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Abstract:  
A large number of parameterizations have been proposed to model conditional variance 
dynamics in a multivariate framework. However, little is known about the ranking of 
multivariate volatility models in terms of their forecasting ability. The ranking of 
multivariate volatility models is inherently problematic because it requires the use of a 
proxy for the unobservable volatility matrix and this substitution may severely affect the 
ranking. We address this issue by investigating the properties of the ranking with respect 
to alternative statistical loss functions used to evaluate model performances. We provide 
conditions on the functional form of the loss function that ensure the proxy-based 
ranking to be consistent for the true one – i.e., the ranking that would be obtained if the 
true variance matrix was observable. We identify a large set of loss functions that yield a 
consistent ranking. In a simulation study, we sample data from a continuous time 
multivariate diffusion process and compare the ordering delivered by both consistent 
and inconsistent loss functions. We further discuss the sensitivity of the ranking to the 
quality of the proxy and the degree of similarity between models. An application to three 
foreign exchange rates, where we compare the forecasting performance of 16 
multivariate GARCH specifications, is provided. 
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1 Introduction

A special feature of economic forecasting compared to general economic modeling is that we

can measure a model’s performance by comparing its forecasts to the outcomes when they

become available. Generally, several forecasting models are available for the same variable and

forecasting performances are evaluated by means of a loss function. Elliott and Timmermann

(2008) provide an excellent survey on the state of the art of forecasting in economics. Details

on volatility and correlation forecasting can be found in Andersen, Bollerslev, Christoffersen,

and Diebold (2006).

The evaluation of the forecasting performance of volatility models raises the problem that

the variable of interest (i.e., volatility) is unobservable and therefore the evaluation of the loss

function has to rely on a proxy. However this substitution may induce a distortion with respect

to the true ordering (based on the unobservable volatility). The impact on the ordering of

the substitution of the true volatility by a proxy has been investigated for univariate models

by Hansen and Lunde (2006a). They provide conditions, for both the loss function and the

volatility proxy, under which the approximated ranking (based on the proxy) is consistent

for the true ranking. Starting from this result, Patton (2009) derives necessary and sufficient

conditions on the functional form of the loss function for the latter to order consistently.

These results have important implications on testing procedures for superior predictive ability

(see Diebold and Mariano (1995), West (1996), Clark and McCracken (2001), the reality

check by White (2000) and the recent contributions of Hansen and Lunde (2005) with the

superior predictive ability (SPA) test and Hansen, Lunde, and Nason (2009) with the Model

Confidence Set test, among others), because when the target variable is unobservable, an

unfortunate choice of the loss function may deliver unintended results even when the testing

procedure is formally valid. In fact, with respect to ranking multivariate volatility model

forecast performances, where conditional variance matrices are compared, little is known

about the properties of the loss function. This is the first paper that addresses this issue.

In this paper, we unify and extend the results in the univariate framework to the evaluation

of multivariate volatility models, that is the comparison and ordering of sequences of variance

matrices. From a methodological viewpoint, we first extend to the multivariate dimension

from the CREF-HEC Montreal and the Belgian Program on Interuniversity Poles of Attraction initiated by
the Belgian State Prime Minister’s Office, science policy programming, is gratefully acknowledged. The usual
disclaimer applies.
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the conditions that a loss function has to satisfy to deliver the same ordering whether the

evaluation is based on the true conditional variance matrix or an unbiased proxy of it. Second,

similar to the univariate results in Patton (2009), we state necessary and sufficient conditions

on the functional form of the loss function to order consistently in matrix and vector spaces.

Third, we identify a large set of parameterizations that yield loss functions able to preserve

the true ranking. Although we focus on homogeneous loss functions, unlike in the univariate

case, a complete identification of the set of consistent loss functions is not available. This

is because in the multivariate case there is an infinite number of possible combinations of

the elements of the forecasting error matrix which yield a loss function that satisfies the

necessary and sufficient conditions. We identify a number of well known vector and matrix

loss functions, many of which are frequently used in practice, categorized with respect to

different characteristics such as the degree of homogeneity, shape, etc. Furthermore, given

the necessary and sufficient functional form, other loss functions, well suited for specific

applications, can easily be derived.

Note that different loss functions may deliver different rankings depending on the charac-

teristics of the data that each loss function is able to capture. We find that many commonly

used loss functions do not satisfy the conditions for consistent ranking. However, these loss

functions show desirable properties (e.g., down weighting extreme forecast errors) which can

be useful in applications. We show that inconsistent loss functions are not per se inferior,

and, under certain conditions they can still deliver a ranking that is insensitive under the use

of a proxy. With respect to terminology, consistency of the ranking does not mean invariance

of the ordering. Consistency is in fact intended only with respect to the accuracy of the proxy

and for a given loss function, i.e., consistency between the true and the approximated ranking.

On the other hand, invariance of the ranking means that the ordering does not change with

respect to the choice of the loss function.

To make our theoretical results concrete, we focus on multivariate GARCH models to

forecast the conditional variance matrix of a portfolio of financial assets. Through a com-

prehensive Monte Carlo simulation, we study the impact of the deterioration of the quality

of the proxy on the ranking of multivariate GARCH models with respect to different choices

for the loss function. The true model is a multivariate diffusion from which we compute the

integrated covariance, i.e., the true daily variance matrix. The multivariate GARCH models
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are estimated on daily returns and used to compute 1-step ahead forecasts. The proxy of

the daily variance matrix is realized covariance as defined in Andersen, Bollerslev, Diebold,

and Labys (2003). The quality of this proxy is controlled through the level of aggregation of

the simulated intraday data used to compute Realized Covariance. The main conclusion of

our simulation is that, when ranking over a discrete set of volatility forecasts, inconsistent

loss functions are not per se inferior to consistent ones. When the quality of the proxy is

sufficiently good, consistency between the true and the approximated ranking can still be

achieved. The break even point, in terms of level of accuracy of the proxy, after which the

bias starts to affect the ranking, depends on the trade-off quality of the proxy vs. degree

of similarity between models. That is, the closer the forecast error matrices, the higher the

accuracy of the proxy needed to correctly discriminate between competing models.

We illustrate our findings using three exchange rates (Euro, UK pound and Japanese yen

against US dollar). We consider 16 multivariate GARCH specifications which are frequently

used in practice. The advantage of choosing a consistent loss function to evaluate model

performances is striking. The ranking based on an inconsistent loss function, together with

an uninformative proxy, is found to be severely biased. In fact, as the quality of the proxy

deteriorates inferior models emerge and outperform models which are otherwise preferred

when the comparison is based on a more accurate proxy.

The rest of the paper is organized as follows. Section 2 develops conditions for consistent

ranking and derives the admissible functional form of the loss function. We discuss how to

build a class of consistent loss functions and give remarks on inconsistent loss functions. Sec-

tion 3 provides first a brief overview of the multivariate GARCH specifications considered in

this paper and second, it introduces the realized covariance, used as a proxy for the unob-

served conditional variance matrix. A detailed simulation study in Section 4 investigates the

robustness of the ranking subject to consistent and inconsistent loss functions with respect

to the level of accuracy of the proxy. The empirical application to three exchange rates is

presented in Section 5. Section 6 concludes and discusses directions for further research. All

proofs are provided in Appendix A. Supporting examples are given in Appendix B.

4



2 Consistent ranking and distance metrics

As explained in Andersen, Bollerslev, Christoffersen, and Diebold (2006), the problem when

comparing and ranking forecasting performance of volatility models is that the true condi-

tional variance is unobservable so that a proxy for it is required. Let us define the true, or

underlying, ordering between volatility models as the ranking implied by a loss function, eval-

uated with respect to the unobservable conditional variance. The substitution of the latter

by a proxy may introduce, because of its randomness, a ranking of volatility models that

differs from the true one. Hansen and Lunde (2006a) provide a theoretical framework for the

analysis of the ordering of stochastic sequences and identify conditions that a loss function

has to satisfy to deliver an ordering consistent with the true ranking when a proxy for the

conditional variance is used. Patton (2009) derives necessary and sufficient conditions on the

functional form of the loss function for the latter to order consistently. In particular, he finds

that the necessary and sufficient functional form relates to the linear exponential family of

objective functions (see Gourieroux and Monfort (1995) for details).

In this section, we extend and unify these results to the case of multivariate volatility

models, which requires the comparison and ordering of sequences of variance matrices. In

the following subsections, we first set the notation, working assumptions and basic definitions

and, as an example, we introduce a set of loss functions commonly used in a multivariate

volatility context. Second, we discuss the conditions for a loss function to give a consistent

ranking. Third, we characterize the functional form of a consistent loss function. Fourth, we

illustrate how consistent loss functions can be constructed in practice.

2.1 Notation and definitions

We first fix the notation and make explicit what we mean by a well defined loss function and

by consistent ranking. For N time series at time t we denote RN×N
++ the space of N × N

positive definite matrices and Ḣ ⊂ RN×N
++ a compact subset of RN×N

++ . Ḣ represents the

set of candidate models with typical element indexed by m, Hm,t such that Hm,t ∈ Ḣ. R+

denotes the positive part of the real line. We define L(·, ·) an integrable loss function L :

RN×N
++ × Ḣ → R+ such that L(Σt,Hm,t) is the loss evaluated using the true but unobservable

conditional variance matrix Σt with respect to model m. We refer to the ordering based on the

expected loss, E[L(Σt,Hm,t)] as the true ordering. Similarly, L(Σ̂t,Hm,t) is the loss evaluated
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using Σ̂t, a proxy of Σt, and E[L(Σ̂t,Hm,t)] determines the approximated ranking. When

needed, we also refer to the empirical ranking as the one based on the sample evaluation of

L(Σ̂t,Hm,t), i.e., T−1
∑
t

L(Σ̂t,Ht), where T is the length of the forecast sample. The set, �t−1

denotes the information at time t − 1 and Et−1(·) ≡ E(·|�t−1) the conditional expectation.

The elements, σi,j,t, σ̂i,j,t and hi,j,t indexed by i, j = 1, ..., N , refer to the elements of the

matrices Σt, Σ̂t, Ht respectively. Furthermore, σk,t, σ̂k,t and hk,t are the elements, indexed

by k = 1, ..., N(N + 1)/2, of the vectors σt = vech(Σt), σ̂t = vech(Σ̂t) and ht = vech(Ht)

respectively, where vech(·) is the operator that stacks the lower triangular portion of a matrix

into a vector. Finally, the vectorized difference between the true variance matrix and its proxy

is denoted by ξt = (σ̂t − σt).

The following assumptions ensure that the loss function L(·, ·) is able to correctly order with

respect to the true variance matrix.

A1.1 L(·, ·) is continuous in Ḣ and it is uniquely minimized at H∗
t which represents the

optimal forecast. If H∗
t ∈ int(Ḣ), L(·, ·) is convex in Ḣ.

A1.2 L(·, ·) is such that the optimal forecast equals the true conditional variance Σt,

H∗
t = arg min

Ht∈Ḣ

L(Σt,Ht) ⇔ H∗
t = Σt. (1)

A1.3 L(Σt,Ht) = 0 ⇔ Ht = Σt, i.e., the loss function yields zero loss when H∗
t = Σt.

Definition 1 Under assumptions A1.1 to A1.3, the loss function is well defined.

The notion of consistency of ranking is defined as follows:

Definition 2 Consistency between the true ranking and the ordering based on a proxy is
achieved if

E(L(Σt,Hl,t)) ≥ E(L(Σt,Hm,t)) ⇔ E(L(Σ̂t,Hl,t)) ≥ E(L(Σ̂t,Hm,t)) (2)

is true for all l 	= m, where L(·, ·) is a well defined loss function in the sense of Definition 1
and Σ̂t is some conditionally unbiased proxy of Σt.

By Definition 2, the ranking between any two models indexed by l and m, is consistent if

it is the same whether it is based on the true conditional variance matrix or a conditionally

unbiased proxy. Note that conditional unbiasedness is sufficient to ensure consistency as

defined in Definition 2.
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As underlined in Patton (2009) it is common practice to use several alternative measures

of forecast accuracy to respond to the concern that some particular characteristics of the data

may affect the result. As an example, we discuss next a selection of loss functions, listed in

Table 1, which are commonly used to evaluate multivariate model performances based on

forecast accuracy, or, in a more general context, to measure the distance between matrices

and vectors (see Ledoit and Wolf (2003), James and Stein (1961), Bauwens, Lubrano, and

Richard (1999), Koch (2007), Herdin, Czink, Ozcelik, and Bonek (2005)) and provide their

classification. Although the loss function listed below are in principle well suited to measure

variance forecast performances, it turns out that several are inappropriate in this setting.

Table 1: Loss functions and their classification

Matrix loss functions

LF Frobenius distance
∑

1≤i,j≤N(σi,j,t − hi,j,t)2 consistent

LS Stein distance Tr[H−1
t Σt] − log

∣∣H−1
t Σt

∣∣− N consistent

L1M Entrywise 1 - (matrix) norm
∑

1≤i,j≤N |σi,j,t − hi,j,t| inconsistent

LPF Proportional Frobenius dist. Tr(ΣtH
−1
t − I)2 inconsistent

LLF,1 Log Frobenius distance (1)
(
log
∣∣ΣtH

−1
t

∣∣)2 inconsistent

LLF,2 Log Frobenius distance (2)
(
log Tr[ΣtΣt]

Tr[HtHt]

)2
inconsistent

LCor Correlation distance 1 − Tr(ΣtHt)√
Tr(ΣtΣt)Tr(HtHt)

∈ [0, 1] inconsistent

Vector loss functions

LE Euclidean distance
∑

1≤k≤N(N+1)/2(σk,t − hk,t)2 consistent

LWE Weighted Euclidean distance (σt − ht)′W (σt − ht) consistent
(with matrix of weights W )

L1V Entrywise 1 - (vector) norm
∑

1≤k≤N(N+1)/2 |σk,t − hk,t| inconsistent

The first loss function, LF , is the natural extension to matrix spaces of the mean squared

error (MSE). The second, LS , is the scale invariant loss function introduced by James and

Stein (1961). L1M represents the extension to matrix spaces of the mean absolute deviation

(MAD) and is known as the entrywise 1 - (matrix) norm. LPF is the extension of the
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heteroskedasticity adjusted MSE and is a quadratic loss function with the same parametric

form of the Frobenius distance but which measures deviations in relative terms (see James

and Stein (1961)). We refer to this loss function as proportional Frobenius distance. LLF,1

and LLF,2 are adaptations of the MSE logarithmic scale. In particular, the loss function in

LLF,2, alternatively defined as
(
log
[(∑

i λ
2(Σt)i

) (∑
i λ

2(Ht)i
)−1
])2

, considers the singular

values as a summary measure of a matrix. The sum of squared singular values (defined as∑
i λ

2(A)i = Tr(AA′)) represents the Frobenius distance of Σt and Ht from 0. The ratio

measures the discrepancy in relative terms while the logarithm ensures that deviations are

measured as factors and the squaring ensures that factors are equally weighted. We refer to

this loss function as log Frobenius distance. LCor is also based on the Frobenius distance but

it exploits the Cauchy-Shwartz inequality. In fact, by the inequality, the ratio is equal to one

when Ht = Σt and tends to 0 if Ht and Σt differ to a maximum extent. The ratio resembles

to a correlation coefficient between the matrices Ht and Σt. LE is the Euclidean distance

computed on all unique elements of the forecast error matrix, while LWE is a weighted version

of LE . The last function, L1V , also represents an extension of the mean absolute deviation

(MAD) but the distance is defined on a vector space. It differs from L1M for equally weighting

the unique elements of the forecast error matrix.

2.2 Conditions for consistent ranking of multivariate volatility models

We provide sufficient conditions that a loss function has to satisfy to deliver the same ordering

whether the evaluation is based on the true conditional variance matrix or a proxy. To make

the exposition easier, we can redefine without loss of generality the function L(·, ·) from the

space RN×N
++ × Ḣ to R+ as a function from RN(N+1)/2 × Ḣ → R+, with vech(Hm,t) ∈ Ḣ and

Ḣ ⊂ RN(N+1)/2, of all unique elements of the matrices Σt and Ht since these are variance

matrices and therefore symmetric. This simplification allows to ignore N(N −1)/2 redundant

first order conditions in the minimization problem defined in (1). We make use of the following

assumptions:

A2.1 L(Σt,Ht) and L(Σ̂t,Ht) have the same parametric form ∀Ht ∈ Ḣ so that uncertainty

depends only on Σ̂t.

A2.2 Σt and Ht are �t−1 measurable.
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A2.3 L(·, ·) is twice continuously differentiable with respect to σ̂t and ht.

A2.4 ξt = (σ̂t − σt) is a vector martingale difference sequence with respect to �t with finite

conditional variance matrix Vt = Et−1[ξtξ
′
t].

Proposition 1 states a sufficient condition on the loss function to ensure consistent ranking.

Proposition 1 Under assumptions A2.1 to A2.4, a well defined loss function in the sense
of Definition 1 with ∂2L(Σt,Ht)

∂σl,t∂σm,t
finite and independent of Ht ∀l,m = 1, ..., N(N + 1)/2 is

consistent in the sense of Definition 2.

The proof is given in Appendix A. Proposition 1 applies for any conditionally unbiased proxy

independently of its level of accuracy. The difference between the true and the approximated

ordering which is likely to occur whenever Proposition 1 is violated, is denoted as the ob-

jective bias. The bias must not be confused with sampling variability, that is the distortion

between the approximated and the empirical ranking. In fact, while the latter tend to dis-

appear asymptotically (i.e., T−1
∑
t

L(Σ̂t,Ht)
p→ E

[
L(Σ̂t,Ht)

]
under ergodic stationarity of

E
[
L(Σ̂t,Ht)

]
), the presence of the objective bias may induce the sample evaluation to be

inconsistent for the true one irrespectively of the sample size. Note that, from the set of

loss functions given in Table 1, it is straightforward to show that only LF , LS , LE and LWE

satisfy Proposition 1.

We can further discuss the implications of Proposition 1 and elaborate on the case when

Proposition 1 is violated. We show that the bias between the true and the approximated

ranking depends on the accuracy of the proxy for the variance matrix: the presence of noise

in the volatility proxy introduces a distortion in the approximated ordering, which tends to

disappears when the accuracy of the proxy increases. More formally, consider a sequence of

volatility proxies Σ̂(s)
t indexed by s and denote H

∗(s)
t such that

H
∗(s)
t = arg min

Ht∈intḢ

Et−1[L(Σ̂(s)
t ,Ht)]. (3)

Furthermore, we need the following additional assumption for the next proposition:

A2.5 The volatility proxy satisfies Et−1[ξ
(s)
t ] = 0 ∀s and V

(s)
t = Et−1[ξ

(s)
t ξ

(s)′
t ]

p→ 0 as s → ∞.

Proposition 2 Under assumptions A2.1 to A2.5, for a well defined loss function in the sense
of Definition 1, it holds:
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i) If ∂3L(Σt,Ht)
∂σt∂σ′

t∂hk,t
= 0 ∀k, then H

∗(s)
t = Σt ∀s,

ii) If ∂3L(Σt,Ht)
∂σt∂σ′

t∂hk,t
	= 0 for some k, then H

∗(s)
t

p→ Σt as s → ∞.

The proof is given in Appendix A. The first statement states that, under Proposition

1, the optimal forecast is the conditional variance, and consistency is achieved regardless

of the quality of the proxy. The second result in Proposition 2 shows that the distortion

introduced in the ordering when using an inconsistent loss function tends to disappear as

the quality of the proxy improves. Therefore, when ordering over a discrete set of models,

a loss function that violates Proposition 1 may still deliver a ranking consistent to the one

implied by the true conditional variance matrix, if a sufficiently accurate proxy is used in

the evaluation. In other words, when the variance of the proxy is small with respect to

discrepancy between any two models, the distortion induced by the proxy becomes negligible,

leaving the ordering unaffected. In the simulation study in Section 4, we further investigate

this issue and in particular investigate the relationship between the accuracy of the proxy (i.e.,

the variability of the proxy) and the degree of similarity between model performances (i.e.,

how close performances are). However, in practice, it may be difficult to determine ex-ante

the degree of accuracy of a proxy. Since the trade off accuracy vs. similarity is difficult to

quantify ex-ante, model comparison and selection based on inconsistent loss function becomes

unreliable and may lead to undesired results. The empirical application in Section 5 reveals

that a sufficiently accurate proxy may not be available.

2.3 Functional form of the consistent loss function

In the univariate framework, Patton (2009) identifies necessary and sufficient conditions on

the functional form of the loss function to ensure consistency between the true ranking and

the one based on a proxy for the variance. The set of consistent loss functions relate to the

class of linear exponential densities of Gourieroux, Monfort, and Trognon (1984) and partially

coincides with the subset of homogeneous loss functions associated with the most important

linear exponential densities. In fact, the family of loss functions with degree of homogeneity

equal to zero, one and two defined in Patton (2009), can be alternatively derived from the

objective functions corresponding to the Gaussian, Poisson and Gamma densities respectively

(see Gourieroux and Monfort (1995) for more details).
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We propose necessary and sufficient conditions on the functional form of the loss function

defined such that it is well suited to measure distances in matrix and vector spaces. Although,

unlike in the univariate case, a complete identification of the set of consistent loss functions

is not feasible, we are able to identify a large set of parameterizations which yield consistent

loss functions. We show that several well known vector and matrix distance functions also

belong to this set.

In order to proceed, we need the following assumptions:

A3.1 Σ̂t|�t−1 ∼ Ft ∈ F the set of absolutely continuous distribution functions of RN×N
++ ;

A3.2 ∃H∗
t ∈ int(Ḣ) such that H∗

t = Et−1(Σ̂t);

A3.3 Et−1

[
L(Σ̂t,Ht)

]
< ∞ for some H ∈ Ḣ,

∣∣∣∣Et−1

[
∂L(Σ̂t,Ht)

∂ht

∣∣∣
Ht=Σt

]∣∣∣∣ < ∞ and∣∣∣∣Et−1

[
∂L(Σ̂t,Ht)

∂ht∂h′
t

∣∣∣
Ht=Σt

]∣∣∣∣ < ∞ for all t where the last two inequalities hold elementwise.

Note that A3.2 follows directly from A1.2 and A2.4 because H∗
t ∈ int(Ḣ) implies H∗

t = Σt

by A1.2 while Et−1(Σ̂t) = Σt results from A2.4. Assumption A3.4 allows to interchange

differentiation and expectation, see L’Ecuyer (1990) and L’Ecuyer (1995) for details.

Proposition 3 Under assumptions A2.3, A2.4 and A3.1 to A3.3 a well defined loss function,
in the sense of Definition 1, is consistent in the sense of Definition 2 if and only if it takes
the form

L(Σ̂t,Ht) = C̃(Ht) − C̃(Σ̂t) + C(Ht)′vech(Σ̂t − Ht), (4)

where C̃(·) is a scalar valued function from the space of N × N positive definite matrices to
R, three times continuously differentiable with

C(Ht) = ∇C̃(Ht) =

⎡
⎢⎢⎣

∂C̃(Ht)
∂h1,t

...
∂C̃(Ht)
∂hK,t

⎤
⎥⎥⎦

C ′(Ht) = ∇2C̃(Ht) =

⎡
⎢⎢⎣

∂C̃(Ht)
∂h1,t∂h1,t

· · · ∂C̃(Ht)
∂h1,t∂hK,t

...
. . .

∂C̃(Ht)
∂hK,t∂h1,t

∂C̃(Ht)
∂hK,t∂hK,t

⎤
⎥⎥⎦

the gradient and the hessian of C̃(·) with respect to the K = N(N + 1)/2 unique elements of
Ht and C ′(Ht) negative definite.

The proof is given in Appendix A. An alternative expression for the loss function defined

in Proposition 3 is provided in the following corollary.
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Corollary 1 Given Σ̂t and Ht symmetric and positive definite, then the loss function specified
in (4) is isometric to

L(Σ̂t,Ht) = C̃(Ht) − C̃(Σ̂t) + Tr[C̄(Ht)(Σ̂t − Ht)], (5)

with C̃(·) defined as in Proposition 3 and

C̄(Ht) =

⎡
⎢⎢⎢⎢⎢⎣

∂C̃(H)
∂h1,1,t

1
2

∂C̃(H)
∂h1,2,t

... 1
2

∂C̃(H)
∂h1,N,t

1
2

∂C̃(H)
∂h1,2,t

∂C̃(H)
∂h2,2,t

...
. . .

1
2

∂C̃(H)
∂h1,N,t

∂C̃(H)
∂hN,N,t

⎤
⎥⎥⎥⎥⎥⎦ ,

where the derivatives are taken with respect to all N2 elements of Ht.

The proof is provided in Appendix A. Unlike in the univariate framework, the multivariate

dimension offers a large flexibility in the formulation of the loss function, see Table 1 for

several parameterizations. In applied work, a careful analysis of the functional form of the

loss function is a crucial preliminary step to the selection based on the specific properties of

a given loss function. In this respect, it is clear that Assumption A1.2 has a central role in

this setting. It is interesting to elaborate on the case when A1.2 is dropped while keeping all

other assumptions in place. We can show that, relaxing Proposition 1 and 2 and Definition

2 to admit loss functions badly formulated, still yields an ordering that is insensitive to

the accuracy of the proxy, i.e. apparently consistent. However, when A1.2 is violated, such

ordering is inherently invalid because the optimal forecast does not equal the true conditional

variance. To illustrate this, starting from the functional form defined in Proposition 3, we

consider the following generalization of (5)

L(Σt,Ht) = C̃(Ht) − C̃(Σt) + f [C̄(Ht)(Σt − Ht)], (6)

assuming that there exists a linear map f [·] : RN×N → R such that L(Σt,Ht) satisfies

second order conditions. We summarize the implications of relaxing assumption A1.2 from

Proposition 1, 2 and 3 in the following remark. The proof is given in Appendix A.

Remark 1 Define � the true ordering between variance matrix forecasts, i.e., based on the
true conditional variance matrix, and �a the approximated ordering, i.e., based on the volatil-
ity proxy. Under the loss function (6), if

i) f [·] ≡ Tr[·] (A1.2 is satisfied): � and �a are equivalent, in the sense of Definition 2,
and L(Σt,Ht) is such that H∗

t = E(Σ̂t|�t−1) = Σt, i.e., the loss function is well defined
in the sense of Definition 1;
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ii) f [·] 	≡ Tr[·] (A1.2 is violated): � and �a are equivalent, in the sense that the substitution
of the true covariance by a proxy does not affect the ordering. However, L(Σt,Ht) is
such that H∗

t 	= E(Σ̂t|�t−1) = Σt, i.e., the loss function points to an optimal forecast
different from the true conditional variance independently from the use of a proxy.

The first part of Remark 1 reaffirms sufficiency and necessity of the functional form defined

in Proposition 3. With respect to the second part, note that, under (6), the general idea of

consistency of the ranking, i.e., equivalence of true and approximated ranking, is still valid.

In fact, if f [·] is a linear map, then f [C̄(Ht)(Σt − Ht)] is linear in σi,j,t ∀i, j = 1, ..., N , and

therefore, similarly to what stated in Proposition 1, it holds that ∂2L(Σt,Ht)/∂σt∂σ′
t∂hk,t = 0

∀k = 1, ..., N(N + 1)/2. This result ensures the ranking based on the volatility proxy to be

apparently consistent for the one based on the true conditional variance and insensitive to the

level of accuracy of the proxy. The objective bias does not represent an issue here: in absence

of assumption A1.2, the underlying ordering will differ from any valid or acceptable ordering

also when based on the true conditional variance. A badly defined loss function points to an

optimal forecast different from the true conditional variance.

2.4 Building a class of consistent loss functions

Endowed with the functional form defined in Proposition 2 and Corollary 1, we illustrate

how to recover several consistent loss functions. These loss functions can be categorized with

respect to different characteristics, for instance the degree of homogeneity, the shape, the

underlying family of distributions or the functional form for C̃(·).

We start by investigating the case of loss functions that are based only on the forecast

error, that is L(Σ̂t,Ht) = L(Σ̂t − Ht). Patton (2009) shows that in the univariate case the

MSE loss function is the only consistent loss function that depends solely on the forecast

error. The multivariate setting offers more flexibility in the functional form for a consistent

loss function based on the forecast error. The following proposition defines the family of such

loss functions.

Proposition 4 A loss function based only on the forecast error Σ̂t −Ht that is consistent in
the sense of Definition 2 is defined by the quadratic form

L(Σ̂t,Ht) = L(Σ̂t − Ht) = vech(Σ̂t − Ht)′Λ̂vech(Σ̂t − Ht) (7)

and the loss function has the following properties:

a) homogeneous of degree 2,
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b) ∇2C̃(Ht) = −2Λ̂ = Λ is a matrix of constants defined according to Proposition 3,

c) Λ̂ defines the weights assigned to the elements of the forecast error matrix Σ̂t − Ht,

d) symmetric under 180◦ rotation around the origin, i.e. L(Σ̂t − Ht) = L(Ht − Σ̂t).

The proof is given in Appendix A. Proposition 4 defines a family of quadratic loss functions

which depends on the choice of the matrix of weights Λ̂. Formally, the quadratic polynomial in

(7) defines a family of quadric surfaces, i.e., elliptic paraboloids, and Λ̂ defines the shape of the

surface. As described above, the loss function in (7) corresponds to the MSE in the univariate

case. In that case the loss function is symmetric, i.e., equally penalizes positive and negative

forecast errors. The advantage of the multivariate case is that the notion of symmetry can be

analyzed from a different aspect. Although L(., .) is symmetric under 180◦ rotation around

the origin, a particular choice of Λ̂ can still generate some types of asymmetries. In the

following, we derive and discuss the properties of some well known loss functions belonging

to the family defined by Proposition 4.

The simplest parameterization of Λ̂ yield a loss function based on the vech() transforma-

tion of the forecast error matrix, i.e., a loss function based on the notion of distance on a

vector space rather than a matrix space. Three examples are provided (in increasing order of

generality). In Appendix B, we provide a series of analytical examples.

Example 1: Euclidean distance

From (7), by setting Λ̂ = IK we obtain a loss function of the form

LE = (σ̂t − ht)′IK(σ̂t − ht) =
∑

1≤k≤K

(σ̂k,t − hk,t)2. (8)

The loss function defined in (8) is the square of the Euclidean norm on the vech() trans-

formation of the forecast error matrix (Σ̂t − Ht). The matrix Λ̂ is such that variances

and covariances forecast errors are equally weighted. The loss function has mirror sym-

metry about all coordinate planes, i.e., L((σ̂1,t − h1,t), ..., (σ̂k,t − hk,t), ..., (σ̂K,t − hK,t)) =

L((σ̂1,t − h1,t), ...,−(σ̂k,t − hk,t), ...., (σ̂K,t − hK,t)) for all k, and is also symmetric under any

rotation about the origin, e.g. L((σ̂t − ht)) = L(−(σ̂t − ht)). Equal weights also imply that

LE is a symmetric polynomial, i.e., it is invariant under any permutation of the elements of

(σ̂t − ht), that is, L((σ̂s1,t − hs1,t), ..., (σ̂sK ,t − hsK ,t)) = L((σ̂1,t − h1,t), ..., (σ̂K,t − hK,t)) for

some permutation s of the subscripts 1, ...,K. The contours of the Euclidean distance are,

indeed, represented by spheres centered at the origin.
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Example 2: Weighted Euclidean distance

A more flexible version of (8) is the weighted Euclidean distance, where Λ̂ is defined as λ̂i,i > 0

and λ̂i,j = 0, i, j = 1, ...,K, that is

LWE = (σ̂t − ht)′Λ̂(σ̂t − ht) =
∑

1≤k≤K

λ̂k,k(σ̂k,t − hk,t)2. (9)

This loss function allows to differently weight each variance and covariance forecast error.

Also LWE shows mirror symmetry about all coordinate planes and it is also symmetric under

a 180◦ rotation about the origin. However, unlike LE, it is not invariant to permutations of

the elements of (σ̂t − ht), unless λ̂i,i = c for all i, i.e. LWE = cLE , where c is a constant.

The first type of symmetry implies that for each element of the forecast error matrix over

and under predictions are equally penalized. To illustrate the second type of symmetry

we provide an example: For a given absolute forecast error |σ̂t − ht|, i.e., fixing σ̂t and ht,

consider LWE evaluated at the following points in the domain: i) Li
WE, the loss at (σ̂k,t −

hk,t) > 0 ∀k (all variances and covariances are under predicted) and ii) Lii
WE, the loss at

(σ̂t − ht) < 0 ∀k (all variances and covariances are over predicted). Then it holds that

Li
WE = Lii

WE. Furthermore, consider Liii
WE, the loss at (σ̂k,t − hk,t) > (<)0, for some k

(some variances/covariances are under predicted, while other are over predicted), then mirror

symmetry implies Li
WE = Lii

WE = Liii
WE. Finally, the lack of invariance under permutations,

i.e., LWE is not symmetric about the bisector planes, is induced by the unequal distribution

of the weights to the elements of the forecasting errors matrix. The contours of the weighted

Euclidean distance are represented by ellipsoids centered at the origin and with the axes of

symmetry lying on the coordinate axes.

Example 3: Pseudo Mahalanobis distance

This loss function represents a generalization of (9). It is obtained by setting λ̂i,j > 0,

i, j = 1, ...,K, that is

LM = (σ̂t − ht)′Λ̂(σ̂t − ht) =
∑

1≤k,l≤K

λ̂k,l(σ̂k,t − hk,t)(σ̂l,t − hl,t). (10)

with Λ̂ chosen according to Proposition 4. We call the loss functions defined in (10) pseudo

Mahalanobis distance because though it has the same parametric form, unlike the Maha-

lanobis distance, the matrix of weights Λ̂ is deterministic and does not depend on (σ̂t − ht).
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In this case, since Λ̂ is non diagonal, LM also includes the cross product of variances and

covariances forecast errors. This loss function is only symmetric under a 180◦ rotation about

the origin. The matrix Λ̂ here plays a role similar to a correlation in a multivariate symmetric

distribution: positive (negative) weights imply that systematic over/under predictions are

penalized less (more). To illustrate this type of symmetry, as before, consider, for a given

absolute forecast error |σ̂t − ht|, LM evaluated at the following points in the domain: i) Li
M ,

the loss at (σ̂k,t − hk,t) > 0 ∀k (all variances and covariances are under predicted), ii) Lii
M ,

the loss at (σ̂t − ht) < 0 ∀k (all variances and covariances are over predicted) and iii) Liii
WE,

the loss at (σ̂k,t − hk,t) > (<)0, for some k (some variances/covariances are under predicted,

while other are over predicted). Then it holds that Li
WE = Lii

WE. However, since λi,j > (<)0,

i 	= j, then Li
WE = Lii

WE 	= Liii
WE. Furthermore, LM is not invariant to permutations of the

elements of (σ̂t − ht), unless Λ̂ is chosen such that LM = cLE , where c is a constant. The

contours of the pseudo Mahalanobis distance are represented by ellipsoids centered at the

origin and with the axes of symmetry, whose direction is given by the sign of the off diagonal

elements of Λ̂, that are rotated with respect to the coordinate axes.

The parameterization given in Proposition 4 allows to focus on the ordering implied by

a subset of elements of the forecast error matrix. As an example, consider the comparison

based on correlation matrices. In this case, one may want to focus on the elements of the

strictly lower diagonal portion of the forecast error matrix, i.e., the N(N − 1)/2 correlation

forecast errors.

Remark 2 (Subsets of forecast errors) The loss function in (7) can be reparameterized
using Λ̂ diagonal and diag(Λ̂) = vech(V ) where V is symmetric with typical element, indexed
by i, j = 1, ..., N(N +1)/2, vi,j = 0 if i = j, vi,j 	= 0 if i 	= j. Although in this case Λ̂ does not
satisfy Proposition 4, the resulting loss function represents the weighted Euclidean distance
on the vector holding the strictly lower diagonal elements of the forecast error matrix with
weights vi,j, that is

LWE = (σ̂t − ht)′Λ̂(σ̂t − ht) =
∑

1≤i<j≤N

vi,j(σ̂i,j,t − hi,j,t)2. (11)

In fact, define lvech() as the operator that stacks the strictly lower triangular portion of a
matrix into a vector, σ̂lw

t = lvech(Σ̂t), hlw
t = lvech(Ht) and diag(Λ̂lw) = lvech(V ), (11) is

equivalent to

Llw
WE = lvech(Σ̂t − Ht)Λ̂lwlvech(Σ̂t − Ht) =

∑
1≤k≤N(N−1)/2

λ̂lw
k,k(σ̂

lw
k,t − hlw

k,t)
2,

which is well defined according to Proposition 4.
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We discuss next a particular parameterization of Λ̂ which leading to a loss function known

as Frobenius distance. This loss function is based on the notion of distance on a matrix space

rather then a vector space. It considers the entire forecast error matrix, therefore allowing to

exploit some interesting matrix properties.

Example 4: Frobenius distance

From (7), if we set Λ̂ diagonal and diag(Λ̂) = vech(V ) where V is symmetric with typical

element, indexed by i, j = 1, ..., N(N + 1)/2, vij = 1 if i = j, vij = 2 if i 	= j, then the

resulting loss function is

LF = Tr[(Σ̂t − Ht)′(Σ̂t − Ht)]. (12)

Equation (12) represents the matrix equivalent to the MSE loss function. Alternatively, (12)

can be written as

LF =
∑

1≤i,j≤N

(σ̂i,j,t − hi,j,t)2 =
∑

1≤i≤N

ςi(Σ̂t − Ht),

that is the sum of elementwise squared differences or equivalently the sum of the singular

values, ςi(.), of the forecast error matrix (Σ̂t − Ht).

The Frobenius distance represents a special case of the weighted Euclidean distance, but

the specific choice of Λ̂ allows to exploit properties of symmetric matrices. Note that this loss

function, by considering the entire forecast matrix, double weights the covariance forecast

errors, i.e., the off diagonal elements of the forecasting error matrix. In terms of geometrical

representation, it shares the same properties with LWE.

In Examples 1 to 4 we denote the loss functions as a distance. Throughout the paper, we

refer to the term distance to underline the different characterization, in this case the square

transformation, of a loss function with respect to the underlying norm.

Remark 3 (Inconsistent loss functions:) Entrywise 1 - (matrix) norm.
The parameterization given in (8), in Example 2, closely resembles the square of the entrywise
1 - (matrix) norm, which is defined as

L2
1M =

⎛
⎝ ∑

1≤i,j≤N

|σ̂i,j,t − hi,j,t|

⎞
⎠

2

.

but unlike the pseudo Mahalanobis distance, L2
1M is not differentiable and therefore Proposi-

tion 1 does not apply.
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Frobenius norm. The square root of (12) is a well known matrix norm called Frobenius
norm, Hilbert-Schmidt norm or Schatten 2-norm and represents the matrix equivalent to the
root-MSE loss function. It is straightforward to show that such loss function does not satisfy
Proposition 1.
Euclidean norm. The square root of (8) is the Euclidean norm. Also in this case, it can be
shown that Proposition 1 is violated.

From Remark 2, it is clear that even simple transformations of a consistent loss function

may cause the violation of Proposition 1. Note that, since the loss functions defined in (12)

and (8) are the square of a norm, they are by definition homogeneous of degree 2.

As the class of consistent loss functions identified in Patton (2009) is related to the class

of linear exponential distributions (see Gourieroux and Monfort (1995) for details), an alter-

native procedure to identify loss functions that belong to the family defined in Proposition

3 is to look at distributions which are defined on the support RN×N or the space of N × N

positive definite matrices (RN×N
++ ).

Remark 4 (Frobenius distance) Consider the matrix model

Σ̂t = Ht + Ξ,

where Ξ is a matrix of random errors. If Ξ|�t−1 ∼ N(Ht,Ω,Θ) then

P [Σ̂t|�t−1] =
exp

(
−1

2Tr[Ω−1(Σ̂t − Ht)′Θ−1(Σ̂t − Ht)]
)

(2π)N2/2 |Ω|N/2 |Θ|N/2

is the probability density function of Σ̂t. Since the parameter of interest is Ht, the associated
objective function is the least squares loss function

LF = Tr[(Σ̂t − Ht)′(Σ̂t − Ht)]. (13)

The loss function in (13) belongs to the family of loss functions defined by (5), with C̃(Ht) =
−Tr(HtHt) and C̄(Ht) = −2Ht.

Alternatively, if we consider the Wishart distribution we identify a loss function that

is characterized by a degree of homogeneity equal to zero and that depends only on the

standardized (in matrix sense) forecast error.

Example 5: Stein loss function

Assume that the conditional distribution of Σ̂t is Wishart, with Et−1[Σ̂t] = Ht, i.e. Σ̂t|�t−1 ∼

WN (p−1Ht, p). The probability density function is given by
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P [Σ̂t|�t−1] =

∣∣∣Σ̂t

∣∣∣ (p−N−1)
2

2Np/2p−1 |Ht|p/2
exp

(
− 1

2p
Tr[H−1

t Σ̂t]
)

,

which yields to the loss function

LS = Tr[H−1
t Σ̂t] − log

∣∣∣H−1
t Σ̂t

∣∣∣− N. (14)

LS belongs to the family defined by (5) with C̃(Ht) = log |Ht| and C̄(Ht) = H−1
t . It cor-

responds to the scale invariant (i.e., homogeneous of degree 0) loss function introduced by

James and Stein (1961). LS is asymmetric with respect to over/ under predictions, and, in

particular, underpredictions are heavily penalized. The properties of LS are further discussed

in Appendix B using a simple example.

We have seen that even in the specific case of loss functions based only on the forecast error,

the multivariate dimension allows to construct a variety of consistent loss functions sharing

the same degree of homogeneity but differing in the way deviations are weighted. However,

unlike the univariate case, the generalization may be computationally unfeasible when using

a procedure of the type bottom-up, i.e., starting from ∇2C̃(Ht) = Λ(Ht) and then integrating

up to obtain the functional C̃(Ht) (see proofs of Proposition 3 and 4 for details). In fact,

if L(Σ̂t,Ht) is homogeneous of degree d, then ∂L(Σ̂t,Ht)/∂ht = ∇2C̃(Ht)vech(Σ̂t − Ht) is

homogeneous of degree (d − 1), while the elements of the Hessian, ∇2C̃(Ht) = Λ(Ht), are

homogeneous of degree (d − 2). The procedure illustrated above would require to set Λ(Ht)

is such a way that its elements are (i) homogeneous of degree (d − 2), (ii) possibly depend

on Ht and (iii) