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Abstract:  
We analyze the equilibrium and the optimal resource allocations in a monocentric city 
under monopolistic competition. Unlike the constant elasticity of substitution (CES) case, 
where the equilibrium markups are independent of city size, we present a variable 
elasticity of substitution (VES) case where the equilibrium markups fall with city size. We 
then show that, due to excess entry triggered by such pro-competitive effects, the  
‛golden rule’ of local public finance, i.e., the Henry George Theorem (HGT) , does not 
hold at the second best. We finally prove, within a more general framework, that the 
HGT holds at the second best under monopolistic competition if and only if the second-
best allocation is first-best efficient, which reduces to the CES case. 
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1 Introduction

Most modern economies feature imperfectly competitive industries that produce differentiated

varieties under increasing returns to scale. In a spatial context, such industries generate various

externalities through sharing, matching, and learning, which induce urban agglomeration (see

Duranton and Puga, 2004, for a recent survey). Sharing externalities of the new economic

geography type, stemming either from greater product diversity in consumption (Dixit and

Stiglitz, 1977) or from a wider array of differentiated intermediate inputs (Ethier, 1982) have,

in particular, attracted a lot of attention in recent years. The main reasons for this seem to be

that their microeconomic underpinnings are better understood, and that appropriate general

equilibrium modeling tools drawing on monopolistic competition have become increasingly

more popular.

As cities are the main centers of economic activity, a thorough analysis of the equilibrium

and the optimal resource allocations within them is desirable. In the context of monopolistic

competition with differentiated goods, these questions have been studied, among others, by

Abdel-Rahman and Fujita (1990). Building on the Dixit-Stiglitz constant elasticity of substi-

tution (henceforth, CES) model, they show that the ‘golden rule’ of local public finance, i.e.,

the Henry George Theorem (henceforth, HGT; Flatters et al., 1974; Stiglitz, 1977; Arnott,

1979; Arnott and Stiglitz, 1979) holds even at the second best where the planner takes the

equilibrium prices as given. Unfortunately, this neat result is likely to hinge on the CES

specification which displays two peculiar features. First, it does not allow for pro-competitive

effects and, therefore, markups are independent of city size. Second, the market provides

optimum product diversity at an efficient scale of production (see Dixit and Stiglitz, 1977,

Section I).

The HGT has both theoretical and empirical implications. In our monopolistic compe-

tition framework, the HGT implies that aggregate land rents equal aggregate fixed costs for

producing differentiated goods. If it holds, a single confiscatory tax on land rents can raise

enough revenue to implement the first-best allocation. This property is important given that

deviations from optimal city sizes are quite costly in terms of productivity and welfare, as

recently quantified by Au and Henderson (2006a, b). Turning to the empirical analysis, as

shown by Kanemoto et al. (1996) and as discussed by Arnott (2004), when the HGT holds, it

can be used to test whether cities are too big or too small. It is, therefore, important to know

when the HGT holds as well as whether aggregate land rents exceed or fall short of aggregate

fixed costs when it fails.

To derive more general results under monopolistic competition, we depart from the CES

model and explore when the HGT holds at the second best where the planner takes the

equilibrium prices as given. Such exploration is relevant especially because in the real world

the planner can usually control only a subset of variables. As is well known, the HGT holds
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in “all large economies [. . .] in which the distribution of economic activity over space is Pareto

optimal” (Arnott and Stiglitz, 1979, p.472). In other words, the HGT holds in the first-best

world where the planner can control all the relevant variables. In a second-best world with

imperfect competition, the results are far from clear. Abdel-Rahman and Fujita (1990), for

example, show that the HGT holds under CES monopolistic competition in the intermediate

input sector, whereas Helsley and Strange (1990) find that it does not hold at the second

best within a matching framework where firms face perfectly elastic demands and profits are

distributed through wage bargaining.

To the best of our knowledge, there has been until now no attempt to verify whether or

not the HGT holds at the second best within non-CES monopolistic competition frameworks

encompassing pro-competitive effects, gains from product diversity, and losses from urban

costs. As pointed out by Fujita et al. (2004, p.2934), this is

“[. . .] a serious issue because the main part of urban agglomeration economies arises

from locational externalities in an NEG type spatial economy. A market equilibrium in

a model of this type is not in general Pareto optimal. As far as we know, Abdel-Rahman

and Fujita (1990) is the only one that explicitly examines whether or not the Henry

George Theorem holds in an NEG type model. Their result is that, in a model where

the Dixit-Stiglitz type structure is assumed for intermediate products, the Henry George

Theorem holds even in the second best. We do not yet know if this result is general, but

it is possible that the theorem holds either exactly or approximately in a more general

setting.”

