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Abstract:  
Using a large sample of US urban areas, we provide systematic evidence that mean 
household income rises with city size (‘agglomeration’), that this effect is stronger for the 
top of the income distribution (‘polarization’), and that household income inequality  
increases at a decreasing rate in city size (‘inequality’). To account simultaneously for 
these facts, we develop a microfounded model of endogenous city formation in which 
urban centres select the most productive agents. Income inequality is driven by both the 
‘poverty’ and the ‘superstar’ margins: whereas the least productives agents fail in a 
thougher urban environment, which increases ‘poverty’, the most productive agents 
become ‘superstars’ who reap the benefits from a larger urban market. At equilibrium, 
the returns to skills are increasing in city size, thereby dilating the income distribution. 
Our model is both rich and tractable enough to allow for a  detailed investigation of when 
cities emerge, what determines their size, how they interact through the channels of 
trade, and how inter-city trade influences intra-city income inequality. 
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1 Introduction

The world’s population is increasingly clustered into a few locations: since 2006, more than

half of humanity is urbanized. Wealth creation and innovation are even more spatially concen-

trated than the distribution of population itself. Consider, for example, the three main Japanese

metropolitan areas: in 1990, Tokyo, Osaka, and Nagoya together made up for a third of the

Japanese population, or about 2.6% of East Asia’s, but for as much as 40% of Japanese GDP

and 29% of East Asia’s manufacturing production (Fujita and Thisse, 2002). A back-of-the-

envelope calculation therefore suggests that the inhabitants of these three metro areas were on

average a third more productive than the rest of Japan, and an amazing eighteen times more

productive than the rest of East Asia. As an additional example consider Figure 1a, which plots

the mean household income against city population for the year 2006 in a sample of almost five

hundred US cities: the raw log-log correlation of .52 is strong and statistically significant.

Insert Figures 1a–1b about here.

The cases of Japan and the US are illustrative, not exceptional: the link between city size

and productivity is well documented (Rosenthal and Strange, 2004). By contrast, it is often

overlooked that large cities are also more unequal and host many poor households (Glaeser,

1998). The first contribution of this paper is to uncover a series of stylized facts about city size,

productivity, and the intra-city distribution of household income (Section 2). The second and

main contribution is then to present a unified theoretical framework that provides a synthetic

explanation showing how these facts might be the by-product of each other (Sections 3 and 4).

We also extend the model to investigate how urban size, productivity and inequality interact in

a system of cities that are linked through the channels of trade (Section 5).

Starting with the stylized facts, we first illustrate by way of Figure 1b that income inequality

is increasing in city size in our US sample that includes the largest metro areas as well as smaller

‘micro’ areas.1 The positive log-log correlation of .25 proves to be robust to the inclusion of many

socio-economic controls, as we will establish in Section 2.

Insert Figures 2a–2b about here.

Second, income inequality also increases with city size for reasons that go beyond the socio-

economic composition of cities: indeed, the returns to city size increase along the income distri-

bution. To see this, we cut the income distribution of each city into quintiles. A close inspection

of Figure 2a reveals that the relationship between the means of the 1st and of the 5th income

quintiles and city size is statistically positive for both, and strongest for the top quintile (with

log-log correlations of .24 and .56 for the 1st and the 5th quintiles, respectively). We show in

1On the link between MSA characteristics and income inequality, see Nord (1980), Madden (2000) and Glaeser,

Resseger and Tobio (2008). This literature exclusively focuses on a subset of the largest MSAs and provides no

microfounded theoretical explanations.
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Section 2 that this monotonic ‘dilatation’ of the income distribution by city size is robust to the

inclusion of various socio-economic controls. This phenomenon suggests that a ‘superstar’ effect

à la Rosen (1981) might be at work, whereby the returns to skills are magnified by city size

and/or the top income earners sort themselves into the largest cities. Figure 2b, which depicts

the log-log correlation of .30 between the ratio of the average income of the top 5% incomes rel-

ative to the overall average income (henceforth, top-five-to-mean ratio) and city size is strongly

suggestive of the existence of such an effect.

Our third stylized fact reveals that focusing on large cities, as the bulk of the literature has

done to date, hides interesting patterns arising for smaller urban areas (Michaels, Rauch and

Redding, 2008, provide a remarkable exception, albeit in a different context). To highlight this,

we revisit the size-productivity relationship, which finds a persistent backing in the empirical

literature: the elasticity of labor and firm productivity with respect to city size or density is

positive and typically falls in the 3% – 8% range (e.g., Ciccone and Hall, 1996; Rosenthal and

Strange, 2004). The reasons usually put forth are that city size makes workers more productive via

various ‘agglomeration economies’ (e.g., Marshall, 1890; Duranton and Puga, 2004) and because

the most productive agents sort themselves into the largest cities (e.g., Combes, Duranton and

Gobillon, 2008; Mion and Naticchioni, 2009). Our contribution to this body of work is to

establish a quantitative distinction between the small and the large cities of our sample (‘micro’

and ‘metro’ areas, respectively). We uncover that the elasticity of mean income with respect to

city size is larger for micro than for metro areas. By way of quantile regressions, we also find

that this elasticity decreases monotonically as we move from the bottom to the top quintile of

the whole sample. To summarize our stylised facts, a large size contributes to both productivity

and inequality and this contribution is strongest for the smallest cities.

The second and main contribution of the paper is to provide a theory that can account for

the multiple links between city size and productivity (what we refer to as ‘agglomeration’ for

short), the differential returns to skill (‘polarization’), and the unequal distribution of income

(‘inequality’). While some of these features have been addressed individually in the literature

there is, to the best of our knowledge, as yet no theory that addresses them simultaneously.

For example, Rosen’s (1981) pioneering work focusses on imperfectly competitive markets with

quality-differentiated sellers and predicts that a larger market size leads to the entry of less

productive agents so that the average productivity of sellers falls, tough the income distribution

gets more skewed. This runs counter the stylized fact that larger cities (markets) are on average

more productive (competitive). Furthermore, the size of the market is considered as exogenously

given in his analysis. However, one of the key questions in an urban setting is to investigate

what determines a city’s equilibrium size. In our model, which blends heterogeneous managerial

talent or skills in the spirit of Lucas (1978) and Rosen (1981) with functional forms taken from

the heterogeneous firm models put forth by Asplund and Nocke (2006) and Melitz and Ottaviano

(2008), larger cities are places that make workers and firms more productive yet where failure
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is more likely than elsewhere because of tougher selection. The market size is endogenously

determined by individual location decisions of entrepreneurs who are indifferent between entering

the city or not at equilibrium: tougher selection in larger cities is ex ante compensated for by

the more than proportional returns for the successful, thereby generating ex post larger income

inequalities. In sum, the model suggests that urban productivity and polarization are a by-

product of the survival of the fittest in a tough, competitive environment.2

Since city size has a strong impact on both productivity and inequality, and as size itself must

be endogenously determined, we require a model in which we can tackle the questions of when

cities emerge and what determines their equilibrium size. Our theoretical framework allows us

to parsimoniously deal with these issues. Starting with a single city, we link the equilibrium

city size, the average productivity, and the resulting income distribution to a few underlying

key parameters such as the dispersion of skills, commuting costs, and the degree of product

differentiation. We then extend the model to multiple cities to investigate how they interact

with one another through the channels of trade. One key insight in this extended setting is that

the positive relationship between city size and productivity becomes an equilibrium relationship

in a system of cities, and that larger cities provide a larger array of goods and services (which

is reminiscent of central place theory à la Lösch, 1940). Focussing on symmetric equilibria, in

which all cities are identical, we show that the comparative static results derived in the single-

city setup carry over to this new environment. We also show that lower inter-city trade costs

are conducive to city formation and city growth: access to larger markets, brought about by

transport innovations or by trade liberalization, increase the prospect of urbanization and the

equilibrium city sizes. Income inequality also increases with trade openness at the symmetric

equilibrium, but for reasons that are different from those unveiled in the international trade

model of Helpman, Itskhoki and Redding (2008), who focus on labor market frictions.

The remainder of the paper is organized as follows. Section 2 analyzes the three stylized facts

pertaining to US urban areas in 2006 in more detail and establishes their robustness. Section 3

then introduces the basic model and derives the equilibrium conditions. Section 4 deals with the

single-city case, whereas Section 5 extends the model to multiple cities and trading networks.

Section 6 concludes. We relegate most proofs, the guide to various calculations, as well as some

extra material, to an extensive set of appendices.

2There are to our knowledge only three papers that investigate a subset of these issues in a spatial context.

First, as pointed out to us by Esteban Rossi-Hansberg, the model in Lucas and Rossi-Hansberg (2002) should also

imply a positive relationship between city size and income inequality because of the presence of externalities and

a CBD with a spatial dimension. This relationship may be increasing at a decreasing rate as the emergence of new

subcentres curbs the rent and wage gradients. Second, Combes, Duranton, Gobillon, Puga and Roux (2009) embed

reduced-form agglomeration and dilatation forces in the Melitz and Ottaviano (2008) framework. Their focus is

mostly empirical and aims at disentangling selection effects from agglomeration economies. A complementary

approach is Okubo (2009), who casts a heterogeneous firm model into a ‘new economic geography’ framework to

investigate the equilibrium patterns of agglomeration. Both Okubo and Combes et al. disregard urban structure.
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2 Three stylized facts

Using data for 499 US Core Based Statistical Areas (henceforth CBSAs, or ‘cities’ for short),

this section uncovers some new macro evidence on the links between city size and mean income

(‘agglomeration’), city size and the income structure (‘polarization’), and city size and income

distribution (‘inequality’). A detailed description of the data, as well as summary statistics, are

relegated to Appendix A and to Table 1. It is worth stressing from the outset that our aim

is to highlight the various correlations in the data, but to keep the identification of any causal

relationship among the variables for future work.

2.1 Agglomeration

Productivity rises with city size or density. The reasons put forward by the literature are es-

sentially subsumed by ‘Marshall’s trinity’: human density is conducive to better matching in

thicker labor markets, the transmission of knowledge spillovers, and the sharing of intermediate

inputs and infrastructure (for surveys, see Duranton and Puga, 2004, on theory; and Rosenthal

and Strange, 2004, on empirics). Furthermore, productivity increases with city size also because

the most highly skilled workers sort themselves into large metropolitan areas. As productivity

and earnings rise with city size, so do household incomes, of which labor earnings constitute the

largest component.

Insert Table 2 about here.

The visual findings of Figure 1a are confirmed by a simple OLS regression of average household

income on city size, which yields an elasticity of about .1 (column 1 of Table 2). Two words of

caution about the suggestive evidence illustrated by Figure 1a are in order. Firstly, the income of

a household depends on its composition and on the individual earnings of its members. Therefore,

average houshold income in a city depends on the presence of multiple-earner or single-person

households in that city (Madden, 2000). Secondly, the ideal way to capture the size-productivity

relationship directly is to estimate the response of individual earnings to city size by controlling

for worker characteristics and unobserved heterogeneity (Wheeler, 2001; Combes et al., 2008;

Bacolod, Blum and Strange, 2009). This can be achieved using panel microdata but has the

drawback of reducing the number of small cities that can be included in the sample as only few

individual observations are available for them.3 To keep as many CBSAs as possible in the sample,

while controlling for cross-city heterogeneity that is likely to affect income and productivity, we

3There are only few observations for small cities in microdata samples such as the Current Population Survey

(CPS) or the 5 percent Public Use Micro Sample (PUMS). Madden (2000) only works with the 182 largest

MSAs, whereas Glaeser, Resseger and Tobio (2008) work with 242 of them. Our results reveal that the size-

productivity-inequality relationships are strongest for small and medium-sized cities, which should thus be part

of the analysis.
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regress citywide average household income on measures of household composition, educational

attainment, ethnic composition, poverty, geographic location, and industrial structure of the

city. Table 2 (colums 2–8) reports the results. The positive size-income relationship survives

the inclusion of all these controls and remains highly significant: doubling city size raises the

average household income by about 3–4%, which is in line with previous findings in the literature.

Comparing colums 6 and 7 of Table 2, we see that the size-income relationship is twice as strong

for the micropolitan statistical areas than for the metropolitan statistical areas. This finding

vindicates our choice of including the medium-sized cities (‘micro areas’) in establishing the

stylized facts. Whereas doubling city size raises mean household income by 3.9% for the metro

areas, it raises mean household income by 7.7% for the micro areas. This finding is further

confirmed by Table 3, which summarizes the quantile regressions of mean household income on

city size and the aforementioned controls. The size elasticity of mean income is significant for

all quintiles and monotonically decreasing: doubling city size raises mean household income by

5.5% in the bottom quintile but only by 2.1% in the top quintile.

Insert Table 3 about here.

When taken together, our results suggest that there is a positive and highly significant relation-

ship between city size and mean income (Stylized Fact 1a), and that this relationship is more

important for smaller cities than for bigger cities (Stylized Fact 1b). In sum, the relationship

between mean income and city size is increasing and concave (Stylized Fact 1 for short).

2.2 Polarization

Does city size benefit disproportionately some individuals? Recall from Figure 2a that the higher

income quintiles benefit more from increases in city size than the lower income quintiles do. Put

differently, city size widens the gap between the means of the different income quintiles. Wheeler

(2001) shows that the returns to city size are increasing in the level of educational achievement.

Going further, Bacolod et al. (2009) show that this urban wage premium is larger for cognitive

skills than for interactive skills (i.e., skills that ease face-to-face interactions, or ‘people skills’ in

their terminology), which is in turn larger than the urban wage premium for motor skills and

physical strength. Insofar as income, educational achievement and skills are highly correlated,

we may view these results as the ‘micro’ counterparts to our ‘macro’ findings. As can be seen

from Table 4, this is confirmed by regressing the mean household incomes by income quintile

on city size: controlling for the same demographic and economic variables as in Tables 2 and 3,

we find a monotonically increasing and highly significant relationship between mean income by

quintile and city size. A simple F -test of equality reveals that the coefficients on city size of the

first and the fifth quintiles are statistically different at the 1 percent level.

Insert Table 4 about here.
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A larger city size thus does not benefit all inhabitants equally, but the benefits predominantly

accrue to the agents higher up in the income distribution. The fact illustrated by Figure 2b

that city size dilates the upper tail of the income distribution is confirmed by regressing the

top-five-to-mean ratio on city size and our list of controls.

Insert Table 5 about here.

