 4) 0.752

(2, 3, 4, 1) 0.757

(4, 2, 1, 3) 0.759

(4, 1, 3, 2) 0.800

(2, 4, 1, 3) 0.852

(3, 1, 4, 2) 0.852

(4, 1, 2, 3) 0.912

(3, 4, 2, 1) 0.962

(4, 3, 2, 1) 0.964

(3, 4, 1, 2) 0.998

(4, 3, 1, 2) 1.000

η = 1
2

θ = 2

Order dηθ

(1, 2, 3, 4) 0.000

(1, 2, 4, 3) 0.114

(1, 3, 2, 4) 0.297

(1, 4, 3, 2) 0.323

(1, 3, 4, 2) 0.329

(1, 4, 2, 3) 0.405

(2, 1, 3, 4) 0.571

(3, 2, 1, 4) 0.646

(3, 2, 4, 1) 0.648

(4, 2, 3, 1) 0.673

(2, 1, 4, 3) 0.685

(2, 4, 3, 1) 0.696

(2, 3, 1, 4) 0.700

(2, 3, 4, 1) 0.702

(4, 2, 1, 3) 0.785

(2, 4, 1, 3) 0.808

(3, 1, 2, 4) 0.814

(3, 1, 4, 2) 0.846

(4, 1, 3, 2) 0.871

(3, 4, 2, 1) 0.938

(4, 1, 2, 3) 0.953

(3, 4, 1, 2) 0.969

(4, 3, 2, 1) 0.969

(4, 3, 1, 2) 1.000

Table 3: Distance from the true order with the loss function d
ηθ
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η = 1 θ = 0