The main objective of this paper is threefold. First, we extend the general equilibrium model of

monopolistic competition with variable elasticity of substitution (henceforth, VES) by Behrens

and Murata (2007a) to a monocentric city setting. Second, using this framework, we investi-

gate the relationships among city sizes, markups, and whether or not the HGT holds at the

second best, either exactly or approximately. Last, we derive, within a more general frame-

work, necessary and sufficient conditions for the HGT to hold in second-best economies under

monopolistic competition.

Previewing the main results, we first show that a larger city has lower equilibrium markups

in our VES model. This result is in accord with empirical evidence supporting the hypothesis

that larger and denser urban areas are more competitive (e.g., Syverson, 2004; Campbell and

Hopenhayn, 2005). We then show that, due to excess entry triggered by such pro-competitive

effects, the HGT does not hold at the second best in that model. We finally prove, within

a more general framework, that the HGT holds at the second best under monopolistic com-

petition if and only if the second-best allocation is first-best efficient, which turns out to be

equivalent to the CES case. Hence, the HGT does not hold at the second best in VES models

of monopolistic competition.
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The remainder of the paper is organized as follows. In Section 2, we present the model,

whereas in Section 3 we derive the price equilibrium, the equilibrium mass of firms, and the

equilibrium utility. Section 4 then deals with the optimal city size and the HGT in the first-

and second-best cases. Section 5 concludes.

2 Model

Consider a monocentric city with a mass L > 0 of identical consumers/workers, as well as

with a large amount of homogeneous land. The land stretches out along a one-dimensional

space X, and the amount of land available at each location x ∈ X is set to one. All firms in

the city are set up at an exogenously given Central Business District (henceforth, CBD). In

what follows, we assume that labor is the only factor of production and that land is used for

housing only, i.e., firms do not consume land and the CBD is dimensionless. Without loss of

generality, we label locations such that this CBD is located at x = 0. Each agent consumes

inelastically one unit of land, supplies inelastically one unit of labor, and commutes to the

CBD for work. This implies that workers are symmetrically distributed around the CBD and

that the city covers the interval [−L/2, L/2].

Following Murata and Thisse (2005), we assume that commuting costs are of the ‘iceberg’

type: the effective labor supply of a worker living at a distance |x| ≤ L/2 from the CBD is

given by

s(x) = 1 − 2θ|x|. (1)

In expression (1), the parameter θ > 0 captures the efficiency loss due to commuting. For the

labor supply in efficiency units to be positive regardless of the worker’s location x in the city,

we assume throughout the paper that θ < 1/L. Consequently, the aggregate effective labor

supply at the CBD is given by

S(L) =

∫ L
2

−
L
2

s(x)dx = L

(
1 −

θL

2

)
. (2)

Let w stand for the wage rate paid to the workers by the firms at the CBD. Then, the wage

income net of commuting costs earned by a worker residing at either city edge is such that

s (−L/2) w = s (L/2) w = (1−θL)w. Without loss of generality, we normalize the opportunity

cost of land to zero. Because workers are identical, the wages net of commuting costs and

land rents are equalized across all locations: s(x)w − R(x) = s(−L/2)w = s(L/2)w, where

R(x) is the land rent prevailing at x, and R(L/2) = R(−L/2) = 0. For a given spatial

distribution of workers, the equilibrium land rent schedule in the city is therefore given by

R∗(x) = θ(L − 2|x|)w, which yields the following aggregate land rents:

ALR =

∫ L
2

−
L
2

R∗(x)dx =
θL2w

2
.

4



In what follows, we assume that each worker owns an equal share of land in the city. Accord-

ingly, in addition to her wage, each worker receives an equal share ALR/L of aggregate land

rents from her land ownership.

There is a single monopolistically competitive industry producing a horizontally differen-

tiated consumption good provided as a continuum of varieties. Let Ω be the set of varieties

produced in the city, the mass N of which is endogenously determined. Because agents have

the same claim to aggregate land rents, irrespective of their location x in the city, they make

the same consumption decisions. The representative consumer solves the following utility

maximization problem (which, as argued in the foregoing, is independent of x):

max
q(i), i∈Ω

U ≡

∫

Ω

u
(
q(i)

)
di (3)

s.t.

∫

Ω

p(i)q(i)di = E, (4)

where E stands for expenditure; p(i) denotes the price of variety i; q(i) stands for the per-capita

consumption of variety i; and u is a strictly increasing and strictly concave, twice continuously

differentiable sub-utility function. In what follows, we investigate two alternative models by

assuming that the sub-utility u is either

of the CES type: u
(
q(i)

)
≡ q(i)

σ−1
σ , σ > 1

or of the CARA type: u
(
q(i)

)
≡ 1 − e−αq(i), α > 0,

which allows us to derive closed-form solutions for the demand functions.

