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Abstract:  
We develop a dynamic bio-economic model of bacterial resistance and disease 
transmission in which we characterize the pricing policy of a monopolist who is protected 
by a patent. After expiration, the monopolist behaves competitively in a generic industry 
having open access to the common pool of antibiotic efficacy and infection. The 
monopolist manages endogenously the levels of antibiotic efficacy as well as the 
infected population, which represent quality and market size respectively and achieves, 
at least temporarily, higher such levels than a hypothetically myopic monopolist who 
does not take into account the dynamic externalities. The pricing policy and the 
biological system are characterized by the turnpike property. Before the patent vanishes, 
the monopolist behaves more and more myopically, leading to a continuous decrease in 
the price of the antibiotic. Once the generic industry takes over, a discontinuous fall in 
price occurs. Whether a prolongation of the patent is socially desirable depends on the 
relative levels of antibiotic efficacy and infection. 
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1 Introduction

Pharmaceutical firms that produce an antibiotic are usually given temporary monopoly

power through a patent, granted in order to recover the incurred investment in R&D and

by this to encourage future innovation of new drugs. The granting of this monopoly power

ignores the fact that this also gives the firm some control over the levels of the drug’s

treatment efficacy on the one hand, as well as of the infected population on the other. This

control stems from the fact that the antibiotics sold to the community help cure the infected,

and thus decreases the level of infection, at least in the short run. However, a too intensive

use of antibiotics within the community may lead to an increase in the bacterial resistance

of the drug – the mirror image of its treatment efficacy – via the natural selection of drug-

resistant bacteria over time.1 The purpose of this paper is to study this aspect of the pricing

policy of a monopolist whose market is protected by a patent and who is aware of the existing

externalities. Whether the monopolistic pricing policy is socially desirable as compared to

the subsequent generic industry is also considered.

Bacterial resistance to antibiotics has recently attracted the interest of economists. Most

have put the emphasis on the determination of the socially optimal use of the antibiotic

over time, ignoring the analysis of the market outcome. These include Laxminarayan and

Brown (2001), Rudholm (2002), Wilen and Msangi (2003), Rowthorn and Brown (2003)

and Gersovitz and Hammer (2004). Very few have considered explicitly how the market will

allocate the antibiotic use over time. Fischer and Laxminarayan (2005) is an exception, as are

Herrmann and Gaudet (2009) and Mechoulan (2007). Fischer and Laxminarayan (2005) treat

the problem as that of the sequential exploitation by a monopolist of exhaustible resources

pools (the stock of efficacy of the antibiotics) when a setup cost must be incurred to access

the next pool of resource (the next antibiotic). They show that whether the monopolist

exploits the efficacy of the existing antibiotic faster or slower, and hence introduces the new

drugs sooner or later than is socially optimal, depends on whether there are many or few

1See Levy (1992) for a useful overview of the subject of antibiotic resistance.
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new drugs left to be developed. Herrmann and Gaudet (2009) model a generic industry

as composed of antibiotic producers that have open access to the common resource pool of

antibiotic efficacy and compare the market outcome in this case to the social optimum. It

is shown that, depending on the bio-economic parameters of the model, in particular the

cost of production and the increase in the recovery rate that results from treatment, the

steady-state level of antibiotic efficacy that results from the generic industry may be lower

or higher than is socially optimal. Mechoulan (2007) shows in a highly stylized model of

disease transmission that while a social planner prefers eradication of infection (if possible),

a monopolist achieves a steady state with a positive level of infection. Adding intertemporal

resistance built-up to the model, the author concludes that re-activating patent rights may

be socially desirable if the increase in resistance is sufficiently high.2,3

It is shown in this paper that a monopolist who benefits from a patent on the sale of an

antibiotic, and who takes into account the effect of his sales on the efficacy of his antibiotic

(the quality of his product) and on the evolution of the infected population (his market size),

will tend to price so as to spend a period of time in the neighborhood of the steady-state

price of an infinitely-lived monopolist. The length of the period of time in question will

depend on the patent life. Thus, if the patent life is long enough, the price path will at

first decrease towards the steady-state price of the infinitely-lived monopolist, remain in the

neighborhood of this price (or possibly exactly on it) for an interval of time, and leave it as

the end of the patent approaches. In that final phase, the monopolist acts more and more

as a myopic monopolist, that is one who neglects the impact of his decision on the evolution

of the antibiotic efficacy and the stock of infected population. As a result, price decreases

2In a much earlier contribution, Tisdell (1982) has argued that a monopoly may result in a socially
optimal use of the drug, given the externality that results from antibiotic use. More recently Horowitz and
Moehring (2004) have argued, using a diagrammatic analysis, that antibiotic resistance will tend to increase
when the patent on an antibiotic expires which is also one of our findings in this paper for a particular class
of bio-economics parameters.

3In connection to the vaccine market, Kessing and Nuscheler (2006) build a static model to analyze the
monopoly pricing of a vaccine when demand for it is negatively affected by the expected rate of immuniza-
tion. The monopolist exploits this externality, leaving poorer individuals untreated in order to increase the
willingness-to-pay for the vaccine by richer individuals.
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until it reaches the price charged by a myopic monopolist, just as the patent expires. The

industry is then taken over by generic producers, with open access to the stock of efficacy

of the antibiotic, and the price jumps down to average cost. Whether the turnpike property

just described is exact or not and what length of time is spent near or at the infinitely-lived

monopoly price depends on the bio-economic parameters and on the length of the patent life.

The welfare implications of changing the duration of the patent depend on the state of the

system and the time at which the announcement becomes effective. We find that prolonging

the patent is only socially desirable when the level of infection is relatively low compared to

the level of antibiotic efficacy. In fact, relatively higher levels of infection are contained more

efficiently under a generic industry, as it charges a lower price implying more individuals to

buy the antibiotic.

This paper is structured as follows. In Section 2, the epidemiological and economic

models are presented. The monopolistic programme is characterized in Section 3. Two

benchmark cases, which are the myopic monopolist and the infinitely lived monopolist are

also considered for comparison in that section. The welfare implications of prolonging the

patent are described in Section 4. We conclude in Section 5.

2 Model

The model has an epidemiological and an economic component. The epidemiological com-

ponent (the so-called SIS-model) is borrowed from the epidemiological literature (see for

instance Bonhoeffer et al., 1997). It has already been used before in the economics literature

by, among others, Laxminarayan and Brown (2001), Wilen and Msangi (2003) and Herrmann

and Gaudet (2009). The economic component involves the interaction of the monopolist (on

the supply side) with a derived demand for the antibiotic first presented in Herrmann and

Gaudet (2009). We present the epidemiological model and the demand side of the economic

component in what follows.
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2.1 The epidemiological model

We assume that there is only one antibiotic treatment available to fight a particular infection.

The infected population (I) is made up of those suffering from a drug-susceptible version of

the infection (Iw) and those suffering from the drug-resistant version (Ir), both versions being

naturally present in the system. The problem of antibiotic resistance arises as the bacterial

strain causing the drug-resistant version of the infection becomes predominant in the system,

since the drug-susceptible bacterial strain clears at higher rate under antibiotic treatment.

This effect is generally referred to as natural selection, on which we will concentrate here.4

In such a context, an appropriate measure of antibiotic treatment efficacy (w) is the ratio

of the population being infected with the drug-suspectable version to the overall infected

population, i.e. w = Iw/(Iw + Ir) = Iw/I.

We assume the overall population to be constant and equal to N . The healthy population

is then given by S = N − I. Let β be the rate of transmission of the infection between the

healthy and the infected population. The SIS-model assumes that the rate of addition at time

t to the infected population, either drug-resistant or drug-susceptible, is given by βS(t)Ir(t)

and βS(t)Iw(t) respectively. The infected individuals may recover naturally, that is without

taking the antibiotic. We denote the natural recovery rates from the drug-resistant and

the drug-susceptible infection by rr and rw respectively. If all the infected individuals are

treated with the antibiotic, the rate of recovery of those infected with the drug-resistant strain

remains unchanged, while the rate of recovery of those infected with the drug-susceptible

strain increases to rw + rf . If a fraction f ∈ [0, 1] of the infected population is being treated

with the antibiotic, the rate of recovery of those infected with the drug-susceptible strain will

be rw+frf . Hence the total infected population decreases at the rate rrIr(t)+(rw+frw)Iw(t).