Order dηθ

(1, 2, 3, 4) 0.00

(1, 2, 4, 3) 0.25

(1, 3, 2, 4) 0.25

(2, 1, 3, 4) 0.25

(1, 3, 4, 2) 0.50

(1, 4, 2, 3) 0.50

(1, 4, 3, 2) 0.50

(2, 1, 4, 3) 0.50

(2, 3, 1, 4) 0.50

(3, 1, 2, 4) 0.50

(3, 2, 1, 4) 0.50

(2, 3, 4, 1) 0.75

(2, 4, 1, 3) 0.75

(2, 4, 3, 1) 0.75

(3, 1, 4, 2) 0.75

(3, 2, 4, 1) 0.75

(4, 1, 2, 3) 0.75

(4, 1, 3, 2) 0.75

(4, 2, 1, 3) 0.75

(4, 2, 3, 1) 0.75

(3, 4, 1, 2) 1.00

(3, 4, 2, 1) 1.00

(4, 3, 1, 2) 1.00

(4, 3, 2, 1) 1.00

η = 1 θ = 1
2

Order dηθ

(1, 2, 3, 4) 0.000

(1, 2, 4, 3) 0.192

(1, 3, 2, 4) 0.250

(2, 1, 3, 4) 0.297

(1, 3, 4, 2) 0.410

(1, 4, 3, 2) 0.435

(1, 4, 2, 3) 0.468

(2, 1, 4, 3) 0.489

(2, 3, 1, 4) 0.522

(3, 2, 1, 4) 0.544

(3, 1, 2, 4) 0.569

(2, 3, 4, 1) 0.649

(3, 2, 4, 1) 0.670

(2, 4, 3, 1) 0.674

(4, 2, 3, 1) 0.717

(3, 1, 4, 2) 0.728

(2, 4, 1, 3) 0.740

(4, 1, 3, 2) 0.775

(4, 2, 1, 3) 0.782

(4, 1, 2, 3) 0.808

(3, 4, 2, 1) 0.946

(4, 3, 2, 1) 0.967

(3, 4, 1, 2) 0.979

(4, 3, 1, 2) 1.000

η = 1 θ = 1

Order dηθ

(1, 2, 3, 4) 0.000

(1, 2, 4, 3) 0.143

(1, 3, 2, 4) 0.238

(1, 3, 4, 2) 0.333

(2, 1, 3, 4) 0.333

(1, 4, 3, 2) 0.381

(1, 4, 2, 3) 0.429

(2, 1, 4, 3) 0.476

(2, 3, 1, 4) 0.524

(2, 3, 4, 1) 0.571

(3, 2, 1, 4) 0.571

(2, 4, 3, 1) 0.619

(3, 1, 2, 4) 0.619

(3, 2, 4, 1) 0.619

(2, 4, 1, 3) 0.714

(3, 1, 4, 2) 0.714

(4, 2, 3, 1) 0.714

(4, 1, 3, 2) 0.810

(4, 2, 1, 3) 0.810

(4, 1, 2, 3) 0.857

(3, 4, 2, 1) 0.905

(3, 4, 1, 2) 0.952

(4, 3, 2, 1) 0.952

(4, 3, 1, 2) 1.000

η = 1 θ = 2

Order dηθ

(1, 2, 3, 4) 0.000

(1, 2, 4, 3) 0.075

(1, 3, 2, 4) 0.194

(1, 3, 4, 2) 0.224

(1, 4, 3, 2) 0.299

(1, 4, 2, 3) 0.343

(2, 1, 3, 4) 0.373

(2, 1, 4, 3) 0.448

(2, 3, 4, 1) 0.478

(2, 3, 1, 4) 0.493

(2, 4, 3, 1) 0.552

(3, 2, 4, 1) 0.582

(3, 2, 1, 4) 0.597

(2, 4, 1, 3) 0.642

(3, 1, 2, 4) 0.672

(3, 1, 4, 2) 0.701

(4, 2, 3, 1) 0.761

(3, 4, 2, 1) 0.851

(4, 2, 1, 3) 0.851

(4, 1, 3, 2) 0.881

(3, 4, 1, 2) 0.896

(4, 1, 2, 3) 0.925

(4, 3, 2, 1) 0.955

(4, 3, 1, 2) 1.000

Table 4: Distance from the true order with the loss function d
ηθ
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η = 2 θ = 0