Maximizing utility (3), subject to the budget constraint (4), yields the following demand

functions for the CES case:

q(i) =
p(i)−σ

∫

Ω

p(j)1−σdj
E, (5)

whereas, as shown by Behrens and Murata (2007a), the first-order conditions for an interior

solution yield the following demand functions for the CARA case:

q(i) =

E −
1

α

∫

Ω

ln

[
p(i)

p(j)

]
p(j)dj

∫

Ω

p(j)dj

. (6)

Because of the continuum assumption, firms are negligible so that the price elasticities of

demand in the CES and CARA cases are as follows:

ǫ(i) = −
∂q(i)

∂p(i)

p(i)

q(i)
= σ (7)

ǫ(i) = −
∂q(i)

∂p(i)

p(i)

q(i)
=

1

αq(i)
. (8)
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As usual, the CES case (7) features a constant elasticity, whereas the CARA case (8) features

an elasticity that falls with the quantity q(i) consumed.

Turning to the production side, all firms have access to the same increasing returns to scale

technology. To produce Lq(i) units of any variety requires cLq(i) + F units of labor, where F

is the fixed and c is the marginal labor requirement, respectively. We assume that firms can

costlessly differentiate their products and that there are no scope economies. Thus, there is

a one-to-one correspondence between firms and varieties, so that the mass of varieties N also

stands for the mass of firms operating in the city. The profit of firm i is then given as follows:

π(i) = Lq(i) [p(i) − cw] − Fw, (9)

where q(i) is given by (5) or by (6), depending on whether we focus on the CES or the CARA

case, respectively.

3 Equilibrium

We now solve the model for the equilibrium prices and the free entry mass of firms. To do so,

we find it convenient to proceed in two steps.

First, firms maximize their profit (9) with respect to p(i), taking (w, E, N) as given since

they have no influence on these variables.1 This yields the following first-order conditions:

∂π(i)

∂p(i)
= Lq(i)

{
1 −

[
1 −

cw

p(i)

]
ǫ(i)

}
= 0, ∀i ∈ Ω. (10)

A price equilibrium is defined as a distribution of prices satisfying conditions (10). Note that

ǫ(i) does not depend on q(i) in the CES case, whereas it does depend on q(i) in the CARA

case. Since, as shown by (6), q(i) depends itself on two price aggregates in the latter case,

condition (10) highlights a fundamental property of VES monopolistic competition models

with a continuum of firms: although each firm is negligible to the market, it must take into

account the price aggregates that enter its first-order condition.

Let us start with the well-known CES case. Inserting (7) into (10), the unique price

equilibrium is trivially symmetric and given as follows:

p(i) = p ≡
σ

σ − 1
cw, ∀i ∈ Ω. (11)

Turning to the CARA case, the price equilibrium is determined by inserting (8) into (10).

Behrens and Murata (2007a) have shown that the price equilibrium is symmetric, unique, and

given by

p(i) = p ≡ cw +
αE

N
, ∀i ∈ Ω. (12)

1It is well known that price competition and quantity competition yield the same outcome in monopolistic

competition models with a continuum of firms (see Vives, 1999, p.168).
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Two comments are in order. Firstly, unlike in the CES case, the markup is increasing in

expenditure in the CARA case. The reason is that, as shown by expression (8), the elasticity

of demand falls with the consumption level. Stated differently, when expenditure is large, firms

face less elastic demands and, therefore, charge a higher markup. Secondly, in the CARA case,

the markup falls with the mass of competing firms in the city, i.e., there are pro-competitive

effects.

Second, given a price equilibrium, firms enter in and exit from the market until they earn

zero profits. Furthermore, the labor market clears. Hence, an equilibrium is a solution to the

following two equations:

Lq(i) [p(i) − cw] = Fw, ∀i ∈ Ω, (13)∫

Ω

[
cLq(i) + F

]
di = S(L), (14)

where all prices and quantities are evaluated at a price equilibrium. The budget constraint

(4), the zero profit condition (13), and the labor market clearing condition (14) then yield

E =
S(L)

L
w = (1 − θL)w +

ALR

L
. (15)

Given that the price equilibrium is symmetric in both cases, the quantities are also symmetric.

Inserting q = E/(Np) into (14) and using (15), we obtain the free entry mass of firms as a

function of the wage-price ratio as follows:

N =
S(L)

F

(
1 −

cw

p

)
. (16)

The labor market clearing condition (14) can also be rewritten as

q(L, N) =
1

cL

[
S(L)

N
− F

]
> 0, (17)

an expression that will prove useful when comparing the equilibrium and the optimal alloca-

tions.