Table 5 presents the results. As can be seen, larger cities have higher top-five-to-mean ratios

than smaller cities: doubling city size roughly increases the ratio of the top 5% mean income to

the overall mean by 1.5% to 3.7%. Clearly, ‘superstars’ live in New York City or in the Bay area

around San Francisco, not in micro areas, and city size is associated with a ‘polarization’ of the

income distribution.

To summarize, city size is positively associated with a dilatation of the income distribution

(Stylized Fact 2a). In particular, larger cities have disproportionately higher mean incomes for

the top 5% of the income distribution (Stylized Fact 2b). These findings suggest that there

may be a strong and direct link between city size and income inequality.

2.3 Income inequality

We measure income inequality using the household income Gini coefficient.4 Recall from Fig-

ure 1b that the relationship between size and income inequality is positive, as suggested by the

existence of polarization. See also Long, Rasmussen and Haworth (1977) and the contemporane-

ous paper by Glaeser, Resseger and Tobio (2008) on the positive correlation between city size or

density and income inequality.5 To get a sense of what is driving inequality, it is instructive to

first regress the Gini coefficient on the poverty rate and on the top-five-to-mean ratio. Using OLS

with standardized regression coefficients, we find that an increase of one standard deviation in

the top-five-to-mean ratio leads to a .78 standard deviation increase in the income Gini, whereas

a one standard deviation increase in poverty leads to a .33 standard deviation increase in the

income Gini (both coefficients are significant at the 1 percent level). In words, more ‘poverty’

(which affects the left tail of the income distribution) and more ‘superstars’ (which affects the

right tail of the income distribution) both increase income inequality in cities, yet superstars seem

to contribute more to measured income inequality than poverty does. Using the interquantile

distance as an alternative inequality measure yields similar results, with standardized regression

coefficients of .81 for the top-five-to-mean ratio and .32 for the poverty rate (again significant

4As an alternative measure, we compute the gap between the fifth and the first income quintile means and

take its ratio to the overall mean. As can be seen from Table 1, both measures are very strongly correlated, so

that we can only focus on the Gini coefficient in what follows.
5These authors use the five percent Integrated Public Use Micro Samples from the census years 1980 and 2000

to construct income Gini coefficients. They find that the partial correlation between the log Gini coefficient of

the household income distribution and log population density is positive.

7



at the 1 percent level). Table 6 reports regression results for measures of income inequality on

city size and our list of controls. The coefficient on city size is almost always significant, with

elasticities in the .01 to .03 range: doubling city size increases measured income inequality by

about 1% to 3%. Comparing the results in columns 6 and 7 of Table 6, we also see that the

impact of city size on inequality is roughly four times as large for the micro areas than for the

metro areas, though the precision of the estimates decreases with the smaller sample sizes. This

finding suggests that the relationship between city size and income inequality is increasing and

concave (Stylized Fact 3).

Insert Table 6 about here.

The foregoing finding is further confirmed by Table 7, which presents results of quantile regres-

sions of the household income Gini on city size and our controls. As can be seen, the coefficient

on city size is almost monotonically decreasing as we move up the quintiles, thus suggesting that

city size becomes less important for explaining income inequality in larger cities. A simple F -test

of equality reveals that the coefficients on city size of the first and the fifth quintile are borderline

statistically different at the 1 percent level.

Insert Table 7 about here.

To conclude this section, let us emphasize that our controls for industrial composition, namely

an Isard index of industrial diversification and the share of employment in the higher level service

sectors, do not appear to significantly influence income inequality whereas they influence mean

income in cities (compare Tables 2 and 6). Thus, while specialization and industry structure

do matter for productivity, income inequality seems to be more driven by within-sector than

by between-sector heterogeneity (Lemieux, 2006). For this reason, we will build a model with

a representative sector which, by construction, explains the relationship between inequality and

city size by abstracting from compositional issues related to industry structure.6

3 The model

We start by sketching the model. There are Λ regions, labeled l = 1, 2, . . . , Λ, and variables

associated with each region will be subscripted accordingly. Each region has a large and fixed

population Ll of ex ante undifferentiated workers. All workers are endowed with some amount of

a numéraire good and one unit of labor that they can use either for producing the numéraire good

as unskilled workers, or for becoming skilled entrepreneurs. Becoming an entrepreneur involves

6It is well known that the industrial mix of larger cities is more diverse than that of smaller ones (e.g., Hen-

derson, 1988 and 1997). Duranton and Puga (2005) show that the same holds increasingly true for the ‘functional

mix’ of cities. In both cases, these facts regard the horizontal diversification of cities, where productivity differ-

ences may be driven by compositional effects. In this paper, we show that large cities are vertically differentiated

as well, i.e., productivity differences are driven by individual effects even in the absence of compositional effects.
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a net entry (or education) cost and requires that the worker moves to a city which provides the

adequate environment for acquiring human capital and starting a business. ‘Learning in cities’

which serve as ‘incubators for innovation’ is in accord with empirical evidence (Glaeser and Maré,

2001; Duranton and Puga, 2001) and the fact that most universities are located there. Becoming

an entrepreneur entails however a risk of failure, in which case the agent is stuck in the city, does

not produce, and consumes solely from her initial endowment. There are thus three types of

agents at equilibrium: successful skilled agents in the cities (entrepreneurs); unsuccessful skilled

agents in the cities; and unskilled agents who stay in the rural area.

The economy has two sectors. The first one produces a continuum of varieties of a horizontally

differentiated good or service, whereas the second one produces a homogenous good. Production

of the homogenous good requires no entrepreneurial skills, occurs under constant returns to scale,

and takes place outside the city. Furthermore, the homogenous good is traded in a competitive

market that is perfectly integrated. Hence, its price is equalized across regions, which makes this

good a natural choice for the numéraire. Perfect competition ensures that marginal cost pricing

prevails, which implies a unit wage everywhere as long as the homogenous good is produced in

all regions, which we henceforth assume to be the case. The differentiated good is produced by

the entrepreneurs using entrepreneurial skills and the numéraire good. The latter is obtained

either from the entrepreneur’s endowment or from the countryside. Trading the differentiated

good across cities is costly.

Previewing our subsequent results, only those entrepreneurs who are productive enough sur-

vive and produce at equilibrium, whereas low-ability entrepreneurs leave the market immediately

without setting up production at all. The minimum ability that entrepreneurs have to achieve

to survive is an equilibrium feature of the model that we refer to as selection. Entry into the city

occurs in reponse to economic opportunities on both the production and the consumption side,

which depend largely on the ability threshold required for producing successfully. We view the

determination of city size Hl ≤ Ll at equilibrium as the result of a tension between agglomeration

and dispersion forces that will be made precise below.

3.1 Timing

There are two stages. In the first one, risk-neutral workers decide whether or not to become

entrepreneurs, in which case they incur the sunk entry cost fE ≥ 0 (paid in terms of the numéraire

and including the opportunity cost of foregoing the unskilled wage), or to stay as uneducated

workers in the countryside. Henceforth, superscript ‘E’ is a mnemonic for ‘entry’ or ‘education’,

whereas superscript ‘U ’ is a mnemonic for ‘unskilled’ or ‘uneducated’. Interpreting fE as a cost

to acquiring education, this means that agents decide first whether to acquire skills or not and,

if so, become urban dwellers, and only then learn their ability. Living in a city gives rise to

extra costs and benefits, which will be made precise below. Once the education-cum-location
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decision is taken, nature attributes to each entrepreneur a horizontal characteristic ν and a

vertical characteristic c: we think about the former as her product variety (or her skill type)

and about the latter as her entrepreneurial ability (or her skill level). Specifically, entrepreneurs

discover a variety ν and nature draws the marginal cost c at which they can produce this variety

from some common and known distribution g. Upon observing their draw, entrepreneurs chose

whether to produce or not and to which markets to sell.

Entrepreneurial skills are an indivisible fixed input and we assume that production occurs

where entrepreneurs live, i.e., entrepreneurs who entered market l in the first stage produce and

consume in city l. Our maintained assumption that all agents are immobile and do not relocate

to another city after having observed their skill level implies that we disregard issues of spatial

sorting along skills in the model. We do so mostly for analytical convenience; actually, selection

and agglomeration generate higher productivity in larger cities regardless of sorting, so adding

sorting to our model would reinforce our results. We also do so on theoretical and empirical

grounds: our model with sorting would share the counterfactual property of a ‘perfect sorting’,

like virtually any existing model of spatial sorting (e.g., Mori and Turini, 2005; Nocke, 2006).

Also, recent empirical evidence suggests that while workers in larger cities are more educated

and more skilled than are those in smaller cities, they are so to a modest degree only (Berry

and Glaeser, 2005; Bacolod et al., 2009). Last, we also assume that upon observing their skill

level, unsuccessful agents do not migrate back to the countryside. Allowing for this would imply

that the income distribution is independent of the city size, which runs counter the stylized facts

highlighted in the foregoing section (see Appendix T.2 for additional details).

In the second stage, entrepreneurs set profit maximizing prices and all markets clear. We

solve the game for subgame perfect equilibria by backward induction.

3.2 Preferences, demand, and urban structure

Following Asplund and Nocke (2006) and Melitz and Ottaviano (2008), all agents have identical

quasi-linear preferences over the homogenous good and the varieties of the horizontally differen-

tiated good. Furthermore, each agent is endowed with d
0

units of the numéraire. Varieties of

the differentiated good available in region l are indexed by ν ∈ Vl. In what follows, we denote

by Vhl the set of varieties produced in h and consumed in l; by V+
l ⊆ Vl ≡ ∪hVhl the subset of

varieties effectively consumed at equilibrium in region l; and by Nl the measure of V+
l (i.e., the

mass of varieties consumed in l). The subutility over the differentiated varieties is assumed to

be quadratic, so that utility for a resident in region l is given by:

U i
l = κi

{
α

∫

Vl

dl(ν)dν −
γ

2

∫

Vl

[dl(ν)]2 dν −
η

2

[∫

Vl

dl(ν)dν

]2
}

+ d0
l , (1)

where α, η, γ > 0 are preference parameters; where d0
l and dl(ν) stand for the consumption of

the numéraire and of variety ν, respectively; and where κi = 1 if i = E (the agent lives in the
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city) or κi = 0 if i = U (the agent lives in the countryside). We assume that the differentiated

good is sold and consumed exclusively in the cities, whereas the homogenous good is available

and consumed everywhere. The parameter κi captures this assumption in a parsimonious way.7

Since marginal utility at zero consumption is bounded for each variety, urban dwellers will in

general not have positive demand for all of them. In what follows, we assume that all agents have

positive demand for the numéraire, i.e., d0
l > 0, which rules out income effects on the differentiated

good. A sufficient condition for this to hold is that the initial numéraire endowment d
0

is large

enough, which we henceforth assume to be the case.

All entrepreneurs reside in a monocentric city and, therefore, pay commuting costs and land

rents. Furthermore, there is at most one city per region.8 The aggregate land rent is redistributed

among urban dwellers, each of whom has a claim to an equal share of it. The urban costs

(commuting plus housing) in region l, when its size is Hl, is given by θHl, where θ > 0 is

a parameter positively related to commuting costs (see Appendix T.1). In sum, becoming an

urban dweller involves two types of costs: the urban costs proper, namely θHl, and the entry

cost, namely fE . Let Πl(c) denote the entrepreneurial profit of an agent with ability c in city l.

The budget constraint is then given by

κi

[∫

Vl

pl(ν)dl(ν)dν + θHl + fE

]
+ d0

l = wi
l(c) + d

0
, (2)

where wi
l(c) = wl = 1 if i = U , and wi

l(c) = Πl(c) if i = E. In the latter case, the entrepreneur’s

income also depends on her inverse ability c, as will be made clear below.

Maximizing (1) subject to (2) allows us to express the indirect utility of a type-i agent in l

as V i
l (c) = wi

l(c) + κiCSl + d
0
, where CSl denotes the consumer surplus (see Appendix T.3 for

computational details).

3.3 Production

We assume that markets are segmented and that entrepreneurs are free to price-discriminate.

The delivered cost in city h of a unit produced with marginal cost c in city l is τc, with τ > 1 if

h 6= l and c if h = l. Hence, (τ − 1)c may be interpreted as the frictional trade cost incurred in

7This assumption is a short-cut, the purpose of which is to make the market size for the differentiated good

endogenous while retaining a simple model. A more elegant microfoundation would be to assume that shipping

varieties from the city to the rural areas entails some cost. Assuming prohibitive trade costs may be a strong

assumption, yet it is worth keeping in mind that a large share of urban output is made-up of non-tradable

consumer services (restaurants, cinemas, theaters). Also, many tradables like branded products can be aquired

only in downtown arcades or suburban shopping malls carrying large inventories.
8The first assumption is made for analytical convenience. The key element is that urban costs rise with city

size, a property that is also encountered in non-monocentric city models like Fujita and Ogawa (1982) or Lucas

and Rossi-Hansberg (2002). The second assumption is made without loss of generality since we can always redefine

‘regions’ so that there is, indeed, only at most one city in each.
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transporting a unit of any variety of the differentiated good across the two cities. We interpret

such a cost broadly as stemming from all distance-related barriers to the exchange of goods, and

we assume that this cost is symmetric across all city-pairs. We impose symmetry for two reasons.

Firstly, it eases the analysis and the notational burden without significantly modifying our main

theoretical insights. As shown among others by Tabuchi, Thisse and Zeng (2005), the general

case of an urban hierarchy leads to a complex taxonomy and only allows for clear-cut results

in a few special cases involving at least some symmetry. Secondly, making these assumptions

underscores that our model is rich enough to generate various urban configurations despite all

cities sharing a priori the same symmetric fundamentals.

The variable production component requires using the ubiquitous numéraire good as an inter-

mediate input so that the cost of an entrepreneur in l with a draw c is given by c
(
qll +τ

∑
l 6=h qlh

)
,

where qlh is output produced in l and sold in h.

3.4 Parametrization

To obtain clear analytical results, we henceforth assume that productivity draws 1/c in all regions

follow a Pareto distribution with lower productivity bound 1/cmax and shape parameter k ≥ 1.

This implies a distribution of cost draws given by:

G(c) =

(
c

cmax

)k

, c ∈ [0, cmax].

The shape parameter k is related to the dispersion of cost draws. When k = 1, the cost dis-

tribution is uniform on [0, cmax]. As k increases, the relative number of low productivity firms

increases, and the productivity distribution is more concentrated at these low productivity levels.

Any truncation of the Pareto distribution from above at cl < cmax is also a Pareto distribution

with shape parameter k. To avoid a taxonomy of special cases that involve corner solutions and

that do not add any additional insights, we impose α < cmax in what follows. This assumption

implies that an isolated entrepreneur who gets a really bad draw is not productive enough to

remain active at equilibrium.