Order dηθ

(1, 2, 3, 4) 0.0

(1, 2, 4, 3) 0.1

(1, 3, 2, 4) 0.1

(2, 1, 3, 4) 0.1

(2, 1, 4, 3) 0.2

(1, 3, 4, 2) 0.3

(1, 4, 2, 3) 0.3

(2, 3, 1, 4) 0.3

(3, 1, 2, 4) 0.3

(1, 4, 3, 2) 0.4

(3, 2, 1, 4) 0.4

(2, 4, 1, 3) 0.5

(3, 1, 4, 2) 0.5

(2, 3, 4, 1) 0.6

(4, 1, 2, 3) 0.6

(2, 4, 3, 1) 0.7

(3, 2, 4, 1) 0.7

(4, 1, 3, 2) 0.7

(4, 2, 1, 3) 0.7

(3, 4, 1, 2) 0.8

(3, 4, 2, 1) 0.9

(4, 2, 3, 1) 0.9

(4, 3, 1, 2) 0.9

(4, 3, 2, 1) 1.0

η = 2 θ = 1
2

Order dηθ

(1, 2, 3, 4) 0.000

(1, 2, 4, 3) 0.080

(1, 3, 2, 4) 0.104

(2, 1, 3, 4) 0.124

(2, 1, 4, 3) 0.204

(1, 3, 4, 2) 0.237

(1, 4, 2, 3) 0.310

(2, 3, 1, 4) 0.311

(1, 4, 3, 2) 0.363

(3, 1, 2, 4) 0.370

(3, 2, 1, 4) 0.453

(2, 3, 4, 1) 0.469

(3, 1, 4, 2) 0.502

(2, 4, 1, 3) 0.517

(2, 4, 3, 1) 0.595

(3, 2, 4, 1) 0.611

(4, 1, 2, 3) 0.735

(4, 1, 3, 2) 0.787

(3, 4, 1, 2) 0.816

(4, 2, 1, 3) 0.818

(3, 4, 2, 1) 0.841

(4, 2, 3, 1) 0.896

(4, 3, 1, 2) 0.975

(4, 3, 2, 1) 1.000

η = 2 θ = 1

Order dηθ

(1, 2, 3, 4) 0.000

(1, 2, 4, 3) 0.059

(1, 3, 2, 4) 0.098

(2, 1, 3, 4) 0.137

(1, 3, 4, 2) 0.176

(2, 1, 4, 3) 0.196

(1, 4, 2, 3) 0.294

(2, 3, 1, 4) 0.294

(1, 4, 3, 2) 0.314

(2, 3, 4, 1) 0.353

(3, 1, 2, 4) 0.412

(3, 2, 1, 4) 0.471

(2, 4, 1, 3) 0.490

(2, 4, 3, 1) 0.490

(3, 1, 4, 2) 0.490

(3, 2, 4, 1) 0.529

(3, 4, 2, 1) 0.765

(3, 4, 1, 2) 0.784

(4, 1, 2, 3) 0.824

(4, 1, 3, 2) 0.843

(4, 2, 1, 3) 0.882

(4, 2, 3, 1) 0.882

(4, 3, 2, 1) 0.980

(4, 3, 1, 2) 1.000

η = 2 θ = 2

Order dηθ

(1, 2, 3, 4) 0.000

(1, 2, 4, 3) 0.029

(1, 3, 2, 4) 0.075

(1, 3, 4, 2) 0.098

(2, 1, 3, 4) 0.145

(2, 1, 4, 3) 0.173

(2, 3, 4, 1) 0.220

(1, 4, 3, 2) 0.231

(1, 4, 2, 3) 0.237

(2, 3, 1, 4) 0.237

(2, 4, 3, 1) 0.353

(2, 4, 1, 3) 0.399

(3, 1, 2, 4) 0.445

(3, 2, 4, 1) 0.445

(3, 2, 1, 4) 0.462

(3, 1, 4, 2) 0.468

(3, 4, 2, 1) 0.653

(3, 4, 1, 2) 0.694

(4, 2, 3, 1) 0.884

(4, 1, 3, 2) 0.908

(4, 1, 2, 3) 0.913

(4, 2, 1, 3) 0.931

(4, 3, 2, 1) 0.960

(4, 3, 1, 2) 1.000

Table 5: Distance from the true order with the loss function d
ηθ
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η = 1
2

θ = 0

Order dK
ηθ

(1, 2, 3, 4) 0.000

(1, 2, 4, 3) 0.241

(1, 3, 2, 4) 0.241

(2, 1, 3, 4) 0.241

(1, 4, 2, 3) 0.341

(3, 1, 2, 4) 0.341

(4, 1, 2, 3) 0.418

(1, 3, 4, 2) 0.482

(2, 1, 4, 3) 0.482

(2, 3, 1, 4) 0.482

(1, 4, 3, 2) 0.582

(2, 4, 1, 3) 0.582

(3, 1, 4, 2) 0.582

(3, 2, 1, 4) 0.582

(4, 1, 3, 2) 0.659

(4, 2, 1, 3) 0.659

(3, 4, 1, 2) 0.682

(2, 3, 4, 1) 0.724

(4, 3, 1, 2) 0.759

(2, 4, 3, 1) 0.823

(3, 2, 4, 1) 0.823

(4, 2, 3, 1) 0.900

(3, 4, 2, 1) 0.923

(4, 3, 2, 1) 1.000

η = 1
2

θ = 1
2

Order dK
ηθ

(1, 2, 3, 4) 0.000

(1, 2, 4, 3) 0.193

(1, 3, 2, 4) 0.236

(2, 1, 3, 4) 0.273

(1, 4, 2, 3) 0.334

(3, 1, 2, 4) 0.386

(1, 3, 4, 2) 0.429

(2, 1, 4, 3) 0.466

(4, 1, 2, 3) 0.473

(2, 3, 1, 4) 0.509

(1, 4, 3, 2) 0.527

(3, 1, 4, 2) 0.579

(2, 4, 1, 3) 0.607

(3, 2, 1, 4) 0.622

(4, 1, 3, 2) 0.666

(2, 3, 4, 1) 0.702

(4, 2, 1, 3) 0.709

(3, 4, 1, 2) 0.720

(2, 4, 3, 1) 0.800

(4, 3, 1, 2) 0.807

(3, 2, 4, 1) 0.815

(4, 2, 3, 1) 0.902

(3, 4, 2, 1) 0.913

(4, 3, 2, 1) 1.000

η = 1
2

θ = 1

Order dK
ηθ

(1, 2, 3, 4) 0.000

(1, 2, 4, 3) 0.152

(1, 3, 2, 4) 0.228

(2, 1, 3, 4) 0.304

(1, 4, 2, 3) 0.322

(1, 3, 4, 2) 0.380

(3, 1, 2, 4) 0.429

(2, 1, 4, 3) 0.456

(1, 4, 3, 2) 0.474

(4, 1, 2, 3) 0.526

(2, 3, 1, 4) 0.531

(3, 1, 4, 2) 0.581

(2, 4, 1, 3) 0.626

(3, 2, 1, 4) 0.657

(4, 1, 3, 2) 0.678

(2, 3, 4, 1) 0.683

(3, 4, 1, 2) 0.752

(4, 2, 1, 3) 0.754

(2, 4, 3, 1) 0.778

(3, 2, 4, 1) 0.809

(4, 3, 1, 2) 0.848

(3, 4, 2, 1) 0.903

(4, 2, 3, 1) 0.906

(4, 3, 2, 1) 1.000

η = 1
2

θ = 2

Order dK
ηθ

(1, 2, 3, 4) 0.000

(1, 2, 4, 3) 0.090

(1, 3, 2, 4) 0.203

(1, 4, 2, 3) 0.286

(1, 3, 4, 2) 0.293

(2, 1, 3, 4) 0.360

(1, 4, 3, 2) 0.376

(2, 1, 4, 3) 0.450

(3, 1, 2, 4) 0.509

(2, 3, 1, 4) 0.563

(3, 1, 4, 2) 0.599

(4, 1, 2, 3) 0.624

(2, 4, 1, 3) 0.646

(2, 3, 4, 1) 0.653

(3, 2, 1, 4) 0.712

(4, 1, 3, 2) 0.714

(2, 4, 3, 1) 0.736

(3, 4, 1, 2) 0.796

(3, 2, 4, 1) 0.802

(4, 2, 1, 3) 0.826

(3, 4, 2, 1) 0.886

(4, 3, 1, 2) 0.910

(4, 2, 3, 1) 0.916

(4, 3, 2, 1) 1.000

Table 6: Distance from the true order with the loss function dK
ηθ
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η = 1 θ = 0