The population dynamics can be summarized by the following system of differential

4Antibiotic resistance may not only be caused by natural selection, but also by the mutation of drug-
susceptible strains when being continually in contact with the antibiotic, or by the transfer of plasmids, i.e.
genetic material transferred from resistant towards susceptible strains and containing information on how to
be resistant. See for instance Levy (1992).
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equations:

İw = (βS − rw − frf )Iw

İr = (βS − rr)Ir (1)

Ṡ = −İ = −İw − İr.

Note that the evolution of the healthy population (Ṡ) is the complement of the evolution of

the infected population (İ), since we have assumed the overall population to be constant.

Using this fact and the definition of antibiotic efficacy, we can rewrite system (1) as:

ẇ = w(1− w)[∆r − rff ] (2)

İ = I(β(N − I)− rr + w[∆r − rff ]) (3)

where ∆r = rr− rw measures what is called in the epidemiological literature the fitness cost

of resistance. The fitness cost can be understood as an opportunity cost of the resistant

bacterial strains: they remain unaffected by antibiotic treatment, but this ability comes at

the cost that they clear at a higher rate than drug-susceptible strains in the absence of

antibiotic treatment.

We can now point out two important effects in the biological system that are apparent

in equation (2): a positive fitness cost ∆r implies renewability of the resource of antibiotic

efficacy (fitness cost effect), while the additional recovery rate rf helps clear drug-susceptible

infections, leading potentially to the dominance of the drug-resistant version of the infection

(natural selection effect). If a fraction f = ∆r/rf of the infected population is treated

with the antibiotic, those two effects cancel out. For all other admissible values of f , either

one effect dominates, leading to an increase or decrease in the level of antibiotic efficacy.

Assuming that both the fitness cost effect and the natural selection effect are apparent in

the system, we must have ∆r/rf < 1.

There exist three steady-state configurations to the epidemiological dynamics described

by (2) and (3). Let wSS and ISS denote the steady-state values of w and I respectively. For
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any f 6= ∆r/rf , we have ẇ = 0 for w = 0 or w = 1 and there are two distinct steady states,

given by:

(ISS, wSS) =

(
βN − rr

β
, 0

)
and (4)

(ISS, wSS) =

(
βN − rw − rff

β
, 1

)
(5)

For f = ∆r/rf , we have ẇ = 0 for any value of w and hence all

(ISS, wSS) =

(
βN − rr

β
, w ∈ [0, 1]

)
(6)

constitute steady states. We will assume throughout the paper that the biological parameters

imply that the infection cannot be eradicated, nor dominate the whole system, so that the

steady states of infection must be interior, 0 < ISS < N .5

If the treatment rate f were to remain constant over time, then, in order to reach the

steady state at which wSS = 1, the fraction, say f1, of the infected population being treated

must satisfy f1 < ∆r/rf . The steady state wSS = 0 will be reached if a fraction, say f2,

gets treatment over time with f2 > ∆r/rf . For the corresponding steady-state levels of the

infected population, this implies

βN − rr
β

<
βN − rw − rff1

β

Thus the steady state at which antibiotic efficacy reaches its upper bound (wSS = 1), corre-

sponds to a relatively higher level of the infected population than the steady state at which

antibiotic efficacy is lowest (wSS = 0). For an interior steady state of w, which is reached if

a fraction, say f3, of the infected population gets treatment, with f3 = ∆r
rf

, the steady-state

level of infection is equal to (βN − rr)/β.

5Thus, we must have βN − rr > 0 for steady states (4) and (6) to be interior. The positiveness of steady
state (5) is implied by the fact that it can only be reached with f < ∆r/rf < 1 for an initial value of
antibiotic efficacy w0 < 1. It order to assure a positive level when w0 = 1, we assume βN − rf − rw > 0. We
also want to make sure that the system doesn’t become dominated by infection when out of steady state.
Assuring that less individuals fall ill than are healthy if recovery rates were zero (βSI < S), it can be shown
that a sufficient condition for this is β < 1/N . For the particular case of a perfectly efficient drug (w = 1),
assuring infection to remain present when there are no healthy individuals left in the system (S = 0) is
implied by the sufficient condition İw = −[rw + rf ]Iw < Iw, or rw + rf < 1.
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A representative evolution of the state variables starting from an interior state (I0, w0)

and corresponding to the cases f1 and f2 just described is illustrated in Figure 1. Figure 1

represents a phase diagram and shows the İ-isocline and the corresponding forces driving

the system when away from the isocline (as indicated by the arrows) under the two different

regimes corresponding to the treatment rates f1 or f2.6 In the case of f1 < ∆r/rf the

continuous lines apply, and the system tends to the steady state at which wSS = 1, since

the fitness cost effect dominates. In the case of f2 > ∆r/rf the dashed lines apply, and

the system tends to the steady state at which wSS = 0, since the natural selection effect of

resistant bacterial strains dominates. For f = ∆r
rf

, both effects cancel out so that the level

of antibiotic efficacy remains constant and the system converges to a steady state as defined

in (6) (not shown in the Figure).

The crucial point is that the dynamic system is non-stationary with respect to the treat-

ment rate f . If f changes over time, the İ-isoclines will also change. Values of f closer to the

critical value ∆r/rf imply steeper İ-isoclines. If the sequence of f converges monotonously

to ∆r/rf from above or from below, the isoclines will pivot around the point ((βN−rr)/β, 0)

and the dynamic system will converge to an interior steady state (see for instance Herrmann

and Gaudet (2009) for the case of the generic industry).

2.2 The demand

The market demand for the antibiotic is derived under three main assumptions. First, we

assume that individuals are vertically differentiated with respect to their valuation θ of being

in good health, the distribution function of which is F (θ) over the population N . Second,

we assume that consumers do not behave strategically, thus abstracting from consumers

stockpiling (or waiting to buy) antibiotics when an increase (or decrease) in price is expected.

Third, we assume that infected individuals do not know whether they suffer from the drug-

6Analytically, the İ-isocline is derived by setting İ = 0, which gives I = 0 or w = w̃(I) = β(I−N)+rr

∆r−rff
.

For f < ∆r/rf , the isocline has a positive slope, while it is negative for f > ∆r/rf . If f equals the critical
fraction ∆r/rf , the İ-isocline is a vertical line passing through ISS as defined in (6).
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resistant or the drug-susceptible versions of the disease. However, we assume that they

know the current treatment efficacy of the antibiotic, w(t), and the natural recovery rates

from either infection. If the spread of infection and the valuation of being in good health are

independent events, the probability of recovering from infection without antibiotic treatment

is π(w) = wrw + (1 − w)rr. With antibiotic treatment, recovery from infection will occur

with a higher probability of [π(w) + wrf ].
7

The gross utility derived from health considerations by the individual of type θ will

therefore be given by:

u(θ) =


θ if in good health
π(w)θ if infected and not taking the antibiotic
[π(w) + rfw]θ if infected and taking the antibiotic.

Only infected individuals whose valuation of being in good health is sufficiently high will

buy the antibiotic. Denote by θ̃ the type who is indifferent between buying the antibiotic

or not when infected. The value of θ̃ is determined by: π(w)θ̃ = [π(w) + rfw]θ̃ − p, which

means that

θ̃ =
p

rfw
. (7)

Thus infected individuals with θ ≥ θ̃ will buy the antibiotic and those with θ < θ̃ will not.

The fraction of the infected population willing to buy the antibiotic is [1−F (θ̃)], and, since

individual demand is unitary, total demand is given by: Q = I
[
1− F

(
p
rfw

)]
. Therefore

the inverse demand function is: P
(
Q
I
, w
)

= rfwF
−1
(
1− Q

I

)
. For simplicity, let us assume

that θ is distributed uniformly over the population, with supports [0, 1]. The inverse demand

function then becomes: P
(
Q
I
, w
)

= rfw
(
1− Q

I

)
. Notice that the intercept of the inverse

demand is rfw and its slope is rfw/I. The variable w can be viewed as an (endogenous)

index of the quality of the drug, which can vary between zero and one, while I is the market

size for the antibiotic. For w = 0, demand is identically zero. For a given value of the infected

population, I, the inverse demand curve pivots upwards through the point (Q, p) = (I, 0) as

7Using the aforementioned assumptions on the biological parameters allows to show that the last two
expressions are indeed positive and smaller than unity.
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the quality of the antibiotic increases from zero to one and demand is at its highest when

w = 1.