3.5 Market outcome

Let phl(c) and qhl(c) denote the price and the quantity sold by an entrepreneur with inverse

productivity c when she produces in region h and serves region l. Since markets are segmented

and marginal costs are constant, operating profits earned from sales to different regions are

independant from one another. Let πhl(c) = [phl(c) − τc] qhl(c) denote these operating profits,

expressed as a function of c.

Each firm sets profit-maximizing prices, taking the other firms’ equilibrium pricing strategies

as given. Profit maximization may thus be described by the following for each entrant: a pricing
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strategy phl(c), i.e., a mapping c ∈ R+ → {phl(·)}
Λ
l=1 ∈ R

Λ
+; and Λ ‘entry-or-exit’ decisions, i.e.,

a mapping c ∈ R+ → {Ihl(·)}
Λ
l=1 ∈ {0, 1}Λ. Obviously, both depend on her marginal cost c. We

show in Appendix T.4 that only the most efficient firms make positive profits, whereas the least

productive ones chose to exit (Lucas, 1978; Asplund and Nocke, 2006; Melitz and Ottaviano,

2008). More precisely, only entrepreneurs with inverse productivity c smaller than some cutoff cl

are productive enough to sell in city l. As shown in Appendix T.4, the Nash equilibrium prices

can be expressed as follows:

phl(c) =
cl + τc

2
, where cl ≡

2αγ + ηNlcl

2γ + ηNl
and cl =

k

k + 1
cl (3)

denote the domestic cost cutoff in region l and the average marginal cost of active entrepreneurs,

respectively. The consumer price is decreasing in the degree of competition in the destination

market, which is inversely related to cl (see (5) below). For each pair of cities l and h, there

exists an export cost cutoff clh such that only entrepreneurs with c lower than clh export from

l to h. This cutoff must satisfy the zero-profit cutoff condition chl = sup {c | πhl(c) > 0}, which

can be expressed as either phl(chl) = τchl or qhl(chl) = 0, which from (3) yields:

chl =
cl

τ
. (4)

Expression (4) implies that chl ≤ cl since τ ≥ 1. Put differently, trade barriers make it harder

for exporters to break even relative to their local competitors because of higher market access

costs. Using (3), the mass of entrepreneurs selling in region l is given as follows:

Nl ≡
∑

h

HhG(chl) =
2γ(k + 1)(α − cl)

ηcl

. (5)

Note that (5) establishes a positive equilibrium relationship between the number of competitors

selling in city l and the toughness of selection there: only the entrepreneurs with productivity

larger than 1/cl survive. The larger the number of competitors, the smaller the share G(cl) of

entrepreneurs that are fit enough to survive. Accordingly, we refer to 1−G(cl) as the ‘failure rate’

in the urban market. Using (3) and (5), the consumer surplus can be expressed very compactly

as follows:

CSl ≡ CS(cl) =
α − cl

2η

(
α −

k + 1

k + 2
cl

)
. (6)

Thus, cl is a sufficient statistic to analyze the impact of any policy or parameter change on

consumer welfare. Clearly, ∂CSl/∂cl < 0 if cl ≤ α (which holds at equilibrium).9

9To see this, note first that α is the demand intercept (Appendix T.4) and assume cl > α for some l. Then,

there is a strictly positive mass of entrepreneurs who have a c larger than α and who make negative operating

profits as a result. This establishes a contradiction with profit maximisation. We thus conclude that α > cl holds

at any equilibrium.
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3.6 Equilibrium

It is readily verified that

Πl(c) =
∑

h

[plh(c) − τc] qlh(c)

= Ill(c)
Hl

4γ
(cl − c)2 +

∑

h 6=l

Ilh(c)
Hh

4γ
(ch − τc)2, (7)

where Ilh(c) = 1 if c < clh and Ilh(c) = 0 otherwise. We define a short-run equilibrium as

a situation in which, contingent on entry decisions summarized by the Λ-dimensional vector

{Hl}
Λ
l=1, the following holds: (i) entrepreneurs decide whether to produce or not and set prices

so as to maximize profits; (ii) consumers maximize utility; and (iii) the masses of sellers obey

the identity (5). The latter identity can be rewritten as:

α − cl

Aηck+1
l

≡ Hl + τ−k
∑

h 6=l

Hh, (8)

where A ≡ 1/[2ck
max(k + 1)γ] is a recurrent bundle of parameters that captures the underlying

productivity of the economy: A is decreasing in the upper bound cmax of the support of G and

in the shape parameter k. As k rises, the mass of low-productivity entrepreneurs rises relative

to the mass of highly productive ones. Observe that A also encapsulates the ‘desirability’ of the

differentiated good in the sense that it contains γ, which inversely captures consumers’ preference

for variety: a larger γ implies that the good is less differentiated.

The indirect utility differential for a worker with entrepreneurial ability c between remaining

unskilled in the countryside or becoming an urban entrepreneur in city l is given by:

∆Vl(c) ≡ Πl(c) + CSl − θHl − fE . (9)

A worker decides to become an urban entrepreneur if her expected indirect utility is larger

than the (certain) equivalent that she could secure in the numéraire sector in the countryside.

Formally, this is so when E(∆Vl) ≥ 0. Entry into the city takes place as long as it is profitable, i.e.,

E(∆Vl) ≤ 0 must hold at equilibrium, which we henceforth refer to as the free-entry condition.

In words, expected profits, net of urban and entry costs, are non-positive at equilibrium.

Prices adjust more quickly than entry decisions. We thus define a long-run equilibrium (an

equilibrium for short) as a 2Λ-tuple ({Hl, cl}
Λ
l=1) such that the free-entry and the short-run

equilibrium conditions hold simultaneously. In other words, at an equilibrium: (i) entrepreneurs

maximize profits; (ii) consumers maximize utility; (iii) the masses of sellers obey (8); and (iv)

agents decide whether to become urban entrepreneurs or whether to stay put as rural workers.

Using (6) and as shown in Appendix T.5, the expected value of (9) is given by:

E(∆Vl) = A
Hlc

k+2
l + τ−k

∑
h 6=l Hhc

k+2
h

k + 2
+

α − cl

2η

[
α −

k + 1

k + 2
cl

]
− θHl − fE. (10)

14



Expectations are rational and, at equilibrium, perfect. Agents are negligible and hence rationally

disregard the impact of their actions on equilibrium market aggregates; they also take all other

agents’ decisions as given. The identities (8) and the inequalities E(∆Vl) ≤ 0 in (10) constitute

a system of 2Λ conditions in the 2Λ unknowns {Hl}
Λ
l=1 (city sizes) and {cl}

Λ
l=1 (cost cutoffs).

4 Equilibrium with one region: ‘Urbanization’

To set the stage, we start by analyzing the equilibrium with a single region. In so doing, we can

identify the three-way relationships among agglomeration, polarization and income inequality in

a parsimonious way. As we shall see, two types of equilibria may arise in this simple case: an

equilibrium in which no city forms, and an equilibrium in which a city forms.

4.1 Urban and rural equilibria

To ease notation, we suppress the h and l subscripts for the time being, except for the cutoff cl

(which may otherwise be mixed up with the firms’ individual inverse productivity c). Using (10)

the free entry condition then reduces to

A

k + 2
Hck+2

l +
α − cl

2η

[
α −

k + 1

k + 2
cl

]
− θH − fE ≤ 0, (11)

with equality if H > 0 and strict inequality if H = 0. The first two terms in (11) collect the

expected profits and the consumer surplus, respectively, whereas the last two terms collect the

urban and the entry costs. Turning to condition (8), it can be solved for H as follows:

H =
α − cl

Aηck+1
l

. (12)

Two aspects of (12) are noteworthy. First, at any equilibrium with a strictly positive city size

(H∗ > 0), the equilibrium cutoff is strictly smaller than α. Second, ∂H/∂cl < 0 and ∂2H/∂c2
l > 0

at equilibrium, thus revealing that there is a positive (and convex) equilibrium relationship

between agglomeration and selection. In plain English, only the fittest entrepreneurs survive and

produce, and this effect is particularly strong in large cities. Substituting (12) into (11), and

rearranging, we obtain:

α − cl

2η

[
α −

k − 1

k + 2
cl −

2θ

Ack+1
l

]
− fE ≡ f(cl;Z) ≤ 0, (13)

where Z = {α, η, γ, fE, cmax, θ} is the vector of parameters in the model. The equilibrium condi-

tion (13) is central to the analysis that follows. It is expressed only as a function of cl and of the

model’s parameters: conveniently, cl is thus a summary statistic for expected profits, consumer

surplus and congestion at once. Also, the nature and number of equilibria are fully characterized
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by the properties of f . An interior equilibrium with a city (H∗ > 0 and 0 < c∗l < α), which we

henceforth refer to as an urban equilibrium, is such that f(c∗l ) = 0; whereas an equilibrium with-

out a city (H∗ = 0 and c∗l = α), which we henceforth refer to as a rural equilibrium, necessarily

implies f(α) ≤ 0. A rural equilibrium is always stable whenever it exists, whereas an urban

equilibrium is locally stable if and only if ∂f(c∗l )/∂cl > 0. This latter condition implies that, at a

locally stable equilibrium, any small perturbation of city size is such that the free-entry condition

will bring the economy back to its initial situation.10

It is readily verified that limcl→0 f(cl) = −∞, which shows quite naturally that there is always

an upper limit to city size. Furthermore, whenever a rural equilibrium does not exist there exists,

by continuity, at least one stable urban equilibrium. A by-product of this latter property is that

the smallest root of f (whenever one exists), which corresponds to the largest equilibrium city

size, is a stable equilibrium as in Henderson (1974). We can summarize those findings as follows:

Proposition 1 (existence and number of equilibria) The function f has either one or three

positive roots, of which at most two are in [0, α). Consequently, there exist at most two stable

equilibria: an urban equilibrium and the rural equilibrium. If no stable urban equilibrium exists,

then the rural equilibrium is unique. Furthermore, the equilibrium associated with the smallest

value of cl (the largest H) is always stable.

Proof. See Appendix B.1.

Given the equilibrium structure, how do the equilibria change with the values of the underlying

parameters? We show that lower commuting costs (lower θ), a stronger preference for the dif-

ferentiated good (larger α), a better productivity support (lower cmax and thus higher A) and

stronger product differentiation (lower γ and thus higher A), all weakly increase city size and

city productivity at any stable equilibrium. Formally:

Proposition 2 (urban equilibrium: monotonicity) At any stable equilibrium, the equilib-

rium productivity cutoff 1/c∗l and the equilibrium city size H∗ are both non-increasing in θ and

fE and non-decreasing in α and A.

Proof. See Appendix B.2.

We next investigate when which type of equilibrium arises. The following lemma, which pertains

to the special case where fE = 0, is useful before we proceed:

Lemma 3 Assume that there are no net entry costs for becoming an entrepreneur (fE = 0).

Then: (i) f is increasing, negative and concave in the neighborhood of cl = 0; (ii) cl = α is

always a root of f ; and (iii) f admits at most one root on (0, α).

Proof. See Appendix B.3.

10This is the case if, following standard ‘new economic geography’ practice, we specify the following law of

motion for H : Ḣ = E(∆V )H(L − H). This replicator dynamics can be microfounded (see Baldwin, 2001).
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A consequence of the foregoing lemma is that the model admits a unique stable equilibrium if

fE = 0. If fE and θ are large enough, then the rural equilibrium exists and is stable, as we

establish formally in the following proposition:

Proposition 4 (rural equilibrium: stability) (i) The rural equilibrium (H∗ = 0 and c∗l = α)

exists and is stable for any fE > 0. (ii) If θ ≥ θR and fE ≥ fR, where

θR ≡
3Aαk+2

2(k + 2)
and fR ≡

α2

2η

k − 1

k + 2
, (14)

then the rural equilibrium is the unique equilibrium. (iii) If fE = 0 then the rural equilibrium

exists and is a stable equilibrium if and only if θ ≥ θR.

Proof. See Appendix B.4.

Note that the sufficient conditions fE ≥ fR and θ ≥ θR for the rural equilibrium to be the

unique stable equilibrium are less likely to hold if the technology used to produce the urban good

is efficient and if consumers value it a lot (i.e., if A and α are high). The equilibrium structure of

the model is depicted in Figure 3, where bold lines denote stable and where dashed lines denote

unstable equilibria. As one can see, when fE = 0 the rural equilibrium is stable for sufficiently

high commuting costs and becomes unstable otherwise. When fE > 0, the rural equilibrium is

always stable; it is even the unique equilibrium when commuting and entry costs are together

prohibitive, which is the case if fE ≥ fR and θ ≥ θR. However, for sufficiently low values of

commuting and entry costs, two urban equilibria appear, the one associated with the largest city

size being stable and the other one being unstable.

Insert Figure 3 about here.

More formally, the equilibrium structure is characterized as follows:

Proposition 5 (equilibrium structure) (i) Let fE ≥ fR and θ ≥ θR; then the rural equilib-

rium H∗ = 0 is the unique equilibrium. (ii) Let fE = 0 and θ > θR; then H∗ = 0 is the unique

stable equilibrium. (iii) Let fE = 0 and θ ∈ (0, θR); then there exists a unique pair {H∗, c∗l } in

R++ × (0, α) that consitutes a stable equilibrium (the urban equilibrium). (iv) Let fE > 0; then

there exists a θ, denoted as θU(fE) with θU(fE) < θR and limfE→0 θU(fE) = θR, such that there

is at most one pair {H∗, c∗l } in R++ × (0, α) that consitutes a stable equilibrium if θ ≤ θU(fE).

Proof. See Appendix B.5.

Parts (i) and (ii) in Proposition 5 establish conditions for the rural equilibrium to be the unique

one, whereas part (iii) does the same for the urban equilibrium. Parts (iv) and (v) together

establish the conditions for both the rural and urban equilibria to exist and to be stable.
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We can now summarize the properties of the model, as collected in Propositions 2, 4 and 5 by

focusing our attention on the urbanization threshold θU(fE) (or θU henceforth for short): no city

can emerge for values of θ larger than θU . Conversely, for all θ smaller than θU , urbanization may

occur and both an urban and a rural equilibrium can be sustained. As stated in the foregoing, the

largest city size is always stable when θ < θU , while a smaller yet unstable equilibrium city size

coexists. Inspection of the urbanization threshold θU reveals several equilibrium characteristics

worth stressing. First, any improvement in the benefits of living in cities, either as consumers or

entrepreneurs, makes the emergence of cities more likely and maps into larger equilibrium city

sizes and higher city productivity. By Proposition 4, the rural equilibrium exists and is stable

provided that either: entrepreneurs draw their productivities from a bad support, i.e., cmax is

large; acquiring entrepreneurial skills is expensive, i.e., fE is large; products are sufficiently

homogenous, i.e., γ is large; preferences for the differentiated good α are weak; and urban costs

θ are large. Conversely, declining urban costs θ and rising benefits of living in cities A and

α are both conducive to rural-urban migration, thereby ensuring that urbanization does arise

(Proposition 5) or that cities grow (Proposition 2). These findings are consistent with the three

‘classical’ conditions stressed by, e.g., Bairoch (1988), for cities to emerge and to develop. First,

there must be an agricultural surplus so that the rural population may feed the urban dwellers (in

our model, this condition is satisfied via the initial endowment in the numéraire d
0
). Conversely,

there must be some demand for urban goods and services: the extent of this demand is captured

by the parameter α and urban production is more valuable if products are more differentiated

(low γ). Second, the urban population must supply goods and services to sustain itself. It is

able to produce more the lower is cmax. Last, any reduction in urban costs that stems from

an improvement in urban transportation is conducive to urban growth (Duranton and Turner,

2008). To sum up, a large α and a low γ, θ, fE or cmax are all conducive to the emergence of

(large) cities.

4.2 Polarization and income inequality

From expression (12) we know that, at equilibrium, larger cities are more productive. How

does this map into average income? This question is warranted since only G(cl)H entrepreneurs

produce at equilibrium, whereas the remaining ones exit the market and consume from their

endowments. The failure rate 1 − G(cl) in the urban market thus influences the distribution of

income across successful and unsuccessful entrepreneurs.

Our model allows us to take a theoretical perspective on this question. To do so, we first

compute the average (operating) profit of all entrants, including those who end up failing at

equilibrium, which is given by

Π(H, cl) = A
Hck+2

l

k + 2
. (15)
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Making use of the equilibrium relationship (12) between size and productivity, we then obtain

∂Π/∂cl = (α − 2cl)/[η(2 + k)]. Hence, Π is ∩-shaped and concave in cl: average profits first

increase in cl for 0 ≤ cl ≤ α/2 and then decrease for α/2 ≤ cl ≤ α. This relationship is non-

monotonic because operating in a large city has both pros and cons: a large market size increases

profits (the ‘H ’ component in the expression for Π), but also induces tougher competition, thus

reducing markups and profits (the ‘cl’ component in the expression for Π). Qualitatively, these

findings are in line with our Stylised Fact 1: average income rises with city size (Stylised Fact

1a) but at a decreasing rate (Stylised Fact 1b).11

As an alternative measure of income, we then compute the average productivity conditional

on producing, denoted by Π̃ ≡ Π
∣∣
c≤cl

, and we find that it is monotonically increasing in city

size. To summarize our key findings thus far:

Proposition 6 (agglomeration) (i) The average profit is non-decreasing and concave in city

size if cities are smaller than 1/
[
Aη (α/2)k]. (ii) The average profit, conditional on survival, is

monotonically increasing in city size.

Proof. See Appendix B.6.

A central focus of the paper is on how city size affects heterogeneous individuals differently. To

address this issue more formally, we characterize the average profit of the top quantile Q of the

distribution and define q̃(Q) as G(q̃) = Q (for instance, the least productive entrepreneur of the

top 20% has a c such that G(c) = .2). Letting q ≡ min {q̃, cl}, we may then write the average

profit of the top quantile Q as follows:

Πq(H, cl) ≡
1

G(q)

∫ q

0

Π(c)dG(c) = k
H

4γ

[
c2
l

k
−

2clq

k + 1
+

q2

k + 2

]
. (16)

Two features of (16) are noteworthy. First, evaluating this expression for Q = 1 naturally gives

the average profit for the entire distribution; to see this, note that q̃ = cmax implies Πcmax
= Π.

Second, the ambiguity of city size on profits is again apparent in (16), for the term in the square

bracket is decreasing in city size (increasing in cl). Despite this ambiguity, the share of income

accruing to the top of the skill distribution is unambiguously increasing in city size:

Proposition 7 (polarization) Let σq ≡ Πq/Π denote the average income of the top Q% of the

distribution relative to the overall average. Then: (i) ∂σq/∂H > 0; and (ii) ∂2σq/∂H∂q < 0 if

and only if q < cl = clk/(k + 1).

Proof. See Appendix B.7.

11When reinterpreted in light of our model, the evidence presented in Section 2 suggests that all US cities in

our sample are not too large, i.e., 0 < H ≤ 1/
[
Aη (α/2)

k
]

and α/2 ≤ cl < α so that we are on the increasing

part of the relationship. Au and Henderson (2006) show that there is a ∩-shaped relationship between city size

and average real income (productivity) in Chinese cities. Our results suggest that, beyond some threshold, the

relationship may also be ∩-shaped between city size and average nominal income.
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Part (i) of Proposition 7 is the theoretical counterpart of Stylised Fact 2a, whereby the average

income of the top 5% relative to the overall average increases with city size. This ‘superstar’

effect is also consistent with Stylised Fact 2b, whereby the elasticity of average income with

respect to city size is increasing as we move up the income distribution. Part (ii) suggests that

this expansion of the share of income accruing to the wealthiest comes at the expense of both

the bottom half of the population of successful entrepreneurs, as well as those who simply fail.

This polarization effect naturally leads us to study the relationship between city size and income

inequality as highlighted by our Stylised Fact 3. To this aim, we compute the Gini coefficient

of the income distribution as follows (see Appendix B.8 for details):

Gini(k, cl) = 1 −
k + 2

4k + 2

(
cl

cmax

)k

. (17)

Note that this coefficient does not depend directly on city size H because the Gini coefficient is

‘scale free’. The Gini is also increasing in the shape parameter k, which governs the extent to

which abilities are unevenly distributed. In particular, for a given cl, the fraction of successful

entrepreneurs falls as k rises. Straightforward inspection of (17) yields the following results:

Proposition 8 (inequality) Let income inequality be measured by the Gini coefficient. Then

income inequality is: (i) increasing at an increasing rate in the productivity cutoff 1/cl; (ii)

increasing at a decreasing rate in city size H; (iii) decreasing in k; and (iv) increasing in cmax.

Proof. (i) It can be verified that ∂(Gini)/∂cl < 0 and ∂2(Gini)/∂c2
l < 0. (ii) ∂(Gini)/∂H > 0

readily follows from the monotonicity of (12) and (17). To obtain the concavity of Gini with

respect to H , invert (17) to get an expression for cl as a function of Gini, and substitute this for

cl into (12). Then, standard algebra reveals that ∂2H/∂(Gini)2 > 0 and thus ∂2(Gini)/∂H2 < 0.

(iii) Using (17) again, we obtain:

∂(Gini)

∂k
(k, cl) = [1 − Gini(k, cl)]

[
−

3

(k + 2)(2k + 1)
+ ln

(
cl

cmax

)k
]

,

which is negative by inspection (recall that cl < cmax). (iv) The last part of the proposition

immediately follows by inspection of (17).

To summarize the findings of this section, large urban areas generate more wealth and are at the

same time more unequal and more polarized than smaller cities. As shown in Section 2, these

theoretical predictions of our model are robust features of the US data.

4.3 Urban poverty and consumer cities

The model can also shed some light on a couple of facts that have attracted attention in the

literature. First, it is worth stressing that, after entry, unsuccesful entrepreneurs in the city have
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lower nominal and real incomes than those of workers in the countryside, yet that their consumer

surplus exceeds that in the countryside. The reason is that they have access to urban diversity

even if their choice to move to the city turns out to be unsuccessful (recall that unsuccessful

agents can still pay for urban goods using their initial endowment). This aspect is taken into

account in the entry decision in our model. It is somewhat reminiscent of standard arguments

for explaining the growth of cities in the Third World, where the massive urbanization in the

face of urban poverty constitutes a classical puzzle (Harris and Todaro, 1970).

Second, in a cross-section of (isolated) cities, those that have unfavorable fundamentals are

small and not very productive ({H∗, c∗l } ≃ {0, α} when θ ≃ θU). In such economies, urban

migration is primarily motivated by urban wages (entrepreneurs’ profits in the model) that are

large relative to rural wages. Furthermore, the ‘failure rate’ 1 − G(cl) ≃ 1 − G(α) is relatively

low, i.e., the mass of unsuccessful entrepreneurs is small. However, the consumer surplus is

rather small too in this case: CS(cl) ≃ CS(α) = 0 by (6). Cities with good underlying economic

conditions are large, competitive and productive; as a result, expected profits are then no longer

the primary driver of urban life (the failure rate is large and expected profits are low), but

the city’s local and specific service and product mixes work like local amenities that attract

consumers who display preference for diversity. At the limit, when cl → 0, expected profits go

to zero and the consumer surplus CS(0) reaches its maximum and compensates for urban costs

on its own. We may also view the recent history of urbanization as an ongoing reduction in

commuting costs θ (e.g., the invention of the streetcar in the late nineteenth century and the

spread of the automobile in the twentieth). In light of this historical perspective, cities in the

early ages of the Industrial Revolution were producer cities and not very pleasant places to live

in, whereas large modern cities are predominantly consumer cities that offer a wide array of

consumer goods and services.12

5 Extensions: Urban systems and trading cities

We now extend the model to include multiple cities and selectively report a series of theoretical

results with two aims in mind. Firstly, we establish that the equilibrium relationship between city

size and average productivity continues to hold true in a multi-city framework. More precisely,

what was in the previous section essentially a comparative statics result pertaining to isolated

cities becomes now an equilibrium relationship in a framework where cities are linked through the

channels of trade. Secondly, an open question in the literature asks whether selection reinforces

or weakens agglomeration forces, how those two forces interact, and how they can be disentangled

empirically (Combes, Duranton, Gobillon, Puga and Roux, 2009). The multi-city extension of

12The terminology ‘producer and consumer cities’ was introduced by Weber (1958), though his concept of

‘consumer city’ captures more closely the predatory behavior of primate cities rather than the more modern

concept of consumer city in the wake of Glaeser, Kolko and Saiz (2001).
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our model enables us to address this question, and we show that selection is both an agglomeration

and a dispersion force. In other words, the net impact of selection on agglomeration is a priori

unclear.

5.1 Urban systems

Let Λ ≥ 2 and define as an urban system a stable equilibrium configuration in which cities of

possibly different sizes co-exist or in which some regions develop cities whereas others do not.

To begin with, let us go back to the short-run equilibrium condition (8), while temporarily

disregarding the long-run condition (10). For any region l, we may rewrite condition (8) as:

α − cl

Aηck+1
l

= Hl + φ
∑

h 6=l

Hh, (18)

where φ ≡ τ−k is a measure of trade openness with values in the unit interval.13 The right-hand

side of (18) can be interpreted as a measure of the ‘market potential’ of city l (Head and Mayer,

2004). Rewriting the system in matrix form yields:




1 φ ... φ

φ 1 ... φ

... ...

φ ... φ 1




︸ ︷︷ ︸
F




H1

H2

...

HΛ




︸ ︷︷ ︸
h

= (Aη)−1




(α − c1)c
−(k+1)
1

(α − c2)c
−(k+1)
2

...

(α − cΛ)c
−(k+1)
Λ




︸ ︷︷ ︸
x

(19)

where F is a Λ-dimensional invertible square matrix whose determinant is positive by inspection

(all its off-diagonal elements are identical and smaller than its diagonal elements) and h and x

are both Λ-dimensional vectors. We use (19) to show that the qualitative relationship established

in (12) as a comparative statics result carries over to an equilibrium relationship in an urban

system. Formally:

Proposition 9 (size and selection in an urban system) Assume that regions are ex ante

(or fundamentally) symmetric, i.e., they face the same bilateral trade barriers and have identical

ability supports. Then, at any equilibrium, selection is tougher in larger cities:

cl ≤ ch ⇐⇒ Hl ≥ Hh.

Furthermore, ∂Hl/∂cl < 0 and ∂Hl/∂ch > 0.

Proof. See Appendix C.1.

13Note that a distribution which is more skewed towards lower ability draws (i.e., a higher value of k) implies

a lower φ for any given τ , as fewer entrepreneurs are productive enough to export to other cities.
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In words, Proposition 9 establishes two important results. First, selection is tougher and, as

a result, average productivity is higher (cl is lower) in larger cities. Insofar as mean income

and average productivity are positively related at the city level, the finding of Proposition 9 is

consistent with Stylised Fact 1. As a corollary, the positive relationship between the number of

available varieties and the toughness of selection in (18) implies a hierarchy of cities akin to the

Central Place Theory of Lösch (1940). Second, own city size decreases with own cutoff (selection)

and increases with foreign cutoffs (competition). Insofar as a large Hl is the flip side of a low

cl, this finding suggests that urbanization in l may hinder urbanization in h and vice versa. We

refer to this negative dependence as the cannibalization effect of proximate cities (see Dobkins

and Ioannides, 2000; Partridge, Rickman, Ali and Olfert, 2009).

To push the analysis further, we must impose the long-run condition (10) to study the prop-

erties of asymmetric equilibria, including ‘core-periphery equilibria’, i.e., those in which only

a subset of regions develops cities at equilibrium. Such an analysis is more involved because

cities either inhibit the emergence or favor the existence of other cities in complex ways (Fujita,

Krugman and Venables, 1999; Tabuchi, Thisse and Zeng, 2005).14 By contrast, the analysis of

symmetric equilibria is much simpler, yet enables us to derive a handful of interesting insights.

We thus turn to this issue next.

5.2 Trading cities

We now look for the existence of symmetric equilibria with multiple regions and characterize

their properties. The analysis is similar to the case where Λ = 1, except for the existence of

trading links. The proofs of Propositions 1 to 5 in Appendix B are provided to include the

current setting, which encompasses Λ = 1 as a special case. Put differently, Propositions 1, 2

and 4 carry over to the more general setting of this section. We can thus exclusively focus on

the impact of changes in trade costs on the existence and the properties of symmetric equilibria.

Let Φ ≡ (Λ − 1)φ, which is increasing in Λ and in φ and which takes value Φ = 0 when

φ → 0 (trade is prohibitive), or when Λ = 1 (there is a single isolated region). Since the model is

perfectly symmetric by assumption, an equilibrium where all regions have the same size Hl ≡ H

and the same cutoff cl always exists. Imposing symmetry in the short-run equilibrium condition

(8) yields
α − cl

(1 + Φ)Aηck+1
l

= H. (20)

Plugging this expression into the free-entry condition (10) and imposing symmetry allows us to

14Due to space constraints, we do not report those developments here. See Behrens and Robert-Nicoud (2008),

for details and examples of asymmetric equilibria. We also provide more general stability conditions there.
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rewrite (13) as follows:

α − cl

2η

[
α −

k − 1

k + 2
cl −

2θ

(1 + Φ)Ack+1
l

]
− fE ≡ f(cl) ≤ 0. (21)

Rural and urban equilibria are defined as in the single-city case of Section 3. Note that A and

Φ always enter the equilibrium expressions together as A(1 + Φ). Therefore, the whole analysis

pertaining to the role of A in relation to the types and stability of equilibria and the comparative

statics of the previous section readily extend to the role of Φ. In words, the implications of

an increase in the freeness of trade are isomorphic to those of an increase in the underlying

productivity of the whole economy. Concretely, we show that lower trade costs are conducive to

city formation and city growth:

Proposition 10 (cities and trade) A larger Φ (lower trade costs τ and/or more trading part-

ners Λ), a larger A or a lower θ all make the existence of cities more likely and weakly increase

their equilibrium size.

Proof. We first show that a smaller value of Φ makes the rural equilibrium more likely to

occur. Note that when fE = 0, local stability of the rural equilibrium requires that ∂f/∂cl > 0

when evaluated at {H∗, c∗l } = {0, α}. This is equivalent to θ > θR
Φ , where θR

Φ is given by

θR
Φ ≡ (1 + Φ)3A

αk+2

2(k + 2)
= (1 + Φ)θR.

As in the single-city case, the rural equilibrium exists and is stable for all θ ≥ θR
Φ , whereas the

urban equilibrium is the unique stable equilibrium when θ < θR
Φ . Clearly, θR

Φ is increasing in Φ

(i.e., with freer trade), which proves our claim. Turn next to the case where fE > 0. We have

already established in the proof of Proposition 5 that f is continuously decreasing in both fE

and θ, which implies that the equilibrium city size is decreasing in fE and increasing in Φ at the

stable urban equilibrium.

As established before in Propositions 4 and 5, the intra-city transportation system must be

efficient enough for cities to emerge in equilibrium. The new result in Proposition 10 is that

cities are also more likely to emerge if the inter-city transportation system is efficient enough so

that cities can trade with one another at a low cost. Note that this result may not be as obvious

as it sounds. Indeed, from the perspective of entrepreneurs in each city, lower inter-city trade

costs and a larger number of trading partners mean both a better market access and tougher

competition from entrepreneurs established in other cities. To see the latter effect, evaluate (8) at

the symmetric equilibrium to get (α− cl)/[Aηck+1
l ] = H(1 + Φ) and observe that ∂H/∂Φ|cl

< 0.

As it turns out, Proposition 10 shows that in equilibrium the agglomeration effect dominates, i.e.,

∂H/∂Φ > 0; the selection effect is also stronger, the lower the trade costs τ are and/or the more

numerous the trading cities Λ are, i.e., ∂cl/∂Φ < 0. Trade thus increases aggregate productivity

and city sizes simultaneously.
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5.3 Trade, profits and polarization

Does trade contribute to rising profits and larger income inequalities in cities? To answer this

question, we first compute the average (operating) profit of the entrants in the symmetric case

as follows:

ΠΦ =
(1 + Φ)A

k + 2
Hck+2

l =
(α − cl)cl

η(k + 2)
= (1 + Φ)Π,

where we have used the short-run equilibrium condition (α − cl)/[Aηck+1
l ] = H(1 + Φ). Since

∂cl/∂τ > 0, it is readily verified that the average profit in city l is ∩-shaped in τ . Hence, as

in the single-city case with respect to size, average profits are first increasing as trade costs fall

from high initial values, and then eventually decreasing as trade becomes sufficiently free. In the

early stages of integration, access to a larger market raises entrepreneurs’ profits, whereas in later

stages of integration increased competition reduces them again as more agents fail due to tougher

selection. The effect of Φ on the expected profit conditional on being successful, Π̃Φ = (1+ Φ)Π̃,

is also qualitatively identical to the effect of A in the single-city case.

The effect of Φ on polarization is quite intuitive. Insofar as freer trade makes all markets

more competitive, this hurts profits of every producer. However, higher trade openness also opens

foreign markets to some entrepreneurs, the exporters. As a result, a higher Φ unambiguously

raises the exporters’ share of profits in the industry. Since only the most productive entrepreneurs

export, by shifting profits from non-exporters to exporters, it follows logically that more trade

openness increases income inequality. To establish this formally, we compute the Gini coefficient

as follows:

Ginil(Λ, τ, k; cl) = 1 − λ(Λ, τ, k)

(
cl

cmax

)k

, (22)

where λ(·) is a bundle of parameters too unwieldy to be revealing (its expression is relegated

to Appendix C.2). One can verify that (22) is equivalent to (17) in two special cases: first and

naturally, when there is only one city in the economy (Λ = 1); second, when inter-city trade is

perfectly free (τ = 1).

Insert Figure 4 about here.

Figure 4 plots the equilibrium Gini coefficient as a function of τ for Λ = 4 and Λ = 8, respectively,

by using the equilibrium value of (21) in (22). All the simulations we have conducted show that

inequality rises as the number of trading partners increases, or ∂(Ginil)/∂Λ > 0. Turning to

trade costs τ , we analytically show that income inequality increases at the city-level as trade

becomes less costly:

Proposition 11 (trade and income inequality) Let income inequality be measured by the

Gini coefficient. Then income inequality is increasing at the symmetric equilibrium as trade gets

freer, namely ∂(Ginil)/∂τ < 0.
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Proof. By inspection of (22), Ginil is decreasing in both cl and λ(·). Thus, to establish the

result, it is sufficient to show that ∂λ/∂τ < 0, which we do in Appendix C.2.

Proposition 11 establishes that trade integration or lower costs of shipping goods do increase

income inequality, at least in the symmetric case. The reason is actually two-fold: freer trade

makes selection tougher by expanding the market, which raises the failure rate (i.e. (cl/cmax)
k

falls). As shown in Appendix C.2, a lower τ also redistributes income from the least productive

entrepreneurs to the most successful ones, thus lowering λ. Consequently, the income distribution

gets more skewed towards the most productive agents, who secure a larger share of total income.

The recent trends of economy-wide integration are hence likely to spur more income inequality

at the city level, and the redistribution of income may not predominantly be a cross-factor

cross-sector issue, but may well take place across skills within the same sectors.

5.4 Linkages, competition, and selection

We conclude our theoretical analysis by studying the five key ingredients that shape the spatial

outcome of our model: selection, competition, agglomeration (‘backward’ and ‘forward’ linkages)

and urban costs. One concise way to illustrate how these work is to study the stability properties

of the symmetric equilibrium. We already know that the symmetric equilibrium is (locally) stable

if θ < θR in the sense that an arbitrarily small shock (to the endogenous variables) common to

all cities is self-correcting in this case, i.e., df/dcl > 0 at the symmetric equilibrium.

When there is more than one city, however, the (symmetric) equilibrium might be unstable

in other ways. In what follows, we retain a simple definition of stability: we focus solely on the

case without aggregate shocks, i.e.
∑

l dHl = 0, and where the shock affects just two cities at

the symmetric equilibrium.15 When is such a shock to city size self-correcting? In other words,

starting from a symmetric equilibrium configuration, imagine that Hl increases by dH > 0 and Hh

decreases by the same dH > 0 (and dHi = 0 for all i 6= l, h). Loosely speaking, this corresponds

to an entrepreneur entering the ‘wrong’ city. If E[∆Vl(dH)] = −E[∆Vh(dH)] is negative, then

the shock is self-correcting and the symmetric equilibrium is indeed locally stable (the symmetry

of the model implies E[∆Vi(dH)] = 0 for all i 6= l, h). Otherwise, symmetry is ‘broken’ and the

symmetric equilibrium is locally unstable (Krugman, 1991; Baldwin, 2001).

To address this issue formally, let Hl = Hh = H , dH = dHl = −dHh > 0 and dch = −dcl.

15The absence of aggregate shocks is standard in economic geography models where the mass of firms and of

mobile agents is usually fixed (Krugman, 1991; Ottaviano, Tabuchi and Thisse, 2002). In general, local stability

requires that at the interior equilibrium, the Jacobian of f with respect to c = (c1 c2 . . . cΛ) be positive definite.

As characterizing the eigenvalues of a non-numerical system is a daunting task, which leads to a complex taxonomy

of different cases (see Tabuchi, Thisse and Zeng, 2005, for further details), we retain a less stringent condition.
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Differentiating (8) and (10) around the symmetric equilibrium, and using (20), yields

dE(∆Vl) = −θdH
congestion

+
1 − φ

1 + Φ

α − cl

η

cl

k + 2

dH

H
backward linkage

+
1 − φ

1 + Φ

α − cl

η
dcl

selection and competition

−
1

η(k + 2)

[α

2
+ (α − cl)(k + 1)

]
dcl

forward linkage

(23)

and

(1 + Φ)
α + k(α − cl)

α − cl

dcl

cl

+ (1 − φ)
dH

H
≡ 0. (24)

A few aspects of (23) are noteworthy. First, the expected value of becoming an entrepreneur

in l is affected by both the mass of entrepreneurs H and by their average equilibrium inverse

ability (which is proportional to cl under the Pareto parametrization). Second, there is a ‘pull’

and a ‘push’ factor in both. To see this, consider the first line of the right-hand side of (23).

An additional entrepreneur in l means one more urban dweller, which increases urban costs

by θ (congestion); it also means one more consumer in l (and one fewer in h), which means

a relatively larger market in l and thus higher profits. This demand linkage is also known as

a backward linkage (Fujita, Krugman and Venables, 1999). The latter effect relies on market

segmentation, hence it is increasing in τ (i.e., decreasing in φ and Φ); at the limit, when goods

markets are fully integrated (φ = 1), this effect vanishes as local market size becomes irrelevant.

Consider next the second line of the right-hand side of (23). Less productive entrepreneurs (i.e.,

a larger value of cl) is good news for expected profits: the failure rate is lower (less selection) and

the pro-competitive effect is weaker (competition is softer). This effect is also directly affected by

market segmentation: when φ = 1, competition becomes global and thus shifting entrepreneurs

around has no impact on local expected profits. By contrast, less productive local entrepreneurs is

bad news for consumers because they pay higher prices for their consumption bundle. The reason

is that, since all varieties are substitutes, less productive local entrepreneurs raise the prices of

all varieties sold in l. Also, consumers substitute towards non-local varieties as cl rises and pay

trade costs on these imports. This cost linkage, also known as forward linkage (Fujita, Krugman

and Venables, 1999), is indirectly affected by the degree of market segmentation. Indeed, as can

be seen from the equilibrium constraint (24), the (negative) link between cl and H weakens as

φ decreases: swapping entrepreneurs between l and h has no effect on consumer surplus nor on

competition when the market is global.

To summarize our key findings, as can be seen from the second line of (23), selection is both

an agglomeration and a dispersion force. Whereas tougher selection decreases operating profits

(the first term) and thus works against agglomeration on the production side, it also increases

purchasing power through lower consumer prices (the second term) and thus favors agglomeration

of the consumption side. Disentangling the relative importance of these different production and
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consumption channels for agglomeration then becomes an empirical question that we keep for

future research.

6 Conclusions

All empirical studies reveal that the elasticity of worker and firm productivity with respect to

city size is positive and typically falls in the 3% – 8% range. Less well known is the stylized fact

that larger cities are also more polarized: the average incomes of the highest income quantiles

are magnified by city size, so that income inequality is increasing with urban size, at least in the

US. The elasticity of the income Gini coefficient with respect to city size is also quite substantial,

in the order of 1% for the metro areas to 3% for the micro areas. This paper has developped

an integrated model to account for such facts simultaneously. In particular, it can replicate the

stylized facts that larger urban areas are more productive and have larger income inequalities

than smaller ones, and that the latter is a consequence of polarization due to both selection

effects (‘poverty’) and the dilatation of the upper end of the income distribution (‘superstars’).

Our model is also flexible enough to shed light on phenomena such as urbanization, to investigate

the impacts of trade integration on city size and inequality, and to highlight how selection works

both as an agglomeration and as a dispersion force.

Our findings open the research agenda in two directions at least. On the empirical front, as

we have said, we view the macro evidence provided in the paper as suggestive only. Indeed, we

do not identify any specific mechanism, though our evidence on polarization does suggest two

(the ‘superstar’ and the selection channels). This identification requires one to use microdata.

Such data would also help us to understand whether larger cities are more unequal because they

increase the dispersion of incomes and wages for a given level of observed skills or types (the so-

called residual wage inquality; see, e.g., Lemieux, 2006; Helpman, Itskhoki and Redding, 2008),

or whether they are more unequal as the result of the observable divergence of human capital

levels across cities (a composition effect).

On the theory side, we are currently extending the model to include sorting according to

skills in a non-trivial way. The aim is to build a comprehensive model combining agglomeration,

selection and sorting. To our knowledge, such a model is missing to date. The theoretical

analysis presented in this paper has also largely left untouched issues that can only be addressed

in a rigorous manner by studying the asymmetric equilibria of the model. In the working paper

version of this paper (Behrens and Robert-Nicoud, 2008), we extend the model so as to make the

notion of ‘space’ more meaningful by relaxing the symmetry assumption. Specifically, we assume

that cities are located on a circle and that trade takes place around this circle, with (the log of)

trade costs being proportional to distance. Using this setup, we then construct ‘core-periphery

equilibria’ and ‘systems of cities’ in which large cities inhibit the existence of small, nearby
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cities, thereby ‘cannibalizing’ them and casting an ‘agglomeration shadow’. Preliminary analysis

reveals that the equilibrium conditions of the model can be estimated using spatial econometric

techniques, and that the results provide some support for ‘cannibalization’. To sum up, there

are plenty of theoretical and empirical avenues to be explored further, and we leave them open

for future work.
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Appendix A: Data

We mainly use data from the 2006 American Community Survey (henceforth ACS) released by

the US Census Bureau. This dataset reports a large number of socio-economic variables from

a sample of three million housing units covering 507 Core Based Statistical Areas (henceforth
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CBSAs) in the 50 US states and in Puerto Rico.16 While the ACS is conducted on an annual

basis since 2000, household income Gini coefficients are only reported either since 2006 or in the

2005-2007 3-year estimates sample. The latter dataset offers the advantage of providing more

observations (921 CBSAs instead of 507), but limits the number of useable observations de facto

as some data for several of the smaller CBSAs is missing. Furthermore, since we supplement our

dataset with other data sources (see below for more details), for which many data for the smaller

CBSAs is also missing, we rely in what follows on the 2006 ACS to maximize the number of

complete observations we can use.

We obtain the following variables for each CBSA from the 2006 ACS (see Table 1 for further

details and summary statistics): the population total (size); the household median income in

2006 US$ (medi); the mean of the i-th quintile of the income distribution in 2006 US$ (Qi, for

i = 1, 2, . . . 5); the household mean income in 2006 US$, which we compute as the mean of

the quintile means of the household income distribution (meani); the household income Gini

coefficient in 2006 US$ (gini); the interquintile range between the means of the 5th and the 1st

quintiles, divided by the overall mean income (interq); the ratio of the top 5% mean income

to the overall mean income (top5ratio); the share of population with at least some college

education or more, where we impute half of the category of those with some college education

to this measure (edu); the share of the population below the poverty line (pov); a dummy

variable for the southern states, as defined by the US Census Bureau classification (south); the

share of households with two or more income earners (hh 2plus); and the share of single-person

households in the CBSA (sphh).

We further augment the dataset with four variables that capture the ethnic composition of

the CBSAs: the share of African-Americans (black); the share of Hispanic (hisp); the share of

Asians and Islanders (asian); the share of American-Indians and other natives (indian). The

data on racial composition is obtained from the 2000 Housing Patters of the US Census Bureau,

Housing and Household Economic Statistics Division. The CBSAs in that dataset are matched

to fit as closely as possible those of the 2006 ACS data, which leaves us with 495 observations.

We compute for each CBSA the share of the corresponding ethnic group in 2000. Note that

although the ACS itself provides data on ethnic groups, it only reports that data for the subset

of metropolitan statistical areas (367 in the 2006 ACS). We hence prefer to rely on the more

exhaustive 2000 data to maximize the number of observations of smaller areas in our sample.

16We exclude the Puerto Rican CBSAs from the analysis, which leaves 499 observations. CBSAs collectively

refer to both metropolitan and micropolitan statistical areas. Metro areas contain a core urban area with pop-

ulation in excess of 50,000, whereas micro areas contain an urban core with population ranging from 10,000 to

50,000. As explained by the US Census Bureau, metro and micro areas are made up of “one or more counties

and include the counties containing the core urban area, as well as any adjacent counties that have a high degree

of social and economic integration (as measured by commuting to work) with the urban core”. CBSAs constitute

hence a natural unit of analysis when the object of study is, as in this paper, centered essentially on the concept

of local labor markets.
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We checked that the 2000 Housing Patterns series and the 2006 ACS series are highly correlated,

thus pointing to the persistence of ethnic composition over short time periods.

We finally construct two variables to control for industrial composition and one variable

related to market potential. Firstly, we construct a measure of industrial specialization (gini 3d).

This is computed as follows:

gini 3di =
∑

k

∣∣∣∣
empli,k
empli

−
emplk
empl

∣∣∣∣ ,

where k denotes the sectors and i the CBSA. The employment data comes from the 2002 US

Manufacturing Census, and we use the 3-digit level classification (79 sectors). We match again

as closely as possible the 2002 Manufacturing Census CBSAs with the 2006 ACS CBSAs. Due

to disclosure rules at a small geographical scale, there are a substantial number of withheld data

for smaller CBSAs in different sectors: in that case, only an employment range is provided. We

chose to assign the average of the range interval to each withheld observation. In the case of

the highest top-coded category, we assing the average of the observed highest values in the other

CBSAs. Using the employment data, we also construct a variable that reflects the employment

share in higher level service industries (hs share). This is defined as the CBSA employment

share in the 3-digit sectors 511–562 (which include, among others: Securities and intermediation;

Insurance carriers; Funds, trusts, and other financial vehicles; Real estate; Rental and leasing

services; Professional, scientific, and technical services, . . .). Finally, the net market potential

(net mp) is defined as

net mpi =
∑

k 6=i

populationk

distanceik
,

where distance is computed as the great circle distance in kilometers between the largest core

cities of the CBSAs. Note that the city’s own population is excluded from net mpi.

Appendix B: Proofs for Section 4

We prove all propositions of section 4.1. for an arbitrary number Λ of symmetric cities, one per

region. Since the model is perfectly symmetric by assumption, an equilibrium where all regions

have the same size Hl ≡ H and the same cutoff cl always exists. Let Φ ≡ (Λ− 1)τ−k denote the

‘freeness’ of trade. The single-city case corresponds to the situation where Φ = 0 (since Λ = 1),

which also applies when τ → ∞ (trade is prohibitive). More generally, Φ is increasing in Λ and

decreasing in τ and takes value Φ = Λ− 1 when τ = 1 (trade is costless). The reader can readily

verify that all the proofs in this appendix apply to the special case where Φ = 0, as in Section 4;

and to the more general case where Φ > 0, as in Section 5. It turns out that Φ and A enter all

expressions together as (1 + Φ)A so that all comparative static exercises pertaining to the effect

of a change in A readily extend to the effects of changes in the freeness of trade.
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In the symmetric case with trade and with Λ regions, the free-entry condition (10) in each

region reduces to:

(1 + Φ)A

k + 2
Hck+2

l +
α − cl

2η

[
α −

k + 1

k + 2
cl

]
− fE − θH ≤ 0. (B.1)

Likewise, the identity (8) becomes

H =
1

(1 + Φ)Aη

α − cl

ck+1
l

. (B.2)

Substituting (B.2) into (B.1), and rearranging, we then obtain (21).

B.1. Proof of Proposition 1

Proof. Rewriting f in decreasing order of its powers in cl, we obtain:

f(cl) = K1c
2
l − K2cl ± K3 + K4c

−k
l − K5c

−k−1
l ,

where all coefficients Ki are strictly positive. Note that the constant K3 (which is associated

with cl to the power 0) may a priori be positive or negative, hence the ± sign in front of it. As

one can see, in all cases there are at most three sign changes from positive to negative or vice

versa between the coefficients of the consecutive powers. Let the number of positive roots be

n and the number of sign changes be s. By Laguerre’s (1883) generalization of Descartes’ rule

of signs, we know that n ≤ s (i.e., there are at most as many positive roots as sign changes)

and (s − n) is an even number if n < s. Hence, there are either 3 or 1 positive roots in our

case. Applying Laguerre’s generalization of Descartes’ rule to the first and second derivatives

of f reveals that f ′ changes sign at most twice and that f ′′ changes signs at most once. The

final part of the proposition results from the fact that f increases from −∞ at cl = 0. Hence,

∂f/∂cl must be strictly positive at the smallest root (whenever one exists). By continuity, and

the changes in the signs of the derivatives when there are multiple roots, it follows that there at

most two stable equilibria. To see that the third root of f is outside the relevant range [0, α],

since cl > α implies a negative city size which does not make any economic sense, it is sufficient

to know that f(α) = −fE and limcl→+∞ f(cl) = limcl→+∞ f ′(cl) = +∞. Thus, the largest root

of f is (strictly) larger than α if (and only if) the parameter fE is (strictly) positive.

B.2. Proof of Proposition 2

Proof. Using (13), it is readily verified that, for any given value of cl, f is strictly increasing

in α or A and decreasing in θ. Assume that c∗l ∈ (0, α] is a stable equilibrium. Two cases may

arise: either f(c∗l ) ≤ 0 (with c∗l = α and H∗ = 0), which corresponds to the rural equilibrium;

or f(c∗l ) = 0 with 0 < c∗l < α and H∗ > 0 at an urban equilibrium. Consider first an increase
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in θ. Then f shifts down everywhere, so it must be that f(c∗l ) < 0 in the first case: the rural

equilibrium remains stable, and H∗ = 0 is trivially non-increasing from its initial value. In the

second case, f(c∗l ) < 0 after the shift. Since stability implies ∂f(c∗l )/∂cl > 0 and by continuity of

f , the new equilibrium must lie to the right of the previous one, hence c∗l increases and H∗ falls

by (12). Consider next an increase in α or A. A symmetric argument to the foregoing ensures

that c∗l falls. The overall effect of a rise of A or α on H∗ now involves a direct effect, seen in

(12), that reinforces the indirect effect in the case of α but that works in the opposite direction

in the case of A. This is because a more productive differentiated goods sector requires fewer

entrepreneurs to produce the same quantity of output, ceteris paribus. In turn, fewer urban

dwellers make it less costly to live in cities, thus triggering urban entry. The net effect turns out

to be unambiguous, which can be established by contradiction. Assume that dA > 0 but that

dH∗ < 0. From (13), dH∗ < 0 implies that (α− cl) [α − (k − 1)cl/(k + 2)] must fall. It turns out

that this term is decreasing in cl over (0, α], thus dH∗ < 0 implies dc∗l > 0 by (13). However, we

have previously established that ∂c∗l /∂A < 0, a contradiction. Therefore, ∂H∗/∂A > 0.

In addition, all stable symmetric equilibrium city sizes H∗ are non-decreasing in trade freeness

Φ by the same token (remember that in the symmetric trading cities model, (1 + Φ)A replaces

the term A in the one-city model). The rest of the proof is identical.

B.3. Proof of Lemma 3

Proof. (i) Taking limits, we readily obtain limcl→0 f(cl) = −∞, limcl→0 ∂f(cl)/∂cl = +∞

and limcl→0 ∂2f(cl)/∂c2
l = −∞. Part (ii) immediately follows by inspection. As to (iii), we have

established in Proposition 1 that f admits at most three roots; this part of the lemma is therefore

a direct implication of that result and of part (ii).

B.4. Proof of Proposition 4

Proof. (i) Condition (12) implies that H∗ = 0 if and only if c∗l = α. Plugging this result into

(13) shows that this inequality holds for any fE > 0. Local stability of the rural equilibrium then

immediately follows from the strict inequality. It is useful to show (iii) next. If fE = 0, local

stability of the rural equilibrium requires that ∂f/∂cl > 0 when evaluated at {H∗, c∗l } = {0, α}.

Using (13), some straightforward computations show that this is equivalent to θ > θR, where θR

is defined in (14). This establishes the stability of the rural equilibrium. To show its existence

and to derive a sufficient condition for it to be the only equilibrium, add and subtract (14) in
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(12) to obtain:

f(cl;Z) =
α − cl

2η

[
α −

k − 1

k + 2
cl −

3α

k + 2

(
α

cl

)k+1

+ 2
θR − θ

Ack+1
l

]
− fE (B.3)

<
α − cl

2η

[
(α − cl)

k − 1

k + 2
+ 2

θR − θ

Ack+1
l

]
− fE,

where the inequality stems from cl < α. Imposing θ ≥ θR, we further have

α − cl

2η

[
(α − cl)

k − 1

k + 2
+ 2

θR − θ

Ack+1
l

]
− fE ≤

α − cl

2η

[
(α − cl)

k − 1

k + 2
− 2

θ − θR

Aαk+1
l

]
(B.4)

<
α

2η

[
α

k − 1

k + 2
− 2

θ − θR

Aαk+1

]
− fE

where the first inequality in (B.4) is due to cl < α and θ ≥ θR and where the second inequality

comes from the fact that the second expression in (B.4) is decreasing in cl. Consequently, when

the right-hand side of (B.4) is (weakly) negative, then f(cl; ·) < 0 for all values of cl. In that

case, the rural equilibrium is the unique equilibrium. A sufficient condition for this to be so is

fE ≥ fR, where

fR ≡
α2

2η

k − 1

k + 2
.

This establishes the result.

To extend the proof to the multi-city case of Section 5, it suffices to replace θR by θR
Φ and A by

(1 + Φ)A in the proof above.

B.5. Proof of Proposition 5

Proof. Parts (i) and (ii) are a re-statement of Proposition 4. (iii) We are looking for a candidate

equilibrium with α > cl. In this case, (13) is equivalent to

2θ

A
≥ ck+1

l

(
α −

k − 1

k + 2
cl

)
, (B.5)

the right-hand side of which is strictly concave in cl, increasing at the limit cl → 0, and its

maximum value on (0, α] is given by 3αk+2/(k + 2). Thefore, the condition θ < θR is also

sufficient to ensure that there exists a pair {H∗, c∗l } with c∗l ∈ (0, α) and H∗ = H(c∗l ) from (12)

that is compatible with an equilibrium. We finally invoke the continuity of f to establish (iv):

at the limit fE → 0, there exists a finite θU(fE) by (ii) such that a stable urban equilibrium

exists, with limfE→0 θU(fE) = θR. Since f is continuously differentiable in both fE and θ, it

must be the case that θU(fE) is positive in the neighborhood of fE = 0 and, by ∂f/∂fE < 0

and ∂f/∂θ < 0 (Proposition 2), that θU(fE) is smaller than θR for any fE.

To extend the proof to the multi-city case of Section 5, it suffices to replace θR by θR
Φ and A by

(1 + Φ)A in the proof above.
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B.6. Proof of Proposition 6

Proof. (i) The upward-sloping part of the ∩-shape of Π is easily established using (6) and the

monotonicity of (12), whereby ∂cl/∂H < 0:

∂Π(H)

∂H
=

α − 2cl

η(k + 2)

∂cl

∂H
,

which is non-negative if and only if α/2 ≤ cl ≤ α. We next compute the second derivative of Π

with respect to city size, which is given by:

∂2Π(H)

∂H2
=

1

η(k + 2)

[
(α − 2cl)

∂2cl

∂H2
− 2

(
∂cl

∂H

)2
]

.

A sufficient condition for this to be negative is α/2 ≤ cl, since ∂cl/∂H < 0 and ∂c2
l /∂H2 > 0.

(ii) Let Π̃ ≡ Π
∣∣
c≤cl

define the average profit conditional on survival. One can check that

Π̃(cl) =
Hc2

l

2γ(k + 1)(k + 2)
=

(α − cl)cl

η(k + 2)

(
cl

cmax

)−k

,

where the second equality has been obtained from (12). Then

∂Π̃(cl)

∂cl
= −

(
cl

cmax

)−k
cl + (α − cl)(k − 1)

η(2 + k)
< 0,

where the inequality is due to 0 < cl ≤ α and k ≥ 1.