Order dK
ηθ

(1, 2, 3, 4) 0.000

(1, 2, 4, 3) 0.167

(1, 3, 2, 4) 0.167

(2, 1, 3, 4) 0.167

(1, 3, 4, 2) 0.333

(1, 4, 2, 3) 0.333

(2, 1, 4, 3) 0.333

(2, 3, 1, 4) 0.333

(3, 1, 2, 4) 0.333

(1, 4, 3, 2) 0.500

(2, 3, 4, 1) 0.500

(2, 4, 1, 3) 0.500

(3, 1, 4, 2) 0.500

(3, 2, 1, 4) 0.500

(4, 1, 2, 3) 0.500

(2, 4, 3, 1) 0.667

(3, 2, 4, 1) 0.667

(3, 4, 1, 2) 0.667

(4, 1, 3, 2) 0.667

(4, 2, 1, 3) 0.667

(3, 4, 2, 1) 0.833

(4, 2, 3, 1) 0.833

(4, 3, 1, 2) 0.833

(4, 3, 2, 1) 1.000

η = 1 θ = 1
2

Order dK
ηθ

(1, 2, 3, 4) 0.000

(1, 2, 4, 3) 0.130

(1, 3, 2, 4) 0.159

(2, 1, 3, 4) 0.184

(1, 3, 4, 2) 0.289

(2, 1, 4, 3) 0.314

(1, 4, 2, 3) 0.318

(2, 3, 1, 4) 0.343

(3, 1, 2, 4) 0.368

(1, 4, 3, 2) 0.448

(2, 3, 4, 1) 0.473

(3, 1, 4, 2) 0.498

(2, 4, 1, 3) 0.502

(3, 2, 1, 4) 0.527

(4, 1, 2, 3) 0.552

(2, 4, 3, 1) 0.632

(3, 2, 4, 1) 0.657

(4, 1, 3, 2) 0.682

(3, 4, 1, 2) 0.686

(4, 2, 1, 3) 0.711

(3, 4, 2, 1) 0.816

(4, 2, 3, 1) 0.841

(4, 3, 1, 2) 0.870

(4, 3, 2, 1) 1.000

η = 1 θ = 1

Order dK
ηθ

(1, 2, 3, 4) 0.00

(1, 2, 4, 3) 0.10

(1, 3, 2, 4) 0.15

(2, 1, 3, 4) 0.20

(1, 3, 4, 2) 0.25

(1, 4, 2, 3) 0.30

(2, 1, 4, 3) 0.30

(2, 3, 1, 4) 0.35

(1, 4, 3, 2) 0.40

(3, 1, 2, 4) 0.40

(2, 3, 4, 1) 0.45

(2, 4, 1, 3) 0.50

(3, 1, 4, 2) 0.50

(3, 2, 1, 4) 0.55

(2, 4, 3, 1) 0.60

(4, 1, 2, 3) 0.60

(3, 2, 4, 1) 0.65

(3, 4, 1, 2) 0.70

(4, 1, 3, 2) 0.70

(4, 2, 1, 3) 0.75

(3, 4, 2, 1) 0.80

(4, 2, 3, 1) 0.85

(4, 3, 1, 2) 0.90

(4, 3, 2, 1) 1.00

η = 1 θ = 2

Order dK
ηθ

(1, 2, 3, 4) 0.000

(1, 2, 4, 3) 0.057

(1, 3, 2, 4) 0.129

(1, 3, 4, 2) 0.186

(2, 1, 3, 4) 0.229

(1, 4, 2, 3) 0.257

(2, 1, 4, 3) 0.286

(1, 4, 3, 2) 0.314

(2, 3, 1, 4) 0.357

(2, 3, 4, 1) 0.414

(3, 1, 2, 4) 0.457

(2, 4, 1, 3) 0.486

(3, 1, 4, 2) 0.514

(2, 4, 3, 1) 0.543

(3, 2, 1, 4) 0.586

(3, 2, 4, 1) 0.643

(4, 1, 2, 3) 0.686

(3, 4, 1, 2) 0.714

(4, 1, 3, 2) 0.743

(3, 4, 2, 1) 0.771

(4, 2, 1, 3) 0.814

(4, 2, 3, 1) 0.871

(4, 3, 1, 2) 0.943

(4, 3, 2, 1) 1.000

Table 7: Distance from the true order with the loss function dK
ηθ
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η = 2 θ = 0