3.1 CES case

The equilibrium mass of firms can be determined by substituting (11) into (16). Its expression

is given by:

N∗ =

(
1 −

θL

2

)

︸ ︷︷ ︸
=S(L)/L

L

σF
. (18)

It is worth noting that in the absence of commuting costs (θ = 0), expression (18) reduces to

the standard equilibrium mass of firms in the CES model, given by L/(σF ). When there are
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commuting costs (θ > 0), this equilibrium mass is reduced by a factor of S/L < 1, which is the

average effective labor supply in the city. This captures the fact that higher commuting costs

decrease average effective labor supply, which negatively affects the equilibrium mass of firms.

It can be readily verified that the equilibrium mass of firms is nevertheless strictly increasing

in the city size L and strictly decreasing in the commuting costs θ (recall that L < 1/θ). Note

also that the equilibrium output per firm Q∗ ≡ Lq∗ = (σ − 1)F/c is independent of city size,

as is the markup. Stated differently, larger cities are not more competitive and do not have

larger firms producing more output.

Evaluating (3) for the CES case, using (17), yields the following indirect utility:

U(N) = N

{
1

cL

[
S(L)

N
− F

]}σ−1
σ

. (19)

Finally, inserting (18) into (19) yields

U(L) = κ

(
1 −

θL

2

)
L

1
σ ,

where κ ≡ (Fσ)−1 [F (σ − 1)/c](σ−1)/σ > 0 is a bundle of parameters. It is readily verified that

U is a strictly concave and single-peaked function of L on the interval (0, 1/θ).

3.2 CARA case

The equilibrium mass of firms can be determined by substituting (12) into (16) and by using

(15). Its expression is given by:2

N∗ =

(
1 −

θL

2

)

︸ ︷︷ ︸
=S(L)/L

D(L) − αF

2cF
, where D(L) ≡

√
4αcFL + (αF )2. (20)

It is worth pointing out that in the absence of commuting costs (θ = 0), expression (20) reduces

to the equilibrium mass of firms in Behrens and Murata (2007a). When there are commuting

costs (θ > 0), this equilibrium mass is reduced by the average effective labor supply in the

city, for the same reasons as in the CES case. However, unlike in the CES case, where an

increase in L always raises N∗, the equilibrium mass of firms need not increase in city size.

There exists indeed a unique threshold L, given by

L ≡
6c − αFθ +

√
6αcFθ + (αFθ)2

9cθ
∈

(
0,

1

θ

)
, (21)

such that ∂N∗/∂L T 0 for all L S L. Put differently, when the city is large enough, an

additional increase in city size may reduce the equilibrium mass of firms. The intuition for

2Note that the other root is negative and must, therefore, be ruled out.
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this result is that, as can be seen from (20), the negative effect of L on average effective labor

supply affects N∗ linearly, whereas the positive effect affects N∗ less than linearly when L

gets sufficiently large, due to the presence of pro-competitive effects. When L exceeds the

threshold (21), the former effect dominates the latter and the equilibrium mass of firms falls.

Note that L increases in α and F , and decreases in θ. Hence, N∗ increases over a larger range

of city sizes when workers incur smaller efficiency losses from commuting (θ) and when firms

have more monopoly power (α) and face larger fixed labor requirement (F ).

Let us summarize our findings as follows:

Proposition 1 (CARA equilibrium mass of firms) The equilibrium mass of firms is in-

creasing (resp., decreasing) in city size when L is smaller (resp., larger) than the threshold L,

given by (21).

Note that, regardless of whether N∗ rises or falls with L, the following result holds.

Proposition 2 (CARA equilibrium markup) The equilibrium markup is strictly decreas-

ing in city size.

Proof. Some straightforward calculation using (12), (15), and (20) yields

p∗ =

[
1 +

2αF

D(L) − αF

]
cw,

thus showing that the equilibrium markup is strictly decreasing in L.

Proposition 3 (CARA equilibrium output per firm and total output) The equilibri-

um output per firm is strictly increasing and concave in city size, whereas the total output is

strictly increasing and convex-concave in city size.

Proof. To establish the proposition, note that

Q∗ =
1

c

[
S(L)

N∗
− F

]
=

1

c

[
2cFL

D(L) − αF
− F

]
. (22)

Therefore, ∂Q∗/∂L > 0 and ∂2Q∗/∂L2 < 0, which yields the first result.

The second result is obtained as follows. Let N∗Q∗ stand for the equilibrium total

output. Some calculations, using expressions (20) and (22), show that ∂(N∗Q∗)/∂L > 0,

limL→0 ∂2(N∗Q∗)/∂L2 > 0 and limL→1/θ ∂2(N∗Q∗)/∂L2 < 0. Hence, since ∂3(N∗Q∗)/∂L3 < 0

there exists, by continuity, a unique threshold Ľ such that N∗Q∗ is a convex function of L for

L < Ľ and a concave function for L > Ľ.
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Note that an increase in city size is accompanied by a rise in the equilibrium output per firm,

which leads to a better exploitation of firm-level scale economies and reduces markups. Such

a finding is in accord with empirical evidence suggesting that city size positively affects estab-

lishment size, and that competition is tougher in larger and denser markets (e.g., Syverson,

2004; Campbell and Hopenhayn, 2005). It is worth pointing out that, contrary to the CES case

where total output is a linear function of L, the relationship is strictly convex in the CARA

case for small city sizes. This is consistent with the observation by Holmes (1999, p.317), who

argues that “the empirical relationship that holds for certain industries is a convexity in the

relationship between local population and production”. Our results suggest that the convex-

ity/concavity of the relationship depends, among other things: (i) on the presence/absence of

pro-competitive effects; and (ii) on city size.

Evaluating (3) for the CARA case, using (17), yields the following indirect utility:

U(N) = N
{

1 − e−
α
cL [S(L)

N
−F ]

}
. (23)

Finally, inserting (20) into (23), we obtain

U(L) =

(
1 −

θL

2

)
D(L) − αF

2cF

[
1 − e−

2αF
D(L)+αF

]
. (24)

Unlike in the CES case, the properties of this function are less straightforward to establish.

Yet, we can prove the following result:

Proposition 4 (single-peaked CARA equilibrium utility) For all admissible parameter

values of the model, i.e., α > 0, c > 0, F > 0, and θ ∈ (0, 1/L), there exists a unique city size

L ∈ (0, 1/θ) which maximizes (24).

Proof. See Appendix A.

4 Optimal city size and the Henry George Theorem

As argued in the Introduction, the HGT has both important theoretical and empirical implica-

tions. Recall that in our monopolistic competition framework, the HGT implies that aggregate

land rents equal aggregate fixed costs for producing differentiated goods (e.g., Abdel-Rahman

and Fujita, 1990; Helsley and Strange, 1990).3 If it holds, a single confiscatory tax on land

3Strictly speaking, Abdel-Rahman and Fujita (1990) do not start from the aggregate fixed costs, but from

ad valorem sales subsidies to the increasing returns sector and they show that the total subsidies equal the

aggregate fixed costs for producing differentiated goods. Note that we use the increasing returns to scale version

of the HGT which is common to Abdel-Rahman and Fujita (1990) and Helsley and Strange (1990) since this

allows us to compare directly their results and ours. This comparison makes sense because Kanemoto (2007)

shows, in a more general framework, that the total Pigouvian subsidies required for agglomeration economies

equal the aggregate fixed costs.
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rents can raise enough revenue to implement the first-best allocation, thus avoiding costly

deviations from optimal city sizes in terms of productivity and welfare (Au and Henderson

2006a, b). Turning to the empirical analysis, as shown by Kanemoto et al. (1996) and as

discussed by Arnott (2004), when the HGT holds, it can be used to test whether cities are too

big or too small.4 As is well known, it holds at the first best. Whether or not the HGT holds at

the second best generally depends on the nature of externalities. Once we consider pecuniary

externalities, instead of technological externalities, the analysis becomes more involved. The

reason is that “producers are not expected to act as price takers and second best issues that

are caused by price distortions complicate the analysis” (Kanemoto et al., 1996, p.398).

We now turn to the questions of optimal city size and the HGT with pecuniary externalities.

After reviewing the well-known results in the first-best case, we turn to a second-best world

where the planner is free to choose L and N subject to the constraint that prices be supported

by a market equilibrium. In what follows, we superscript first-best values with f and second-

best values with s, and we impose symmetry across varieties.

4.1 First best

In the first best, the planner chooses L and N to maximize the utility of the representative

agent under the economy’s resource constraint. The optimization problem is given by:

max
L,N

Nu(q(L, N)),

where q(L, N) is given by (17).5 The optimality conditions can be expressed as follows:

Nu′(q)
∂q

∂L
= 0 (25)

u(q) + Nu′(q)
∂q

∂N
= 0. (26)

Equation (25) is the HGT because, from (2) and (17), it can be rewritten as the equality

between the aggregate land rents and the aggregate fixed costs, i.e., ALR = NFw.

CES case. Some straightforward calculation shows that (26) implies N = S(L)/(σF ). Plug-

ging this into ALR = NFw, we readily obtain the unique first-best city size:

Lf =
2

θ(σ + 1)
, (27)

4Kanemoto et al. (1996) use the HGT to investigate whether Japanese cities, in particular, Tokyo, are

too big or too small. To do so, they compare the ratios of aggregate land values to the aggregate Pigouvian

subsidies across cities.
5In what follows, we assume that u(q) ≥ 0 and u(0) = 0 for maximization to make sense and to yield

interior solutions. It is readily verified that both the CES and the CARA cases satisfy these conditions.
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which is always smaller than 1/θ since σ > 1. As expected, the optimal city size decreases

with commuting costs θ and when varieties become less differentiated (larger value of σ). Note

that the optimal mass of firms is the same as the equilibrium mass given by (18).

CARA case. Unlike in the CES case, the first-best city size cannot be solved analytically.

Yet, it is straightforward to prove the uniqueness of the first-best solution (see Appendix B)

and, therefore, to solve the model numerically. Figure 1 reveals that, as in the CES case, the

optimal city size falls with commuting costs θ.

[Insert Figure 1 about here]

4.2 Second best

In the second best, the planner chooses L and N to maximize the utility of the representative

agent subject to the resource constraint, the price equilibrium, and the zero profit condition.

The second-best problem is given by:

max
L,N

Nu(q(L, N)) s.t. SBC ≡ NLq(L, N) −
S

c

[
1 −

1

ǫ(q(L, N))

]
= 0,

where q(L, N) is defined as in (17) and SBC is the second-best constraint.6 Letting µ be the

Lagrange multiplier, the optimality conditions are given by

Nu′(q)
∂q

∂L
+ µ

∂SBC

∂L
= 0 (28)

u(q) + Nu′(q)
∂q

∂N
+ µ

∂SBC

∂N
= 0. (29)

Comparing (25) and (26) with (28) and (29), we obtain the following result.

Proposition 5 (HGT at the second best) The Henry George Theorem holds at the sec-

ond best if and only if the second-best allocation is first-best efficient.

Proof. The HGT holds at the second best if and only if the second term of the left-hand side

in (28) vanishes. There are two possibilities: either µ = 0 or ∂SBC/∂L = 0. In the former

case, comparing (25) and (26) with (28) and (29), we immediately see that the second-best

allocation is first-best efficient. The latter case never occurs at the second best. This can be

shown as follows. Suppose that

∂SBC

∂L
= 0 ⇐⇒ cN

(
q + L

∂q

∂L

)
=

(
1 −

1

ǫ

)
dS

dL
+

S

ǫ2

dǫ

dq

∂q

∂L
. (30)

6Behrens and Murata (2007b) consider an alternative second-best problem in which the planner controls

only city size L and takes the equilibrium mass of firms N∗ as given. Note that both problems yield the same

result because the second-best constraint SBC = 0 can be solved for N∗ as a function of L.
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Then, equation (28), together with Nu′(q) > 0, implies that ∂q/∂L = 0. It then follows from

(30) and (17) that dS/dL = cqN [ǫ/(ǫ − 1)] = (1/L)(S − NF )[ǫ/(ǫ − 1)]. Noting that (16)

implies S − NF = cw/p and that ǫ/(ǫ − 1) = p/(cw), we obtain dS/dL = 1/L.

Furthermore, using (17), ∂q/∂L = 0 yields dS/dL = (1/L)(S−NF ) = (1/L)(cw/p). Since

marginal cost pricing violates the zero profit condition in the presence of fixed costs, we may

conclude that ∂SBC/∂L = 0 cannot occur at the second best.

Finally, the converse is trivially true: if the second-best allocation is first-best efficient, the

HGT holds.

When is the second-best allocation first-best efficient? To answer this question, we differentiate

expression (17) with respect to N and use SBC = 0 to obtain

N
∂q

∂N
= −

S

cLN
= −q

ǫ

ǫ − 1
. (31)

We know from the proof of Proposition 5 that the HGT holds at the second best if and only

if µ = 0. Plugging (31) into (29), it is readily verified that µ = 0 holds if and only if

u(q) − u′(q)q
ǫ

ǫ − 1
= 0 (32)

when evaluated at qs = q(Ls, N s). Substituting ǫ = −u′(q)/[u′′(q)q] > 1 into (32) yields:7

u′′(q)

u′(q)
=

u′(q)

u(q)
−

1

q
. (33)

Using expression (33), we obtain the following proposition.

Proposition 6 (equivalence) The Henry George Theorem holds at the second best if and

only if the sub-utility is of the CES type.

Proof. Assume that the HGT holds at the second best. Then, by the proof of Proposition 5,

µ = 0 and thus (33) must hold. Equation (33) then implies lnu′(q) = ln u(q) − ln q + const.,

which implies u′(q)/u(q) = const. × (1/q). This in turn yields ln u(q) = const. × ln q + const.,

thus showing that u is of the CES type.

Conversely, if the sub-utility is of the CES type, equation (32) is satisfied. Plugging (32)

into (29) yields µ = 0 because

∂SBC

∂N
= L

(
q + N

∂q

∂N

)
−

S

cǫ2

dǫ

dq

∂q

∂N
= −

Lq

ǫ − 1
< 0,

where we have used (31) and the property that dǫ/dq = 0. Applying µ = 0 to (28) then shows

that the HGT holds at the second best.

7From the first-order conditions of the Lagrangian
∫
Ω

u(q(i))di + λ
[
E −

∫
Ω

p(i)q(i)di
]
, we have u′(q(j)) =

p(j)
∫
Ω

q(i)u′(q(i))di/E. Differentiating this expression with respect to p(j) and imposing symmetry across

varieties, the price elasticity of demand is given by ǫ = −u′(q)/[qu′′(q)] because there is a continuum of firms.

13



The intuition underlying Proposition 6 can be understood in terms of entry. Recall that entry

at the first best is given by (26). Entry at the second best is first-best efficient if and only

if (32) holds. Using the definition of relative risk aversion, given by rR(q) ≡ 1/ǫ < 1, the

right-hand side of (32) can be rewritten as

ϕ(q) ≡ u(q) − u′(q)q
1

1 − rR(q)
. (34)

Noting that excess entry occurs at the second best if and only if ϕ(q) < 0, we obtain the

following proposition.

Proposition 7 (excess entry) Excess entry occurs at the second best if the relative risk

aversion rR is increasing in q.

Proof. First, u(0) = 0 implies ϕ(0) ≤ 0. Differentiating ϕ, we obtain

ϕ′(q) = −
u′(q)qr′R(q)

[1 − rR(q)]2
,

thus showing that ϕ < 0 when r′R > 0.

The excess entry result is reminiscent of Mankiw and Whinston (1987) and Vives (1999).

Unlike in the basic CES model, where the relative risk aversion is constant, pro-competitive

effects trigger excessive entry as r′R > 0.8

CES case. Proposition 5 shows that the HGT holds at the second best if and only if the

second best is first-best efficient, which turns out to be equivalent to the CES case by Propo-

sition 6. Hence, the first-best and the second-best city sizes coincide and the HGT holds even

in the second-best economy (Abdel-Rahman and Fujita, 1990). This peculiar result arises

because entry is first-best efficient, i.e., ϕ(q) = 0 regardless of q, in the CES case.

CARA case. By Propositions 5 and 6, the HGT does not hold at the second best. The

reason is that entry is excessive due to the presence of pro-competitive effects. This can be

confirmed by Proposition 7. Indeed, in the CARA case, rR(q) is given by αq and is increasing

in q. Excess entry suggests that there are losses from excessive fixed costs, which is likely to

make aggregate land rents fall short of aggregate fixed costs. This intuitive result can readily

be confirmed numerically.

[Insert Figure 2 about here]

8In a more general CES model, where market power and taste for variety are disentangled, the equilibrium

mass of firms can be greater or smaller than the optimal one (Benassy, 1996). It should be noted, however,

that this discrepancy is not due to pro-competitive effects because the model displays constant markups.
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As in the first best, we cannot derive the second-best city size explicitly. Yet, because

the second-best city size exists and is uniquely determined, the model can readily be solved

numerically. Figure 2 depicts the difference between aggregate land rents and aggregate fixed

costs as a function of commuting costs θ. As can be seen, aggregate fixed costs exceed aggregate

land rents due to excess entry triggered by pro-competitive effects. One can further see that

the gap between aggregate land rents and aggregate fixed costs increases as θ decreases, which

is in accord with the numerical results obtained by Helsley and Strange (1990, p.209) in a

matching model. In words, the HGT holds approximately in cities with high commuting

costs, whereas it does not hold even approximately in cities with low commuting costs.

5 Conclusion

We have analyzed the equilibrium and the optimal resource allocations in a monocentric city

under monopolistic competition. Summarizing our key insights, we have shown that a larger

city has lower equilibrium markups in the CARA model. Furthermore, the HGT does not hold

in that model at the second best: aggregate fixed costs exceed aggregate land rents because

of excess entry triggered by pro-competitive effects. As the gap between aggregate land rents

and aggregate fixed costs increases when commuting costs fall, the HGT is not likely to hold,

even approximately, in cities with low commuting costs. More generally, we have proved that

the HGT holds in our second-best economies under monopolistic competition if and only if the

second-best allocation is first-best efficient, which is equivalent to the CES case. Therefore, the

HGT does not hold in second-best economies under monopolistic competition with variable

elasticities.

In this paper, we have focused entirely on the simple case of a monocentric city in order to

derive the necessary and sufficient conditions for the HGT to hold at the second best in gen-

eral equilibrium models of monopolistic competition. Nevertheless, we believe that the basic

mechnism of our VES model carries over to various spatial settings such as a classical system

of cities (Henderson, 1974), a core-periphery economy (Krugman, 1991) and a hierarchical

urban system (Fujita et al., 1999). The reason is that, as shown in the paper, excess entry

due to pro-competitive effects occurs at the second best. To derive the exact necessary and

sufficient conditions for each case is left for future research.
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Appendix A: Proof of Proposition 4

We first show that (24) is a strictly concave function of the population size L for all admissible

parameter values. Applying (12) and E = [S(L)/L]w to q = E/Np, we get q = 1/
[
α+cÑ(L)

]
,

where Ñ(L) ≡ [L/S(L)]N∗ =
[
D(L) − αF

]
/2cF . Let

U(L) =

(
1 −

θL

2

)
Ũ(Ñ(L)), where Ũ(Ñ(L)) ≡ Ñ(L)

[
1 − e

−
α

α+c eN(L)

]
.

Note that Ũ is strictly increasing and strictly concave in L because Ũ is a strictly increasing

and strictly concave function of Ñ , which is itself strictly increasing and strictly concave in L.

Premultiplying it by the affine and decreasing function 1 − θL/2 ≥ 0 preserves this concavity

(yet, it does not in general preserve the monotonicity). Next, some longer but relatively

straightforward computations show that

∂U

∂L

∣∣∣∣
L=0

=
1 − e−1

F
> 0

and

sgn

{
∂U

∂L

∣∣∣∣
L= 1

θ

}
= sgn

{
θ [αF − D(1/θ)] − 2c

(
e

2αF
αF+D(1/θ) − 1

)}
< 0.

When combined with the strict concavity of U and the continuity of ∂U/∂L, these last two

results prove that there is a unique value of L that maximizes (24) on (0, 1/θ).

Appendix B: Uniqueness of the first-best allocation in

the CARA case

In this appendix, we prove that the first-best allocation in the CARA case is uniquely deter-

mined. A first-best solution qf , Nf and Lf satisfies the first-order conditions (25) and (26).

Expression (25), together with (17), immediately yields the HGT, i.e., Nf = θ(Lf )2/(2F ).

Plugging this into (17), we obtain the quadratic equation cθqf(Lf )2 + 2θFLf − 2F = 0 with

respect to Lf . The positive solution is then given by

Lf =

√
2cθFqf + (θF )2 − θF

cθqf
. (B.1)
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Turning to the first-order condition with respect to N , equation (26) can be rewritten as

αqfe−αqf

1 − e−αqf = cLfqf Nf

S(Lf )
=

cLfqf

cLfqf + F
, (B.2)

where we use (14). Inserting (B.1) into (B.2), we obtain a single equation with respect to qf

as follows:

LHS ≡
αqfe−αqf

1 − e−αqf = 1 −
θF√

2cθFqf + (θF )2
≡ RHS. (B.3)

We next show that equation (B.3) has a unique solution for qf since LHS is decreasing and

RHS is increasing in qf . To see this, differentiate LHS with respect to qf to obtain

∂ LHS

∂qf
= −

α
[
1 + eαqf

(αqf − 1)
]

(1 − eαqf )2
< 0.

Note that the last inequality is obtained as follows. Let g(qf) ≡ 1 + eαqf
(αqf − 1). We then

get g(qf) > 0 for all qf > 0 because g(0) = 0 and g′(qf ) > 0 for all qf > 0. Note also that

RHS is increasing in qf and that

lim
qf→0

LHS = 1, lim
qf→∞

LHS = 0, lim
qf→0

RHS = 0, lim
qf→∞

RHS = 1,

which ensure the uniqueness of qf . Finally, from expressions (B.1) and (B.2), we have the

uniqueness of the first-best city size Lf as well as of the mass of firms Nf .
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Figure 1: First-best city size and commuting costs (α = 1.2, c = 0.3, F = 0.5)
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Figure 2: ALR and aggregate fixed costs (α = 1.2, c = 0.3, F = 0.5)
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