B.7. Proof of Proposition 7

Proof. (i) From (16), we have

σq(cl) ≡
k(k + 1)(k + 2)

2

(
cl

cmax

)−k
[

1

k
−

2

k + 1

q

cl

+
1

k + 2

(
q

cl

)2
]

.

Therefore, for q ∈ (0, cl), we have

∂σq(cl)

∂cl
= −

1

2cl

(
cl

cmax

)−k (
1 −

q

cl

)2

< 0,

and thus ∂σq/∂H > 0 by ∂H/∂cl < 0. (ii) Using the foregoing expression we get:

∂2σq(cl)

∂cl∂q
= −

2

cl

∂σq(cl)

∂cl

[
1 −

q

cl

]−1

which is positive, as was to be shown.
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B.8. Gini coefficient

In this appendix, we derive the Gini coefficient of income inequality as given by (17). First, since

all agents with c ≥ cl have zero income, aggregate income in city l across all draws c is given by

Wl(cl) ≡ HlG(cl)Π(Hl, cl) = A
H2

l ck+2
l

k + 2
,

where Π(Hl, cl) is from (15). The total income accruing to agents with draw q ≤ cl is thus given

by

Wl(q) ≡ HlG(cl)Πq(Hl, cl) =
kH2

l

4γ

(
q

cmax

)k (
c2
l

k
−

2q

k + 1
+

q2

k + 2

)
,

where Πq(Hl, cl) is from (16), and their income share is Wl(q)/Wl(cl). To compute the Gini

coefficient, we have to link the income share with the population share. To do so, we need

to switch to the distribution in terms of population shares (and not in terms of cost levels c).

Let y ≡ (q/cmax)
k, i.e., q = y1/kcmax. Using this change in variables, the new upper bound for

integration is given by y = (cl/cmax)
k, and we obtain the integral of the Lorenz curve for the

surviving agents as follows:

∫ ( cl

cmax
)

k

0

Wl(y)

Wl(cl)
dy −

∫ ( cl

cmax
)

k

0

xdx =
2 + 7k

4 + 8k

(
cl

cmax

)k

−
1

2

(
cl

cmax

)2k

(B.6)

To finally obtain the Gini coefficient, we need to add the integral of the Lorenz curve for the

agents who do not produce. This is given by

∫ 1

( cl

cmax
)

k
(1 − x)dx =

1

2

[(
cl

cmax

)k

− 1

]2

(B.7)

Summing (B.7) and (B.6) then yields the Gini coefficient of the income distribution as follows:

Gini(k, cl) = 1 −
k + 2

4k + 2

(
cl

cmax

)k

. (B.8)

Appendix C: Proofs for Section 5

C.1. Proof of Proposition 9

Proof. Straighforward rearrangement of (18) yields

α − cl

α − ch

(
ch

cl

)1+k

=
(1 − φ)Hl + φ

∑Λ
i=1 Hi

(1 − φ)Hh + φ
∑Λ

i=1 Hi

,

which directly implies that

cl < ch ⇐⇒ Hl > Hh.
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To get the second result, recall that the solution to the linear system Fh = x is given by

h = det(F)−1cof(F)T x, where cof(F) stands for the matrix of cofactors associated with F and

where T denotes the transpose operator. As a result,

∂Hl

∂cl
=

det(Fl,l)

det(F)

where det(Fl,l) is the minor of the (Λ−1)× (Λ−1) square matrix cut down from F by removing

its lth column and its lth row. Both matrices Fl,l and F have only 1’s on their main diagonals

and φ off their main diagonals. Thus, their determinants are also positive, i.e. det(Fl,l) > 0 and

det(F) > 0. By the same token,
∂Hl

∂ch
=

det(Fh,l)

det(F)
.

From the Gaussian elimination algorithm, we know that det(Fh,l) = − det(Fl,l) for l 6= h since

Fh,l and Fl,l differ by a column permutation only. Hence det(Fh,l) < 0, which completes the

proof.

C.2. Gini coefficient and trading cities

Let z(Λ, τ, k) ≡ −λ(Λ, τ, k)/2 so that (22) may be rewriten as

Ginil(Λ, τ, k; cl) = 1 + 2z(Λ, τ, k)

(
cl

cmax

)k

,

with z(·) < 0 for all Λ, τ and k. Fastidious calculations similar to those leading to (B.6) in

appendix C.6 yield

z(Λ, τ, k) = −1 +
φ

2(1 + 2k)

(Λ − 1) [(τ − 1)2(1 + 2k)(2 + k)(1 + k) + 2(τ − 1)(2 + k)(1 + 3k) + 2 + 7k]

2τ 2 + (Λ − 1) [(τ − 1)2(2 + k)(1 + k) + 2(τ − 1)(2 + k) + 2]

+
1

2(1 + 2k)

(2 + 7k)τ 2

2τ 2 + (Λ − 1) [(τ − 1)2(2 + k)(1 + k) + 2(τ − 1)(2 + k) + 2]

from which it follows that −2z(1, τ, k) = (2+k)/(2+4k) and that −2z(Λ, 1, k) = (2+k)/(2+4k).

We are now equipped to prove the result.

Proof. Differentiating z(Λ, τ, k) with respect to τ yields:

∂z(Λ, τ, k)

∂τ
= −

k(Λ − 1)

1 + 2k

{
φ [τ 2κ2 + τκ1 + κ0]

{(Λ − 1) [τ 2(1 + k)(2 + k) − τ(2 + k)2k + (1 + k)k] + 2τ 2}2

+
τ(2 + 7k) [(τ − 1)(2 + k) + 1]

{(Λ − 1) [τ 2(1 + k)(2 + k) − τ(2 + k)2k + (1 + k)k] + 2τ 2}2

−
∂φ

∂τ

1

k

(τ − 1)2(1 + k)(2 + k)(1 + 2k) + 2(τ − 1)(2 + k)(3k + 1) + (2 + 7k)

(Λ − 1) [τ 2(1 + k)(2 + k) − τ(2 + k)2k + (1 + k)k] + 2τ 2

}

where κ2 ≡ (Λ − 1)(1 + k)(2 + k)2 − 4k(2 + k), κ1 ≡ 3(Λ − 1)(1 + k)(2 + k) − 2k(7 + 2k) and

κ0 ≡ (Λ − 1)(2 + k) − 6k all have ambiguous signs; therefore, the term in the first line of the
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right-hand side above cannot be signed a priori. By contrast, the terms on the second and third

lines are positive by inspection. However, if φ [τ 2κ2 + τκ1 + κ0] is negative, then it is larger than

τ 2κ2 + τκ1 + κ0 and, adding the terms of the first and second lines, implies that

φ
[
τ 2κ2 + τκ1 + κ0

]
+ τ(2 + 7k) [(τ − 1)(2 + k) + 1]

> τ 2κ2 + τκ1 + κ0 + τ(2 + 7k) [(τ − 1)(2 + k) + 1]

= (2 + k)(Λ − 1)
[
(1 + k)(2 + k)(τ − 1)2 + 3(1 + k)(τ − 1) + 1

]

+(2 + k)
[
(2 + 3k)(τ − 1)2 + 3(1 + k)(τ − 1) + 1

]
> 0

which in turn implies that ∂z(Λ, τ, k)/∂τ < 0 for all Λ, τ and k. We have already estab-

lished in Proposition 10 that selection gets tougher as trade gets freer (∂cl/∂τ > 0), therefore

∂(Ginil)/∂τ ≡ 2 [cl(·)/cmax]
k {

∂z(·)/∂τ + z(·)c−1
l ∂cl(·)/∂τ

}
< 0.

For the sake of completeness, note that

∂z(Λ, τ, k)

∂Λ
= −

1

1 + 2k

{
−τ 2φ [(1 + k)(2 + k)(1 + 2k)(τ − 1)2 + 2(2 + k)(1 + 3k)(τ − 1) + 2 + 7k]

{(Λ − 1) [τ 2(1 + k)(2 + k) − τ(2 + k)2k + (1 + k)k] + 2τ 2}2

+
(2 + 7k)τ 2 [(1 + k)(2 + k)(τ − 1)2 + 2(2 + k)(τ − 1) + 2]

2 {(Λ − 1) [τ 2(1 + k)(2 + k) − τ(2 + k)2k + (1 + k)k] + 2τ 2}2

}

< −
k

1 + 2k

τ 2(τ − 1)(2 + k) [3(1 + k)(τ − 1) + 2]

2 {(Λ − 1) [τ 2(1 + k)(2 + k) − τ(2 + k)2k + (1 + k)k] + 2τ 2}2 < 0.

Therefore, given cl, granting access to more urban markets increases wages of the less productive

exporters relative to the wages of the most productive ones; this positive effect is strong enough to

overcome the negative one on income inequality that arises as a result of the wages of all successful

entrepreneurs going up. However, since selection gets tougher as trade gets freer (∂cl/∂τ > 0),

the two effects work in opposite directions. Our numerical simulations suggest that the latter

indirect effect always dominates the former, direct effect. More precisely, the fact that a larger Λ

increases the Gini coefficient is entirely due to the increase in selection. By contrast, the fact that

a lower τ increases the Gini is due to the increase in selection and to the increase of the profits

of the most productive entrepreneurs relative to those of the least productive entrepreneurs.
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Table 1: Descriptive statistics and correlations

Variable Description Obs Min Max Mean Median Std deviation

size CBSA population size 507 65583 18818536 525278 157193 1353798

medi household median income 507 11717 80638 43749.47 42914 8876.98

meani household mean income 507 18269 124665 56598.92 55551 11334.47

Q1 household mean income 1st quintile 507 1128 19933 10745.72 10614 2668.657

Q2 household mean income 2nd quintile 507 6192 50095 26811.79 26281 5941.083

Q3 household mean income 3rd quintile 507 11971 80110 43892.1 43304 8852.877

Q4 household mean income 4th quintile 507 21666 122093 66678.73 65904 12416.4

Q5 household mean income 5th quintile 507 50360 362103 134866.3 130528 29667.12

gini household income Gini coefficient 507 .353 .568 .438 .439 .031

interq household income interquintile gap to mean 507 1.7608 2.8622 2.1926 2.1804 .1619

top5ratio household top 5% to mean income 507 2.753 6.310 3.993 3.994 .516

edu share of college educated 507 .163 .519 .299 .293 .064

pov share with poverty ratio < 1 507 .046 .570 .149 .140 .064

south southern states dummy 507 0 1 .410 0 .492

hh 2plus share of households with 2+ earners 507 .0502 .152 .503 .342 .050

sphh share of single person households 507 .138 .339 .267 .272 .034

black share of African-Americans 495 .003 .613 .101 .061 .111

asian share of Asians-Islanders 495 .003 .735 .025 .013 .056

hisp share of Hispanic 495 .005 .943 .079 .033 .128

indian share of Natives-Indians 495 .002 .764 .018 .008 .047

gini 3d 3-digit industrial Isard index 496 .100 .652 .273 .270 .080

hs share share of higher level services 496 .036 .389 .142 .132 .056

net mp net market potential 507 44.157 805.507 289.405 284.203 92.349

Notes: See the Data Appendix A for further details on data sources and definitions.

Selected correlations

log(gini) log(interq) log(top5ratio) pov log(medi) log(meani) log(size)

log(gini) 1.000

ln(interq) .9901 1.000

log(top5ratio) .8501 .8714 1.000

pov .5226 .5086 .1855 1.000

log(medi) −.3359 −.3117 −.0538 −.8334 1.000

log(meani) −.0865 −.0712 .1817 −.7613 .9549 1.000

log(size) .2495 .2551 .3066 −.1636 .4050 .5002 1.000
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Table 2: City size and mean income

Base(1) Robust(2) Robust(3) Robust(4) Robust(5) Robust(6) Robust(7) Robust(8)

Obs. 499 499 499 495 493 359 136 493

Sample All All All All All Metro Micro All

Dependent variable log(meani) log(meani) log(meani) log(meani) log(meani) log(meani) log(meani) log(meani)

Coefficients:

log(size) .0963 .0637 .0610 .0389 .0405 .0392 .0768 .0342

(.000) (.000) (.000) (.000) (.000) (.000) (.018) (.000)

log(net mp) .0586

(.000)

edu .9737 1.148 1.117 1.025 .9834 1.143 1.095

(.000) (.000) (.000) (.000) (.000) (.000) (.000)

pov −1.438 −1.338 −1.912 −1.885 −2.140 −1.184 −1.881

(.000) (.000) (.000) (.000) (.000) (.000) (.000)

south −.0111 −.0007 −.0065 −.0076 −.0181 .0299 −.0041

(.249) (.934) (.464) (.384) (.075) (.071) (.630)

hh 2plus .2275 .2118 .2019 .0368 .6073 .1750

(.055) (.050) (.063) (.801) (.000) (.086)

sphh −.9977 −.5839 −.5760 −.5798 −.4700 −.6247

(.000) (.000) (.000) (.007) (.053) (.000)

black .2587 .2477 .2873 .0394 .2370

(.000) (.000) (.000) (.591) (.000)

asian .3385 .3232 .3370 .2425 .4648

(.000) (.000) (.000) (.000) (.000)

hisp .2778 .2582 .2823 .1971 .3094

(.000) (.000) (.000) (.277) (.000)

indian .3489 .3258 .1783 .2140 .4252

(.001) (.001) (.040) (.059) (.000)

gini 3d .1418 .2778 .0186 .1055

(.156) (.004) (.928) (.266)

hs share .3004 .3343 .2281 .3401

(.003) (.009) (.180) (.000)

R2 .3513 .7162 .7605 .8044 .8089 .7939 .8025 .8182

Notes: p-values in parentheses, robust standard errors. Clustering standard errors by state does not significantly affect our key results.

All regressions exclude the CBSAs located in Puerto Rico.
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Table 3: City size and mean income (quintile regressions)

Quintile 1 2 3 4 5

log(size) .0554 .0505 .0484 .0347 .0212

(.000) (.000) (.000) (.000) (.000)

Psd R2 .5833 .5837 .5782 .5854 .6153

Notes: Dependent variable in all regressions is the

CBSA log mean income (meani); 493 observations. p-

values in parentheses, robust standard errors. Con-

trols included as in specifications Robust(5,6,7) in Ta-

ble 2 (asian, black, hisp, indian, edu, south, pov,

hh 2plus, sphh, gini 3d, hs share).

Table 4: City size and income (regression on income quintile means)

Income quintile 1st 2nd 3rd 4th 5th

log(size) .0209 .0340 .0344 .0368 .0477

(.003) (.000) (.000) (.000) (.000)

R2 .8589 .8758 .8452 .8096 .7127

Notes: Dependent variables are the log means of the CBSA

income quintiles; 493 observations. p-values in parentheses,

robust standard errors. Controls included as in specifica-

tions Robust(5,6,7) in Table 2 (asian, black, hisp, indian, edu,

south, pov, hh 2plus, sphh, gini 3d, hs share).
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Table 5: City size dilates the income distribution

Base(1) Robust(2) Robust(3) Robust(4)

Obs. 499 499 499 499

Sample All All All All

Dependent variable log(top5ratio) log(top5ratio) log(top5ratio) log(top5ratio)

Coefficients:

log(size) .0367 .0310 .0207 .0146

(.000) (.000) (.000) (.076)

edu .6221 .5883 .5654

(.000) (.000) (.000)

pov .6064 .2208 .1920

(.000) (.176) (.009)

south .0727 .0757 .0777

(.000) (.000) (.000)

hh 2plus −.3908 −.3991

(.005) (.005)

sphh .6285 .6128

(.004) (.005)

black .0087 .0063

(.891) (.920)

asian .1805 .1982

(.172) (.150)

hisp .2237 .2305

(.000) (.000)

indian .0345 .0478

(.657) (.547)

gini 3d −.1132

(.288)

hs share −.0081

(.950)

R2 .0975 .2601 .3180 .3195

Notes: p-values in parentheses, robust standard errors. Clustering standard errors by

state does not significantly affect our key results. All regressions exclude the CBSAs

located in Puerto Rico.
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Table 6: City size and income inequality

Base(1) Robust(2) Robust(3) Robust(4) Robust(5) Robust(6) Robust(7) Robust(8)

Obs. 499 499 499 495 493 359 136 493

Sample All All All All All Metro Micro All

Dependent variable log(gini) log(gini) log(gini) log(gini) log(gini) log(gini) log(gini) log(interq)

Coefficients:

log(size) .0309 .0198 .0174 .0128 .0088 .0083 .0324 .0211

(.000) (.000) (.000) (.000) (.032) (.065) (.110) (.007)

log(medi) −.1702 −.0458 .0241 −.0081 −.0018 .0359 −.0891 .0060

(.000) (.115) (.501) (.826) (.987) (.382) (.136) (.864)

log(net mp) −.0175

(.054)

edu .4159 .3426 .3629 .3473 .2921 .5226 .3214

(.000) (.000) (.000) (.000) (.000) (.000) (.000)

pov .7525 .5847 .6381 .6321 .6585 .7075 .6522

(.000) (.000) (.000) (.000) (.000) (.000) (.000)

south .0400 .0381 .0371 .0386 .0388 .0443 .0381

(.000) (.000) (.000) (.000) (.000) (.000) (.000)

hh 2plus −.2213 −.2192 −.2268 −.2545 −.1350 −.2238

(.002) (.001) (.001) (.001) (.300) (.001)

sphh .2465 .3539 .3504 .3564 .3666 .3735

(.004) (.000) (.000) (.003) (.037) (.000)

black .0434 .0409 .0275 .0146 .0397

(.133) (.152) (.424) (.778) (.163)

asian .1073 .1172 .0071 .2038 .1011

(.050) (.040) (.843) (.000) (.062)

hisp .0877 .0918 .0863 .0444 .0807

(.000) (.000) (.002) (.670) (.001)

indian −.0117 −.0046 .0684 −.0743 −.0255

(.810) (.923) (.379) (.139) (.605)

gini 3d −.0769 −.0551 −.0641 −.0517

(.139) (.339) (.600) (.351)

hs share −.0224 −.0021 −.0218 −.0255

(.741) (.987) (.853) (.705)

R2 .2236 .5117 .5179 .5658 .5675 .5317 .6253 .5703

Notes: p-values in parentheses, robust standard errors. Clustering standard errors by state does not significantly affect our key

results. All regressions exclude the CBSAs located in Puerto Rico. When using the 2007 ACS one-year estimates of the US

Census in Base(1) we obtain similar results (510 observations, log(size) = .0289 (.000) and adj R2 = .3011). The same holds

true when using the 2005-2007 ACS three-year estimates of the US Census in Base(1) (921 observations, log(size) = .0298 (.000)

and adj R2 = .3902), thus suggesting that our results are robust.
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Table 7: City size and income inequality (quintile regressions)

Quintile 1 2 3 4 5

log(size) .0196 .0166 .0104 .0111 .0037

(.000) (.000) (.013) (.001) (.652)

Psd R2 .4200 .3839 .3842 .3827 .3596

Notes: Dependent variable in all regressions is the

log income Gini coefficient; 493 observations. p-values

in parentheses, robust standard errors. Controls in-

cluded as in Robust(5,6,7) in Table 6 (medi, asian,

black, hisp, indian, edu, south, pov, hh 2plus, sphh,

gini 3d, HS share).
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Figure 1a. Mean household income and CBSA size

Atlanta

Boston ChicagoDallas

Detroit

Houston
Los Angeles

Miami

New York

Philadelphia

Washington

−
1

−
.9

−
.8

−
.7

−
.6

lo
g(

gi
ni

)

10 12 14 16 18
log(size)

Figure 1b. Household income Gini coefficient and city size
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Figure 2a. 1st and 5th income quintile means and city size

Atlanta
Boston

ChicagoDallas

Detroit

Houston
Los Angeles

Miami
New York

Philadelphia
Washington

1
1.

2
1.

4
1.

6
1.

8
lo

g(
to

p5
ra

tio
)

10 12 14 16 18
log(size)

Figure 2b. Top 5% mean income to overall mean income and city size
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Technical Appendix: Guide to calculations and extensions,

not to be published

T.1. Urban costs

Assume that all city dwellers consume one unit of land, as in standard fixed lot-size models (see

Fujita, 1989). Assume further that the central business district (CBD) is located at x = 0, so

that a city of size H stretches out from −H/2 to H/2. Without loss of generality, we normalize

the opportunity cost of land at the urban fringe to zero: R(H/2) = R(−H/2) = 0. Each city

dweller commutes to the CBD at constant unit-distance cost ξ > 0. Hence, an agent located at x

incurrs a commuting cost of ξ|x|. Because expected profits and consumer surplus do not depend

on city location (see Section 2), the sum of commuting costs and land rent must be identical

across locations at a residential equilibrium. This implies that

R

(
H

2

)

︸ ︷︷ ︸
=0

+ξ
H

2
= R(x) + ξ|x|,

for all x, which yields the equilibrium land rent schedule R(x) = ξ (H/2 − |x|). The aggregate

land rent is thus given by

ALR =

∫ H

2

−H

2

R(x)dx =
ξ

4
H2.

When ALR is equally redistributed to all agents, equilibrium total urban costs are given by

−
ALR

H
+ R(x) + ξ|x| =

ξ

4
H.

Letting θ ≡ ξ/4 > 0 then yields the expression θHl for urban costs.

T.2. Return migration

Assume that, upon learning their inverse ability c, entrepreneurs who fail to be successful may

return to the countryside at no cost. Assume further that all agents know this piece of information

and include it in their entry decision. Starting from the equilibrium conditions of the benchmark

model, the mass of people staying in the city is now G(cl)H with G(cl) = (cl/cmax)
k. Let

Ã ≡ 1/[2(k+1)γ]. The short run equilibrium condition, which characterizes the mass of varieties

actually supplied to consumers, may be rewritten as:

α − cl

Ãηcl

= G(cl)H.

Next, the profit is given by Π(c) = G(cl)
H
4γ

(cl−c)2, so that the average profits of the stayers may

be written as

Π̃ =

∫ cl

0

α − cl

4γclÃη
(cl − c)2k

ck−1

cl
k

dc =
1

η(2 + k)
(α − cl)cl. (T.1)
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Note that (T.1) is positive and concave, as well as decreasing in cl over (α/2, α). Furthermore,

it is readily verified that

Π̃(q) ≡

∫ q

0

α − cl

4γclÃη
(cl − c)2k

ck−1

ck
l

dc

=
(α − cl)k(k + 1)

2η

[
cl

−k+1qk

k
−

2cl
−kqk+1

k + 1
+

c−k−1
l qk+2

k + 2

]
,

so that the share of profits accruing to entrepreneurs with a draw smaller than q is given by

σ(q) ≡
Π̃(q)

Π̃
=

k(k + 1)(k + 2)

2

[
cl

−kqk

k
−

2cl
−k−1qk+1

k + 1
+

c−k−2
l qk+2

k + 2

]
,

which depends on the inverse average productivity cl. For any given q, the income share is larger

in larger cities (smaller cl). The Gini coefficient can then finally be computed as follows:

Gini = 1 − 2

[
1 −

∫ cl

0

σ(q)k
qk−1

cl
k

dq

]
=

3k

4k + 2
, (T.2)

which is independent of city size and solely depends on the distributional parameter k ≥ 1,

despite the fact that σ(q) is a function of cl. Thus, the model with return migration delivers the

counterfactual prediction that city size does not matter for income inequality (see Section 2).

T.3. Consumer surplus

Denote by Dl ≡
∫
Vl

dl(ν)dν the demand for all varieties of the differentiated good. The inverse

demand of an agent of type i = E for each variety ν of that good is obtained by maximizing (1)

subject to (2) and can be expressed as follows:

pl(ν) = α − γdl(ν) − ηDl (T.3)

whenever dl(ν) ≥ 0. Denote by V+
l ⊆ Vl the subset of varieties effectively consumed in region l.

Expression (T.3) can be inverted to yield a linear demand system as follows:

ql(ν) ≡ Hldl(ν) = Hl

[
α

ηNl + γ
−

pl(ν)

γ
+

ηNl

ηNl + γ

pl

γ

]
, ∀ν ∈ V+

l , (T.4)

where pl ≡ (1/Nl)
∫
V+

l

pl(ν)dν stands for the average price. By definition, V+
l is the largest subset

of Vl satisfying

pl(ν) ≤
γα + ηNlpl

ηNl + γ
≡ pd

l . (T.5)

For any given level of product differentiation γ, lower average prices pl or a larger number of

competing varieties Nl increase the price elasticity of demand and decrease the price bound pd
l

defined in (T.5). Stated differently, a lower pl or a larger Nl generate a ‘tougher’ competitive
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environment, thereby reducing the maximum price at which entrepreneurs still face positive

demand. Letting phl(ν) stand for the price of variety ν produced in h and sold in l, the consumer

surplus is given by:

CSl =
α2Nl

2(ηNl + γ)
−

α

ηNl + γ

∑

h

∫

V+

hl

phl(ν)dν

+
1

2γ

∑

h

∫

V+

hl

p2
hl(ν)dν −

η

2γ(ηNl + γ)

[
∑

h

∫

V+

hl

phl(ν)dν

]2

. (T.6)

T.4. Nash price equilibrium

Let πhl(c) = [phl(c) − τc] qhl(c) denote operating profits, expressed as a function of the en-

trepreneur’s inverse productivity c. The firms sets prices in order to maximize these profits

for each market separately. Then, the profit maximizing prices and output levels must satisfy

(for h 6= l, with τ = 1 substituted for when h = l):

phl(c) =
γα + ηNlpl

2(ηNl + γ)
+

τc

2
and qhl(c) =

Hl

γ
[phl(c) − τc] . (T.7)

Integrating the prices in (T.7) over all available varieties, summing across regions and rearranging

yields the average delivered price in market l as follows:

pl =
γα + ηNlpl

2(ηNl + γ)
+

cl

2
⇒ pl =

γα + (γ + ηNl)cl

2γ + ηNl

, (T.8)

where

cl ≡
τ

Nl

∑

h

∫

V+

lh

c dG(c)

stands for the average delivered cost of surviving firms selling to l. Plugging (T.8) into (T.7), some

straightforward rearrangements show that the Nash equilibrium prices can then be expressed as

follows:

phl(c) =
cl + τc

2
, where cl ≡

2αγ + ηNlcl

2γ + ηNl

denotes the domestic cost cutoff in region l. Only entrepreneurs with c ‘sufficiently smaller’ than

cl are productive enough to sell in city l. This can be seen by expressing qhl in (T.7) more

compactly as follows:

qhl(c) = Hl
cl − τc

2γ
. (T.9)

Clearly, selling in a ‘foreign’ market l when producing in h requires that c ≤ cl/τ , whereas the

analogous condition for selling in the ‘domestic’ market is given by c ≤ cl. In what follows, we

denote by chl the export cost cutoff for firms producing in region h and selling to region l. This

cutoff must satisfy the zero-profit cutoff condition chl = sup {c | πhl(c) > 0}. From expressions
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(3) and (T.9), this condition can be expressed as either phl(chl) = τchl or qhl(chl) = 0, which then

yields: chl = cl/τ . Clearly, chl ≤ cl since τ ≥ 1. Put differently, trade barriers make it harder for

exporters to break even relative to their local competitors because of higher market access costs.

Since pd
l = pll(cl) = cl, the zero-profit cutoff condition (T.5) can be expressed as follows:

γα + ηNlpl

ηNl + γ
= cl, with pl =

αγ + (γ + ηNl)cl

2γ + ηNl
.

We can thus solve for the mass of entrepreneurs selling in region l as follows:

Nl =
2γ

η

α − cl

cl − cl

. (T.10)

Using the Pareto parametrization of Section 3.4, the average price and the average marginal cost

in region l are computed as follows:

pl =
2k + 1

2k + 2
cl and cl =

k

k + 1
cl,

i.e., they are given by a scaling of the domestic cutoff. Using this expression, as well as (T.10),

we can then express the mass of sellers in l as follows:

Nl ≡
∑

h

HhG(chl) =
2γ(k + 1)(α − cl)

ηcl
,

where the first equality comes from the definition of Nl.

The consumer surplus is finally derived by substituting the equilibrium prices into (T.6).

T.5. Expected profits

The expected profit in region l in the symmetric case under the Pareto parametrization is given

as follows:

E(Πl) =
1

Hl

[
Hl

4γ

∫ cl

0

(cl − c)2 HldGl(c) +
∑

h 6=l

Hh

4γ

∫ ch

τ

0

(ch − τc)2 HldGl(c)

]

=
c−k
max[Hlc

k+2
l + τ−k

∑
h 6=l Hhc

k+2
h ]

2γ(k + 1)(k + 2)
=

A[Hlc
k+2
l + τ−k

∑
h 6=l Hhc

k+2
h ]

k + 2
.

Using this expression, and noting that neither the consumer surplus nor the urban costs depend

on the entrepreneur’s ability, we readily obtain expression (10).
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