Order dK
ηθ

(1, 2, 3, 4) 0.000

(1, 2, 4, 3) 0.071

(1, 3, 2, 4) 0.071

(2, 1, 3, 4) 0.071

(1, 3, 4, 2) 0.143

(2, 1, 4, 3) 0.143

(2, 3, 1, 4) 0.143

(2, 3, 4, 1) 0.214

(1, 4, 2, 3) 0.286

(3, 1, 2, 4) 0.286

(1, 4, 3, 2) 0.357

(2, 4, 1, 3) 0.357

(3, 1, 4, 2) 0.357

(3, 2, 1, 4) 0.357

(2, 4, 3, 1) 0.429

(3, 2, 4, 1) 0.429

(3, 4, 1, 2) 0.571

(3, 4, 2, 1) 0.643

(4, 1, 2, 3) 0.643

(4, 1, 3, 2) 0.714

(4, 2, 1, 3) 0.714

(4, 2, 3, 1) 0.786

(4, 3, 1, 2) 0.929

(4, 3, 2, 1) 1.000

η = 2 θ = 1
2

Order dK
ηθ

(1, 2, 3, 4) 0.000

(1, 2, 4, 3) 0.054

(1, 3, 2, 4) 0.066

(2, 1, 3, 4) 0.076

(1, 3, 4, 2) 0.119

(2, 1, 4, 3) 0.130

(2, 3, 1, 4) 0.142

(2, 3, 4, 1) 0.195

(1, 4, 2, 3) 0.263

(3, 1, 2, 4) 0.304

(1, 4, 3, 2) 0.317

(2, 4, 1, 3) 0.339

(3, 1, 4, 2) 0.357

(3, 2, 1, 4) 0.369

(2, 4, 3, 1) 0.393

(3, 2, 4, 1) 0.423

(3, 4, 1, 2) 0.567

(3, 4, 2, 1) 0.620

(4, 1, 2, 3) 0.683

(4, 1, 3, 2) 0.737

(4, 2, 1, 3) 0.749

(4, 2, 3, 1) 0.803

(4, 3, 1, 2) 0.946

(4, 3, 2, 1) 1.000

η = 2 θ = 1

Order dK
ηθ

(1, 2, 3, 4) 0.00

(1, 2, 4, 3) 0.04

(1, 3, 2, 4) 0.06

(2, 1, 3, 4) 0.08

(1, 3, 4, 2) 0.10

(2, 1, 4, 3) 0.12

(2, 3, 1, 4) 0.14

(2, 3, 4, 1) 0.18

(1, 4, 2, 3) 0.24

(1, 4, 3, 2) 0.28

(2, 4, 1, 3) 0.32

(3, 1, 2, 4) 0.32

(2, 4, 3, 1) 0.36

(3, 1, 4, 2) 0.36

(3, 2, 1, 4) 0.38

(3, 2, 4, 1) 0.42

(3, 4, 1, 2) 0.56

(3, 4, 2, 1) 0.60

(4, 1, 2, 3) 0.72

(4, 1, 3, 2) 0.76

(4, 2, 1, 3) 0.78

(4, 2, 3, 1) 0.82

(4, 3, 1, 2) 0.96

(4, 3, 2, 1) 1.00

η = 2 θ = 2

Order dK
ηθ

(1, 2, 3, 4) 0.000

(1, 2, 4, 3) 0.022

(1, 3, 2, 4) 0.049

(1, 3, 4, 2) 0.071

(2, 1, 3, 4) 0.087

(2, 1, 4, 3) 0.109

(2, 3, 1, 4) 0.136

(2, 3, 4, 1) 0.158

(1, 4, 2, 3) 0.196

(1, 4, 3, 2) 0.217

(2, 4, 1, 3) 0.283

(2, 4, 3, 1) 0.304

(3, 1, 2, 4) 0.348

(3, 1, 4, 2) 0.370

(3, 2, 1, 4) 0.397

(3, 2, 4, 1) 0.418

(3, 4, 1, 2) 0.543

(3, 4, 2, 1) 0.565

(4, 1, 2, 3) 0.783

(4, 1, 3, 2) 0.804

(4, 2, 1, 3) 0.832

(4, 2, 3, 1) 0.853

(4, 3, 1, 2) 0.978

(4, 3, 2, 1) 1.000

Table 8: Distance from the true order with the loss function dK
ηθ
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