The ratio Q/I represents the fraction of the infected population treated and is thus equal

to the parameter f in the dynamic constraints (2) and (3). The inverse demand function can

therefore be rewritten as a function of the fraction of the infected population being treated

and the efficacy of the antibiotic to give:

P (f, w) = rfw(1− f). (8)

3 The monopolistic pricing behavior

We assume that a patent exists, assigning exclusive rights to a monopolistic firm to sell the

antibiotic for an exogenously given period of time T ∈ (0,∞], after which the antibiotic is

sold by a generic industry.8 A non-myopic monopolist is characterized by the fact that he

takes into account the impact of his current decisions on future levels of antibiotic efficacy

and infection, and thus on the evolution of the quality of his product and its market size

over time. Hence, the quality and market size of the antibiotic are determined endogenously

in the system.9 The instantaneous profit function of the monopolist is given by Π(t) =

[rfw(t)(1− f(t))− c]f(t)I(t), where c is the constant unit cost of the antibiotic. For ease of

reference to the epidemiological model, we will treat the fraction of the infected population

to which the antibiotic is sold, f(t), as the control variable, and infer the market clearing

price p(t) from the inverse demand function. The objective function of the monopolist is

given by:

max
{0≤f(t)≤1}

∫ T

0

e−ρtΠ(t)dt+ V g(T ) (9)

8We thus abstract from the R&D process before the patent is granted. Kingston (2000) presents historical
notes on the R&D of the first antibiotics, and addresses aspects related to the patenting process of antibiotics.

9The management of antibiotic efficacy (and infection) by the monopolist may reveal impossible if bacteria
can easily become cross-resistant to several antibiotics. In such a case, even if a monopolist were to sell fewer
amounts of the antibiotic over time, the level of antibiotic efficacy may decline due to an intensive use of other
antibiotics on behalf of other producers, which are linked to the same resource pool of antibiotic efficacy. In
the limit, open-access to that pool may arise, leaving the monopolist without any influence on the quality
of his patented product.
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subject to the equations (2) and (3). The bequest function V g(T ) accounts for the profits of

the former monopolist once he has become one of the competitive producers of the generic

industry after the expiration of the patent. Assuming that all generic producers have access

to the same technology as the monopolist does, the equilibrium in that generic industry will

be such that price equals the average production cost and economic profits are zero. Hence

V g(T ) = 0. Such a generic industry and the resulting evolution of antibiotic efficacy and

infection are addressed in Herrmann and Gaudet (2009).10

This optimization program contrasts with that of a myopic monopolist, who takes the

quality and market size at each instant of time as given and who does not take into account

the long-run effects of his current decisions. As a consequence, a myopic monopolist maxi-

mizes (9) neglecting the dynamic constraints (2) and (3). We will treat this subsequently as

one of two benchmarks.

With respect to the non-myopic monopolist, the current-value Hamiltonian associated to

problem (9) is given by:

H(f, w, I, µ, λ) = [rfw(1− f)− c]fI

+µw(1− w)[∆r − rff ] + λI(β(N − I)− rr + w[∆r − rff ]) (10)

and its derivative with respect to the control variable f is:

∂H

∂f
= [rfw(1− 2f)− c]I − rfw[µ(1− w) + λI], (11)

where µ and λ are the shadow values associated to the level of antibiotic efficacy and the

stock of infected population respectively.

The following conditions, as well as (2) and (3), are necessary for inter-temporal profit

10The entry decision of a generic firm may depend on the market size and revenues of the incumbent firm
before the patent expires, and also of the type of the pharmaceutical product sold, as shown empirically by
Scott Morton (2000), leaving some antibiotic markets potentially without any generic competition.
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maximization:

∂H

∂f
≤ 0,

∂H

∂f
f = 0, f ≥ 0 or

∂H

∂f
≥ 0,

∂H

∂f
(1− f) = 0, f ≤ 1 (12)

µ̇− ρµ = (∆r − rff)[µ(2w − 1)− λI]− rfI(1− f)f (13)

λ̇− ρλ = λ[2βI − βN + rr − w(∆r − rff)]− rfw(1− f)f + cf (14)

lim
t→T

e−rtw(T ) ≥ 0, lim
t→T

e−rtµ(T ) ≥ 0, lim
t→T

e−rtµ(T )w(T ) = 0 (15)

lim
t→T

e−rtI(T ) ≥ 0, lim
t→T

e−rtλ(T ) ≥ 0, lim
t→T

e−rtλ(T )I(T ) = 0 (16)

Condition (12) is the first-order condition for the maximization of the Hamiltonian with

respect to f(t) at each instant t. It can never be optimal for the monopolist to sell the

antibiotic to the overall infected population (f = 1). This makes current profits negative

without generating compensating future profits. Indeed setting f = 1 inevitably decreases

the level of antibiotic efficacy and infection, or at least decelerates the increase in the level

of infection, and thus negatively affects the future quality and market size of the antibiotic.

We will therefore necessarily have ∂H/∂f 5 0. However, it may be optimal to have f = 0,

thus postponing production and allowing antibiotic efficacy and infection to rise as fast as

possible.

Conditions (13) and (14) are the arbitrage equations that determine the evolution of

µ(t) and λ(t) over time. Conditions (15) and (16) are the transversality conditions. In

the case of a finite patent life, they state that whenever there is a strictly positive stock

of antibiotic efficacy or of the infected population left at the end of the patent lifetime

(w(T ) > 0, I(T ) > 0), then that stock must be of no value to the non-myopic monopolist.

The same reasoning applies in the limit as t tends to infinity in the case of an infinitely long

lasting patent.

In the case of an interior solution, (0 < fm < 1) , equation (12) can be written as:

rfw(1− 2fm) = c+
rfw

I
[µ(1− w) + λI] . (17)

Condition (17) states that the marginal revenue (the left-hand side of equation (17)) must

be equal to the full marginal cost of treatment (the right-hand-side ). Both shadow values
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will be positive. This reflects the fact that the stock of the infected population can be

viewed as an “asset” by the monopolist, since it represents market size when the antibiotic

is economically viable.11

An interior solution fm is represented graphically in Figure 2, where the solid and dotted

lines represent the downward-sloping demand and marginal revenue function respectively.

This figure shows a momentary view of the monopolist’s choice given the dynamic system

is in state (w, I) at time t. As in the standard static monopoly model, the monopolist will

always serve a fraction such that demand is elastic, ruling out admissible values of f in

the interval (1/2, 1]. The reason for this is the same as the reason why f = 1 cannot be an

optimal policy for the monopolist. Incurring a loss at a current instant of time would have to

be compensated by higher profits somewhere in the future. But this is not the case, since such

a policy would lead to lower levels of quality and market size and thus cannot lead to higher

profits. This implies that whenever ∆r/rf ∈ [1/2, 1], the fitness cost effect dominates, i.e.

the level of antibiotic efficacy will be increasing over time, as the optimal fraction f served

by the monopolist will always be lower than 1/2 (for c > 0). For ∆r/rf ∈ [0, 1/2), the

fraction served by the monopolist may be lower, equal or higher than the critical value of

∆r/rf , implying an increasing, constant or decreasing movement of antibiotic efficacy over

time.

Before turning to the monopolist that benefits from a limited patent lifetime, we will

address two useful benchmark cases. The first one has already been mentioned and refers

to the myopic monopolist, while the second one is that of an infinitely-lived, non-myopic

monopolist, the analysis of which will allow us to determine the steady states of the system.

11Herrmann and Gaudet (2009) characterize the socially optimal use of an antibiotic. In that case, the
level of infection represents a bad to society, such that a negative shadow value is attributed to it, while
antibiotic efficacy still is a valuable asset. At the social optimum then, the price of the antibiotic – not its
marginal revenue – is equalized to the full marginal cost of antibiotic use, which may be lower than the
marginal production cost due to the negative shadow cost of infection.
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3.1 The myopic monopolist

In this section we consider the pricing policy, and its impact on the dynamics of antibiotic

efficacy and infection, when the antibiotic is sold by a myopic monopolist. The myopic

monopolist maximizes the flow of discounted profits without taking into account the impact

of his current decision, f(t), on future levels of antibiotic efficacy, and on the future stock of

the infected population. He thus attributes a zero shadow value to the quality and market

size of the antibiotic, which implies µ(t) = 0 and λ(t) = 0. This optimization problem could

be interpreted as a “static” one within a continuously changing environment. Accounting

for the implied zero shadow values in equation (12), the first order condition for an interior

solution can be written as:

rfw(1− 2f)I = cI, (18)

i.e. marginal revenue equals marginal production cost, which is the producer’s “short-run”

cost of antibiotic use. Denote by f∞(t) the fraction of the infected population buying the

antibiotic when sold by a myopic monopolist, and by p∞(t) the corresponding price. From

condition (18) we obtain:

f∞(t) =

{
1
2

(
1− c

rfw(t)

)
, if rfw > c

0 , otherwise.
(19)

With the inverse demand function stated in (8), we get:

p∞(t) =

{
1
2

(rfw + c) , if rfw > c
rfw , otherwise.

(20)

If the antibiotic is economically viable, the myopic monopolist sells it to a positive fraction of

the infected population and charges the corresponding market clearing price. If the antibiotic

is not economically viable, he charges the choke price rfw, and does not sell at all. Both, the

fraction of the infected population buying the antibiotic, f∞(t), as well as the price charged

by the myopic monopolist, p∞(t), are increasing in the level of antibiotic efficacy, the quality

aspect of the antibiotic, while f∞(t) is decreasing and p∞(t) is increasing in the unitary

production cost c. Notice that they are both independent of the level of infection.
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3.1.1 The steady states under myopic monopolistic pricing

Consider first the epidemiological steady state given by (4), at which the level of antibiotic

efficacy is exhausted completely (wSS = 0) and demand vanishes. Any positive production of

the antibiotic would lead to losses for the myopic monopolist, so that the monopolist would

find it optimal not to produce at all by setting fSS = 0. The steady state would therefore

be characterized by: (
fSS, ISS, wSS

)
=

(
0,
βN − rr

β
, 0

)
(21)

With a positive production cost c > 0, this steady state can be ruled out. This is because

the myopic monopolist, by setting f∞(t) = 0 whenever the antibiotic is not economically

viable, allows the level of antibiotic efficacy to recover (ẇ > 0), and therefore it cannot reach

its lower limit at which wSS = 0.

In the epidemiological steady state given by (5), the quality of the drug is maximal. From

(19), we find f∞ = (1− c/rf )/2. Therefore, the steady state will be characterized by:

(
fSS, ISS, wSS

)
=

(
1

2

(
1− c

rf

)
,
βN − rw − 1

2
(rf − c)

β
, 1

)
. (22)

Finally, steady states as defined in (6) occur when f∞ = ∆r/rf , which is only optimal

for the myopic monopolist whenever the level of antibiotic efficacy w(t) satisfies:

∆r

rf
=

1

2

(
1− c

rfw(t)

)
. (23)

Hence the unique steady state of this type is given by:

(
fSS, ISS, wSS

)
=

(
∆r

rf
,
βN − rr

β
,

c

rf − 2∆r

)
, (24)

for the case where parameters satisfy rf > 2∆r, i.e. the natural selection effect dominates

the fitness cost effect.

Notice that the steady-state configurations (22) and (24) are mutually exclusive. Which

one is relevant depends on the bio-economic parameters of the model. To be more precise,

if c = rf − 2∆r, they are indistinguishable at wSS = 1. Whenever c < rf − 2∆r, then (24)
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must be the relevant steady-state configuration, because this is incompatible with (19) when

evaluated at wSS = 1. Whenever the parameters satisfy c/(rf − 2∆r) > 1, or rf < 2∆r

then (22) must be the relevant steady-state configuration, because it must then be the case

that wSS = 1 and fSS = (1 − c/rf )/2 < ∆r/rf . The economic intuition of which steady

state applies is clear. The steady state of type (22) applies independently of the production

cost c, if the fitness cost effect dominates the natural selection effect (rf < 2∆r), assuring

a strong renewability of the drug efficacy. As the myopic monopolist behaves like a static

one, selling on the elastic part of the demand curve, such that f∞ < 1/2 < ∆r/rf , antibiotic

efficacy necessarily increases and converges to wSS = 1. However, if the natural selection

effect dominates the fitness cost effect, then both steady state are possible depending on the

relative magnitude of the production cost.

3.1.2 The transition to steady state under myopic monopolistic pricing

The stock of infected population I(0) = I0 ∈ (0, N ] and the stock of antibiotic efficacy

w(0) = w0 ∈ (0, 1) are given exogenously in the system at time t = 0. One could conjecture

on the one hand, that a newly developed drug is characterized by an efficacy level that is

relatively close to unity and lies above or below its steady state. On the other hand, the level

of infection may initially lie on its steady-state value, or in the case of an infection “event”,

it may lie above it. In what follows, we will show that the system will tend asymptotically

from an initial state (I0, w0) to the relevant steady-state configuration. Let I and II denote

states for which w > wSS and III and IV denote states for which w < wSS, with states I and

III lying to the left of the İ = 0 isocline, while states II and IV lie to its right in (I, w)-space.

This is shown in Figure 3 for the steady-state configuration (24), where the İ = 0 isocline

is represented for f∞ = ∆r/rf , at which the natural selection and fitness cost effects are in

balance.12 The evolution of the levels of antibiotic efficacy w(t) and infection I(t) depends

on the fraction of the infected population f∞(t) to which the myopic monopolist sells the

12The İ = 0 isocline is non-stationnary. Recall footnote 6. The ensuing analysis also applies to the
steady-state configuration with wSS = 1 where the initial state (I0, w0) is either of type III or IV.
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antibiotic over time, or equivalently, on the price charged p∞(t).

We first concentrate on the characterization of f∞(t), p∞(t) and w(t), before addressing

the evolution of the level of infection and the transition to steady state in general. Differ-

entiating equations (19) and (20) with respect to time for any steady-state configuration

gives:

ḟ∞ =
c

4rf
(2∆r − rf )

1− w
w2

[
w − c

rf − 2∆r

]
(25)

ṗ∞ =
r2
fw

2

c
ḟ∞ (26)

Suppose for now the antibiotic to be economically viable. If the steady-state configuration

is of type (22), we have w(t) 5 wSS = 1 with t ∈ [0,∞) so that:

f∞(t) =
1

2

(
1− c

rfw(t)

)
<

1

2

(
1− c

rf

)
<

∆r

rf
,

implying by equation (2) the level of antibiotic efficacy w(t) to be increasing over time

for initial states of types III and IV. This steady-state configuration occurs only when

c/(rf − 2∆r) > 1 or rf − 2∆r < 0 and thus implies, by equations (25) and (26), that

the fraction served as well as the price charged by the myopic monopolist must be increasing

over time. This is because the increase in quality shifts the demand and marginal revenue

curves upwards (for any given level of infection). As the level of antibiotic efficiency ap-

proaches its upper bound, the increase in the treatment rate and in the price slow down as

ḟ and ṗ tend to zero.

If the steady-state configuration is of type (24), we have for any t ∈ [0,∞):

f∞(t) =
1

2

(
1− c

rfw(t)

)
T

∆r

rf
⇔ w(t) T

c

rf − 2∆r
= wSS,

where wSS is the steady-state level of antibiotic efficacy in that configuration. Hence, the

fraction f∞(t) is larger, smaller or equal to the critical fraction ∆r/rf depending on whether

the current level of antibiotic efficacy w(t) is larger, smaller or equal to the long-run steady-

state level wSS. It follows that w(t) is decreasing over time when the initial state is of type
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I or II, and increasing when it is of type III or IV. If w0 = wSS, then the level of antibiotic

efficacy remains constant over time (ẇ = 0). Convergence of w(t) to steady state will occur

monotonously (from above or from below). As w(t) approaches the long-run steady state

wSS, ḟ and ṗ tend to zero, and the fraction served must tend to the critical value of ∆r/rf .

When the steady-state value for antibiotic efficacy is reached, wSS = c/(rf − 2∆r), we must

simultaneously have f∞ = ∆r/rf from equation (23) and ˙f∞ = 0 from equation (25).

We have seen so far that the evolution of the variables w, f∞ and p∞ can be characterized

independently from the level of infection, or the market size of the antibiotic, I, the evolution

of which we now consider. Equation (3), which determines the evolution of the level of

infection, can be rewritten, after substituting for f∞ and rearranging, as:

İ

I
= β(ISS − I) +

1

2
(rf − 2∆r)

[
wSS − w

]
(27)

where ISS and wSS are defined as in the relevant steady-state configuration (22) or (24).

Equation (27) states that the relative increase in the level of infection is a function of the

relative distance of the state variables from their long-run steady-state levels. Suppose

(rf − 2∆r) > 0 such that no steady-state configuration can be excluded from the outset.

Then, unambiguously, İ < 0 as long as I > ISS and w > wSS, and İ > 0 as long as I < ISS

and w < wSS. Now suppose the particular case where I0 = ISS and w > wSS. Thus, the

initial state is of type II, and by equation (27), İ(0) < 0, i.e. the level of infection falls below

its steady-state level, such that ISS−I > 0 initially while we still have w > wSS. The level of

infection will decrease, making the difference ISS − I increase, while wSS −w(< 0) increases

as shown earlier. The first term on the right-hand side of equation (27) eventually cancels

the second one. When this happens, we have İ = 0, i.e. the system crosses the İ-isocline

and switches from type II to type I. After this, we have İ > 0, and ISS − I decreases while

wSS − w(< 0) increases. This continues until the steady state is reached. The overshooting

of the level of infection which may occur when departing from an initial state of type II is

reversed when departing from a state of type III.13

13If c/(rf − 2∆r) > 1 holds, the level of antibiotic efficacy tends to its upper bound. The steady state is
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To summarize, assume that the marginal cost of producing the antibiotic is relatively low,

and that the efficacy level of a newly patented antibiotic is relatively high (initial state of

type I or II). Based on the preceding analysis, a myopic monopolist will price the antibiotic

such that some of the antibiotic efficacy is “extracted” over time, with the system converging

to a “sustainable” steady state, at which the fitness cost effect and the natural selection effect

are in balance. This happens because consumer demand adjusts to the decreasing level of

antibiotic efficacy, a fact which the monopolist takes into account, ignoring however the

evolution of infection. An overshooting in the level of infection may occur depending on the

location of its initial state when a relatively high (mild) use is made of the antibiotic, the

efficacy of which is relatively high (low).

3.2 The infinitely-lived monopolist

The case of an infinitely-lived monopolist (T = ∞) represents another benchmark for the

analysis of how a non-myopic monopolist subject to a patent manages antibiotic efficacy and

infection over time. As it turns out, the infinitely-lived monopolist tends to achieve higher

levels of antibiotic efficacy over time and in steady state than the myopic monopolist. The

non-myopic control also benefits the spread of infection, asit prevents the level of infection

from falling as sharply below its steady-state value as in the myopic outcome. This is because

the non-myopic infinitely-lived monopolist prices the antibiotic at a level where the marginal

revenue equals the full marginal cost of selling the antibiotic.

3.2.1 The steady states

Setting ẇ = İ = µ̇ = λ̇ = 0 generates the set of steady states that may be reached when

the antibiotic is sold by a non-myopic monopolist. The epidemiological steady state of type

then as defined in (22). Unambiguously, İ < 0 for states of type IV, while the overshooting pattern may occur
for states of type III (I > ISS temporarily). The same steady state is reached if the condition rf − 2∆r < 0
holds, and İ < 0 for states of type IV and the overshooting pattern with respect to the level of infection
may then occur for initial states of type III. The discussion in the text shows that the system will reach the
neighbourhood of the relevant steady state, and in connection with the local stability of that steady state
(which can be shown by standard methods of linearizing the dynamic system around the relevant steady
state), establishes its global stability under the myopic monopolistic programme.
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(4), at which the antibiotic is completely inefficient (w = 0), and which we found could

not be reached under the myopic monopolistic programme, cannot be reached either under

the non-myopic programme. As before, the monopolist would incur losses by selling the

antibiotic when its efficacy is below the economic viability level (w < c/rf ). He would prefer

not to sell at all (f = 0), allowing the level of antibiotic efficacy to increase.

In the epidemiological steady state given by (5), antibiotic efficacy is at its upper bound

(w = 1). Replacing w = 1 in (12) and in (14) with λ̇ = 0 yields two equations in f and λ,

the unknowns of which can be solved for (see the Appendix). At this steady state we will

therefore have:

(fSS, ISS, wSS) =

(
a

2
−
√(a

2

)2

− b, βN − rw − rff
SS

β
, 1

)
(28)

where a and b are determined in the Appendix as:

a =
2

3rf
[ρ+ βN − rw + rf − c]

b =

(
1− c

rf

)
(ρ+ βN − rw)

3rf
.

Finally, there is a unique steady state of the type characterized by (6). This steady state is

shown in the Appendix to be given by:

(fSS, ISS, wSS) =

∆r

rf
,
βN − rr

β
,− B

2A
+

√
c

A
+

(
B

2A

)2
 (29)

where

A = ∆r(rf −∆r)
βN − rr

ρ(ρ+ βN − rr)

B = (rf − 2∆r)−∆r
rf −∆r

ρ
+

∆rc

ρ+ βN − rr
.

Steady-state configurations (28) and (29) are mutually exclusive. In fact, when wSS = 1 in

(29) they are indistinguishable with respect to the level of antibiotic efficacy. This will occur

when the bio-economic parameters satisfy

c = c̃(rf ) =
−∆r [2(βN − rr + ρ)−∆r]

βN − rr + ρ−∆r
+ rf , (30)
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which can be derived from setting wSS = 1 and solving for the cost c. For c ≤ c̃(rf ), the

monopolistic steady state will be defined as in (29), while for c > c̃(rf ) the steady state will be

defined as in (28). Equation (30) represents a positively sloped straight line in (rf , c)−space,

the intercept of which is negative when infection cannot be eradicated from the system.14

Figure 4 shows the line c̃(rf ), as well as the economic viability condition c = rf in

the (rf , c)−space for admissible values of rf ∈ [2∆r, βN − rw]. Ceteris paribus, for any

given value of the cost c, higher values of the additional recovery rate rf (and thus lower

values of the critical fraction ∆r/rf ) imply an interior steady-state level of antibiotic efficacy

(configuration (29)). This is because the optimal fraction of the infected population served by

the monopolist, f , as defined in (12), is then higher than the critical fraction ∆r/rf , which

leads to a decreasing level of antibiotic efficacy and makes the steady-state configuration

given by (28) unattainable. Stated differently, a high value of the additional recovery rate rf

implies a relatively high selective pressure on the drug-sensitive version of the infection (Iw),

rendering the achievement of the maximum value of antibiotic efficacy (wSS = 1) impossible.

Comparing the interior steady-state configurations of the myopic and the non-myopic

monopolist as defined in (24) and (29) shows that both the fraction of the infected population

that buys the antibiotic, fSS, and the level of the infected population, ISS, are identical.

The steady-state levels of antibiotic efficacy differ however in this steady-state configuration.

It can be shown, assuming c/(rf − 2∆r) < 1, that the non-myopic steady-state level wSS

is always higher than the one reached under the myopic programme: wSS > c
rf−2∆r

≡ wSS∞ ,

indicating that the non-myopic, infinitely-lived monopolist considers antibiotic efficacy as

a valuable asset. The locus of parameter configurations such that wSS∞ = 1 is given by

c = rf − 2∆r and is also shown in Figure 4.

14Whenever the denominator on the right-hand side of equation (30) is positive, the ordinate is negative.
This is indeed the case as βN−rr+ρ−∆r > βN−rr−∆r = βN−2∆r−rw > βN−rf −rw > 0, where the
last inequality follows from the assumption made in footnote 5 and the next-to-last inequality follows from
rf − 2∆r > 0, which makes the evolution non-trivial as both, the fitness cost and natural selection effects
exist.
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3.2.2 The transition to steady state

Because of the complex nature of the dynamic system involved in the monopolistic optimal

control problem, numerical simulations have been used to explore the transition to the steady

state.15 Those simulations show that depending on the bio-economic parameters of the

model, the system may tend to the steady state as defined in (28), for which wSS = 1, or

to the “interior” steady state as defined in (29), for which fSS = ∆r/rf . In what follows,

we concentrate our analysis on the production cost c and the additional recovery rate rf ,

and refer to the classification of steady states as presented in Figure 4. Recall, that this is a

benchmark analysis. It will allow us subsequently to qualify the “turnpike” evolution of the

system in the case of a finite patent life.

Suppose the parameter configuration of c and rf is such that they fall below the line

c̃(rf ), and the steady state reached is interior for the monopolist as defined in (29). Starting

from the four different types of initial states (I0, w0), indicated by I to IV, the trajectories

of the state variables and of the evolution of the monopolistic treatment rate are shown

in Figures 5 and 6 respectively. For comparison, we have also drawn the paths resulting

under the myopic programme. In Figures 5 and 6 non-myopic paths are indicated by thicker

lines. All state paths have in common that they converge towards their respective steady

state, indicating that the dynamic system is stable under both regimes, with the non-myopic

steady-state level of antibiotic efficacy being greater than the myopic one, i.e. wSS > wSS∞ .

Consider the paths departing from initial states of types III and IV, which lie below the

economic viability level c/rf , such that no antibiotic is sold initially under any regime. Since

the evolution of antibiotic efficacy ẇ is independent of I, myopic and non-myopic state paths

departing from an initial state of types III and IV coincide as long as f = 0. Before that

15We make use of a standard value function iteration algorithm, as proposed in Judd (1998, page 413) for
a discrete time version of the model. The baseline parameters used throughout the rest of the paper assure
that infection can neither be eradicated, nor dominate the system. We retain for our simulations, unless
specified differently for comparative dynamics: β = 0.6, N = 1, rr = 0.17, rw = 0.15, ∆r = 0.02, rf = 0.3,
c = 0.1 ρ = 0.03, although many other parameter configurations are conceivable. They do however not lead
to qualitatively different results with respect to how the policy of the infinitely-lived, non-myopic monopolist
compares to that of the myopic one.
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phase ends, the paths of the state variables join in a unique path (see Figure 5). Once the

antibiotic has become economically viable, the myopic monopolist immediately starts selling

to a fraction f∞ as defined in (19), which again does not depend on the level of infection.

The two myopic state and control paths therefore continue to coincide and converge to the

steady state (24). The convergence occurs with a slight overshooting in the level of infection

as described in section 3.1.2. Although the non-myopic monopolist reaches the economic

viability level at the same time as the myopic one, he starts selling later as can be seen from

Figure 6. This is because the non-myopic monopolist attributes positive shadow values to the

levels of antibiotic efficacy and infection, implying a full marginal cost higher than c. During

this phase we thus have ∂H/∂f < 0, i.e. the monopolist waits for the quality to rise even

more in order to compensate for the full marginal cost, and starts selling when ∂H/∂f = 0.

For the non-myopic monopolist, the positive overshooting pattern is more pronounced than

for the myopic one, as he has an interest in facing a ‘high’ demand in the future.

Consider now the initial states of type I and II in Figure 5, characterized by a high level

of antibiotic efficacy – which one may conjecture for a newly developed and patented drug

– and a relatively low (type I) or high (type II) level of infection. When departing from

an initial state of type I, the monopolist manages the initially low level of infection (the

market size), in such a way as to have it increase faster than the myopic monopolist while

keeping high values of antibiotic efficacy. Comparing the treatment rates in Figure 6 under

both regimes, it becomes apparent that the non-myopic monopolist sells to a low fraction

of the infected population initially, thus allowing the level of infection to increase relatively

fast.16 When departing from an initial state of type II, the non-myopic monopolist serves

a decreasing fraction, and this at a lower level than the myopic monopolist initially. This

allows him to soften the overshooting of infection below its steady-state level, thus assuring

a relatively higher market size over time (see Figure 5). As can be seen from Figure 6, the

non-myopic monopolist sells to a higher fraction of the infected population in the longer run

16The level of antibiotic efficacy also increases initially, something which cannot occur under the myopic
regime.
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than the myopic one. This is due to subsequently higher levels of antibiotic efficacy and

is advantageous because the level of infection is also higher. It is interesting to note that

the decisions of a non-myopic monopolist crucially depend on his discount rate. Notably, it

can be shown numerically that a higher discount rate makes the non-myopic monopolist less

patient. Figure 7 (upper left) shows the trajectory of the state variables for a non-myopic

monopolist corresponding to the baseline discount rate, as well as to a higher one, when

departing from initial states of type I and II. It turns out that the overshooting pattern is

more pronounced for an initial state of type II and that the steady-state level of antibiotic

efficacy is lower. Thus, a more impatient monopolist does “invest” less in future market

size and quality with the benefit of higher, present profits. This is reflected by the state

path lying closer to the one of the myopic monopolist. Figure 7 also shows the comparative

dynamics with respect to the parameters c, β and rw.

Figure 8 displays the evolution of prices and the level of antibiotic efficacy when the

initial state is of type II. Prices are decreasing under both regimes and reflect the evolution

of antibiotic efficacy. We have also drawn the hypothetical price pH(t), that a myopic

monopolist would charge if he were to be at the same state (I, w) as the non-myopic one.

The prices charged by the non-myopic monopolist are higher than those charged by the

hypothetical myopic monopolist, thus restricting the fraction of the infected population to

which the antibiotic is sold, and finally leading to a higher steady-state value of antibiotic

efficacy.

If bio-economic parameters c and rf belong to the region lying between the line c̃(rf ) and

the economic viability line (c = rf ), as depicted in Figure 4, initial states (I0, w0) can only

be of type III or IV, as has been explained earlier for case of the myopic monopolist (recall

footnote 13). Numerical simulations confirm that the system now tends to the steady state

of type (28). The convergence to that steady state is similar to what has been described

before with respect to the initial states of type III and IV. Leaving unchanged the biological

parameters, notably rf , this case occurs for example for a sufficiently higher value of the
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production cost c, implying at the same time an economic viability level which is higher.

3.3 Finite patent life: T <∞

Consider now the realistic case of a patent of finite duration (T < ∞). The antibiotic is

then sold by a monopolist during the life of the patent and by a generic industry afterwards.

Since the monopolist knows that he will make zero economic profits after the expiration of

the patent, he will attach no importance to the levels of antibiotic efficacy and infection

that are left for the generic industry. At time T , he should thus attribute zero value to the

levels of antibiotic efficacy and infection, if positive, and behave like a myopic monopolist.

This is indeed the case, as can be seen from the transversality conditions (15) and (16).

As the monopolist cannot operate below the economic viability level, c/rf , nor eradicate

infection from the epidemiological system, we must have w(T ) > 0 and I(T ) > 0, which

from equations (15) and (16) implies:

µ(T ) = λ(T ) = 0. (31)

Hence, at the instant the patent expires, the pricing policy of the non-myopic monopo-

list must be identical to the myopic one defined in (19) and (20) and evaluated at state

(I(T ), w(T )). The shadow values will evolve continuously over time as described by equa-

tions (13) and (14) and will reach µ(T ) = λ(T ) = 0 at time T .17 At T , we can calculate the

rate of change in the shadow values making use of (31) and obtain:

µ̇(T ) = −rfI(T )(1− f(T ))f(T ) < 0,

λ̇(T ) = −rfw(T )(1− f(T ))f(T ) < 0.

Due to the continuity in the evolution of the shadow values, we can conclude that the shadow

values are positive and decreasing at least during a time period before the patent’s expiration.

This implies a decreasing full marginal cost for given levels of antibiotic efficacy and of the

17Jumps in the shadow values could be caused by binding constraints on the state variables. This can
however be excluded as wSS = 0 and wSS = 1 cannot be reached in finite time and infection cannot be
eradicated nor dominate the whole system because of the parameter values assumed in section 2.1.
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infected population, leading to an increase in the fraction of the infected population served

towards the end of the patent life time in order to satisfy equation (12). The non-myopic

monopolist thus behaves “more and more myopically” as the patent approaches its expiration

date.

Numerical analysis shows for the parameter configuration which would lead to the interior

steady state in the infinite horizon problem, as defined in (29), that the non-myopic monop-

olistic programme is characterized by a turnpike property with the steady state (ISS, wSS)

serving as the turnpike. If T , the length of the patent life, is sufficiently large, then the turn-

pike is “exact”: the system reaches the steady state and remains there for a finite period of

time before leaving it at some point before the patent expires.

Figure 9 and Figure 10 show the trajectories of antibiotic efficacy and infection, as well

as the fraction of the infected population that buys the antibiotic when it is sold by a non-

myopic monopolist. We also plot the outcome under the myopic monopolistic regime for

purpose of comparison. The approach to the steady state is identical to that of the infinite

horizon problem, which has been described in the preceding section. At the interior steady

state (ISS, wSS), we have fSS = ∆r/rf . What is of interest in the case of a finite patent life

is the monopolistic policy once the path leaves the turnpike. The monopolist then sells to

an increasing fraction of the infected population, f(t) > fSS, as can be seen in Figure 10.

This leads to a decrease in the levels of antibiotic efficacy and infection (the state trajectory

moves in the south-western direction in Figure 9), and thus to a decreasing price as shown in

Figure 11. This occurs because the monopolist associates lower shadow values to the quality

aspect of the drug (w) and to the market size (I), as he knows that he will make zero profits

after the patent has expired and tends to behave more and more like a myopic monopolist.

At time T , the non-myopic monopolist behaves exactly like a myopic monopolist and charges

the myopic price as defined in (20). To see this, consider the prices charged by a hypothetical

myopic monopolist pH(t) who faces the same state as the non-myopic one in Figure 11. It is

at T that the pricing schemes p(t) and pH(t) represented by the thin continuous and dotted
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lines join.

For an insufficiently long patent life, the turnpike property of the monopolistic programme

is not exact: the path approaches the steady state (ISS, wSS) and remains in its neighborhood

for a finite period of time before leaving to satisfy the transversality conditions. This is shown

in Figure 12, where we depict the trajectories of the fraction of the infected population

buying the antibiotic as an example. The heavy lines indicate the treatment rates f(t) for

the non-myopic monopolist, which finally approach the steady-state level of ∆r/rf from

above when departing from initial states of type I and II, and which approach it from below,

when departing from initial states of type III and IV. In all cases, the treatment rate f(t)

increases towards the end of the patent and trajectories of f(t) eventually join and reach the

same level, which is higher than the critical level (∆r/rf ).
18

When the patent expires, the generic industry takes over, and an upward jump in the

level of f(t), accompanied by a fall in price occur. As the full marginal cost faced by the

monopolist is equal to c at time T , the corresponding monopolistic price pm(T ) is necessarily

higher than the price of the generic industry which is given by pg = c.

Finally, consider the parameter configuration under which the infinitely-lived monopolist

would reach the steady state of type (28). In this case, if the patent life is sufficiently long,

the system is again characterized by an exact turnpike, with the level of antibiotic efficacy

reaching its upper bound, w = 1. The level of w will remain unchanged, even after leaving

the turnpike in order for the costate variables to satisfy the transversality conditions. The

decrease in the full marginal cost, which occurs after leaving the turnpike, is due strictly

18The question arises of what is the critical patent life T for an exact turnpike to exist. And in such a case,
when is the turnpike reached, and when is it left again. The critical value of T is determined implicitly by the
necessary conditions (12) to (16) characterizing the profit-maximizing monopolistic programme. Suppose
T to be sufficiently long such that a turnpike exists. Denote by t1 and t2 the points of time when the
turnpike is reached, and when it is left again. In order to obtain those dates, one would have to solve the
differential equations ẇ, İ, µ̇, λ̇ satisfying condition (12) and the boundary conditions w(0) = w0, I(0) = I0,
w(t1) = w(t2) = wSS , I(t1) = I(t2) = ISS , µ(t1) = µ(t2) = µSS , λ(t1) = λ(t2) = λSS and µ(T ) = 0 as
well as λ(T ) = 0. One would first solve for t2, and then for t1. The critical value for a turnpike to exist, T̃ ,
is then defined by T̃ = t1 + t2. All those conditions should suffice to determine a unique trajectory of the
state, co-state and control variables. The analytical resolution of the dynamic system however represents an
arduous task.
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to the decrease in the shadow value of infection, λ. This can be seen from equation (17),

which simplifies for w = 1 to: rf (1 − 2fm(t)) = c + rfλ(t). As in the previous case, a

falling full marginal cost is accompanied by an increase in the treatment rate, leading to a

decrease in the level of infection. What differs under this parameter configuration, which is

characterized by a marginal production cost (c) that is high relative to the increase in the

recovery rate (rf ), is that the generic industry now inherits a perfectly effective antibiotic

drug. The problem of antibiotic resistance would be non-existing after the generic industry

takes over – a rather unrealistic conjecture for the parameter values. Indeed, one should not

interpret this result as arguing in favor of the monopolistic industry from a social optimum

point of view. The upper bound of antibiotic efficacy may also be attained by a generic

industry under similar parameter configurations (see Herrmann and Gaudet, 2008). It is the

relatively high marginal production cost compared to the increase in the recovery rate that

makes the monopolist conservationist on the one side, and the generic industry “disciplined”

on the other. In the real world, one may conjecture that the R&D costs are most important

and that the marginal production cost is relatively low in the pharmaceutical industry.

Finally, we want to emphasize that the monopolistic outcome is not socially optimal, no-

tably because infection represents a bad to society and an asset to the monopolist. Inducing

a socially optimal behavior of the monopolist via economic incentives, like taxes or subsidies,

is possible and they could be easily calculated in theory. It remains however a difficult task

in reality, as they depend on regulation and insurance regimes, the analysis of which lies

outside the scope of the present paper.19

4 Prolonging the patent length and related welfare implications

A prolongation of the patent at its termination date will be welfare-improving if it brings

the intertemporal use of the antibiotic closer to what would be socially optimal, as has been

characterized in Herrmann and Gaudet (2009). This issue has already been raised by regula-

19For a descriptive discussion of the problems that may be involved in the context of the U.K. National
Health Service system, see Coast et al. (1998).
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tory and governmental authorities. In particular, a prolongation has been proposed (but not

adopted by Congress) by the U.S. Office of Technology Assessment (1995) as an incentive for

the pharmaceutical industry to take into account the negative externality of antibiotic resis-

tance. In our model, prolonging the patent, and hence the non-myopic monopolistic pricing,

results in a reduction of the fraction of the population that buys the antibiotic as compared

to the generic industry. This benefits the evolution of antibiotic efficacy, but comes at the

cost of an increase in infection levels, at least in the short run. Hence, one can conjecture

that a prolongation of the patent may be desirable from a societal point of view if antibiotic

efficacy levels are low, and if the spread of infection is not much of an issue.

In what follows, we make the important assumption that changes in the patent duration

at T are not anticipated by the monopolist. This allows us to abstract from a potential

strategic behavior by the producer of the drug, the analysis of which lies outside the scope of

this paper. The instantaneous welfare W at time t is defined as the surplus accruing to the

entire population, net of production costs. Making use of the indifferent consumer θ̃ defined

in (7) and the inverse demand function P (f, w) defined in (8), we calculate:

W (f, w, I) = N

∫ 1

0

u(θ)dθ − cfI

=
1

2
(N − I) +

1

2
π(w)I +

1

2
rfwIf

2 + [rfw(1− f)− c]fI (32)

While the first term of equation (32) represents the mean valuation of the healthy population,

and the last term is the producer surplus, the second and third terms relate to the expected

surplus of the infected population of either recovering naturally, or by taking the antibiotic.

The intertemporal welfare is the sum of the welfare occuring under monopoly and under the

generic industry, which inherits the final state (I(T ), w(T )) from the monopolist at time T

when the patent ends. Since the monopolist faces a deterministic profit-maximizing program,

we know that the final state (I(T ), w(T )) is determined unambiguously by the initial state
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(I0, w0) and the length of the patent T . We can therefore write:

V (I0, w0, T ) =

∫ T

0

e−ρtWm(fm, .)dt︸ ︷︷ ︸
≡Vm(.,T )

+

∫ ∞
T

e−ρtW g(f g, .)dt︸ ︷︷ ︸
≡V g(.,T )

= V m(I0, w0, T ) + e−ρT
∫ ∞

0

e−ρtW g(f g, .)dt︸ ︷︷ ︸
≡Ṽ g(I(T ),w(T ))

, (33)

where Wm and W g represent the instantaneous social welfare when the fraction fm or f g

of the population buys the antibiotic and the state of the system evolves accordingly. Dif-

ferentiating V (I0, w0, T ) with respect to T gives the marginal welfare change at time T of

increasing the patent length:

dV

dT
= e−ρT

[
Wm(fm(T ), .)− ρṼ g(I(T ), w(T )) +

∂Ṽ g

∂w(T )

∂w(T )

∂T
+

∂Ṽ g

∂I(T )

∂I(T )

∂T

]
(34)

The sum of the terms in brackets is the net current value at time T of marginally increasing

the patent duration. The first two terms capture the immediate “gain” in current social wel-

fare under monopoly, Wm, corrected for the “cost” of postponing the intertemporal welfare

procured by the generic industry, ρṼ g. The other two terms take into account the impact of

the change in the final state (I(T ), w(T )) on the discounted welfare procured by the generic

industry.

Since the sign of this expression is ambiguous, numerical simulations are used to address

the welfare change implied by a modification in the patent length. Numerical simulation

results are presented for various percentage increases in the patent length from its initially

given value. This requires a new dynamic program for the monopolist to be solved with the

horizon set at T̃ = xT where x is the percentage of the prolongation and with the initial

state being (I(T ), w(T )). The bio-economic parameters used for the numerical simulations

are those from the baseline scenario (see footnote 15) with T = 200 time periods. Figure 13

refers to the state-space at time T . The particular final state (I(T ), w(T )) from the baseline

scenario is also shown. The Figure shows the contour lines of a zero welfare change (dV = 0)

for a small increase in the patent length, dT = 1%, and for longer increases in T up to
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20% of the initial patent length. To the left of a contour line, we have dV/dT > 0, while

dV/dT < 0 to its right. The shape of the contour line corresponding to a given increase

in T confirms our intuition: a small increase in the patent length is only desirable from a

societal point of view if the level of antibiotic efficacy is low relative to the level of infection.

A longer prolongation of the patent duration is only socially desirable for an even lower level

of antibiotic efficacy compared to a given level of infection.

Figure 13 suggests that, given the state (I(T ), w(T )), a 1% prolongation of the patent

length would increase welfare, while a 2.5% or higher prolongation would not. This is because

replacing the generic industry by a non-myopic monopolist for the extra duration T̃ = xT

will result in a reduction of the fraction of the population that buys the antibiotic during

that time interval, because of the higher price. It results a higher infection level, which is an

asset for the monopolist, but a bad for society. This finding conveys an important nuance to

Mechoulan (2007) who shows that re-granting monopoly power to a non-myopic monopolist

may be welfare improving in the context of antibiotic resistance. When addressing the re-

granting of monopoly power, Mechoulan (2007) remains silent on the spread of infection, the

state and dynamics of which we have considered explicitly in our analysis. In our model,

a prolongation in the patent length can be welfare improving when the level of infection is

sufficiently low as compared to the level of antibiotic efficacy. Longer increases in the patent

duration necessitate even lower values of antibiotic efficacy in order to increase welfare.

Our analysis suggests that relatively higher levels of infection are contained more efficiently

under a generic industry, as a lower price is charged implying that more individuals buy the

antibiotic.

5 Conclusion

This paper has focused on the pricing of an antibiotic drug by a non-myopic producer whose

monopoly power is protected by a patent, in the context where the efficacy of the antibiotic

(its quality) and the overall level of infection (the market size) are endogenously determined
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by antibiotic sales over time. We show that the bio-economic system is characterized by a

turnpike property. This means that the price will move towards the steady-state price level

that would be charged by an infinitely-lived monopolist and will remain in the neighborhood

of that price for a period of time. The period of time in question will depend on the length of

the patent life. Towards the end of the patent protection, the monopolist will begin acting

more and more myopically, leading to a continuous decrease in price. When the patent

expires, a discontinuous fall in price occurs as the generic industry takes over. We argue

that, for reasonable bio-economic parameters of the model, the steady state which is targeted

by the monopolist brings two effects into balance: the fitness cost effect (benefiting antibiotic

efficacy) and the natural selection effect (favoring a dominance of the drug-resistant version

of the bacterial population). Thus, antibiotic efficacy will generally find itself somewhere

between its upper and lower bound over a period of time. In that case, it will, in the end,

start decreasing, as will the level of infection, reflecting the fact that the monopolist attaches

less and less value to the quality and the market size of the antibiotic as the patent nears

expiration.

We also find insight with respect to the welfare implications of a prolongation of the

patent. More particularly, it may be socially desirable to prolong the patent, if the level

of infection is sufficiently low compared to the level of antibiotic efficacy. However, this

result crucially depends on the proposed prolongation of the patent. A higher increase in

the patent duration implies that the monopolist behaves non-myopically over a longer period

of time and as such does not only benefit the evolution of antibiotic efficacy, but also favors

the spread of infection, which represents a bad to society.

It should be pointed out that our results are obtained under some assumptions concern-

ing the strategies available to the monopolist once the patent expires. For instance, the

monopolist may have the possibility of practicing price discrimination for a while, by selling

the brand name at a high price, and selling his own generic version before the patent has

expired. This might lead to a Stackelberg-type market structure during the generic phase of
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the industry. Another possibility that has not been taken into account is that the monopolist

may attempt to “improve” the biological formula of the drug slightly, at a cost, in the hope

of getting a new patent protection. Taking those additional possibilities into account would

of course have an impact on the price path during the period of patent protection, but would

not necessarily alter the underlying turnpike property described here. How exactly the price

path would be affected is however a matter for further research.
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Appendix

We first recall the full dynamic system, involving the state and co-state variables, which

the monopoly solution must satisfy. It is given by:

ẇ = w(1− w)(∆r − rff) (A–1)

İ = I(β(N − I)− rr + w(∆r − rff)) (A–2)

µ̇ = ρµ+ (∆r − rff)[µ(2w − 1)− λI]− rfI(1− f)f (A–3)

λ̇ = ρλ+ λ[2βI − βN + rr − w(∆r − rff)]− rfw(1− f)f + cf (A–4)

In addition, the first-order condition (12) for the maximization of the Hamiltonian must be

satisfied at every point in time, including at a steady state. A steady-state solution is given

by ẇ = İ = µ̇ = λ̇ = 0.

A The steady state with wSS = 1

Setting w = 1 in (A–1), we have ẇ = 0. Setting İ = 0, λ̇ = 0 and w = 1 in (A–2) and (A–4)

gives:

I =
βN − rw − rff

β
(A–5)

λ =
rf (1− f)f − cf

ρ+ βI
(A–6)

For convenience, we rewrite the first-order condition in (17) evaluated at wSS = 1

rfw(1− 2f) = c+ rfwλ. (A–7)

Replacing (A–6) into (A–7) gives an expression in the treatment rate f , which we solve for

to obtain:

f1,2 =
a

2
±
√(a

2

)2

− b (A–8)

where

a =
2

3rf
[ρ+ βN − rw + rf − c] (A–9)

b =

(
1− c

rf

)
(ρ+ βN − rw)

3rf
(A–10)
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Both values of f1,2 are admissible solutions, and we cannot exclude any of them analytically.

Our numerical simulations however suggest that the solution is unique and given by:

fSS =
a

2
−
√(a

2

)2

− b (A–11)

B The intermediate steady state with fSS = ∆r
rf

For an interior solution to the maximization of the Hamiltonian, f must satisfy equation

(17), in addition to (A–1)-(A–4). Setting f = fSS = ∆r/rf , we have ẇ = 0, from (A–1),

and from (A–2):

ISS =
βN − rr

β
. (A–12)

Setting µ̇ = 0 in (A–3) and substituting for fSS
∗

and ISS
∗
, we get the steady-state solution

for µ:

µSS =
∆r

rf

ISS(rf −∆r)

ρ
(A–13)

We still need to determine the steady-state levels of antibiotic efficacy, wSS, and of the

shadow price of infection, λSS. Setting λ̇ = 0 in (A–4) and substituting for fSS and ISS we

get:

λ =
∆r

rf

w(rf −∆r)− c
ρ+ βN − rr

. (A–14)

Since fSS = ∆r/rf is the monopoly solution in this steady state, price p = rfw(1−∆r/rf )

must be higher than the marginal production cost c, implying a positive value of λ. Substi-

tuting for fSS, ISS, µSS and λ from (A–14) into (17), we get a binomial in w, the solutions

of which are:

w = − B

2A
±

√
c

A
+

(
B

2A

)2

(A–15)

where

A = ∆r(rf −∆r)
βN − rr

ρ(ρ+ βN − rr)

B = (rf − 2∆r)−∆r
rf −∆r

ρ
+

∆rc

ρ+ βN − rr
.
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The expression for A is positive, while the sign of B depends on the parameters of the model.

In order to exclude solutions with w < 0 for all B, the admissible solution for w is

wSS = − B

2A
+

√
c

A
+

(
B

2A

)2

. (A–16)

Depending on the set of parameters, we have wSS < 1 or wSS = 1. The condition wSS ≤ 1

can be written as:

c ≤ ∆r
∆r − 2(ρ+ βN − rr)
ρ+ βN − rr −∆r

+ rf . (A–17)

In the case of a zero fitness cost ∆r = 0, the condition (A–17) becomes c ≤ rf , which is

always verified if the antibiotic is economically viable at the maximum value of antibiotic

efficacy (w = 1).
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Note that trajectories f∞I and f∞II , as well as f∞III and f∞IV coincide with each other, as the myopic
treatment rate is a function of the level of antibiotic efficacy only. This also applies to fIII and fIV ,
as the non-myopic monopolist sets f = 0 at the beginning and the state trajectories join together
and then are confounded.
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An increase in the discount rate makes the non-myopic monopolist more impatient, as explained in
the text. A higher cost increases the steady-state value of w, while the overshooting of I is reduced
via lower treatment rates. A higher transmission rate increases the steady state of I, and lowers
slightly that of w (admittedly difficult to see). The qualitative impact of a decrease in rr parallels
that of increasing β, with the overshooting pattern being more pronounced (not shown). A higher
recovery rate from the susceptible strain (or due to antibiotic treatment) increases the overshooting
of I below its steady-state level, which is compensated by lowering w (not shown).
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Figure 12: Evolution of treatment rate f with approximate turnpike
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Figure 13: Welfare impacts of prolonging the patent length
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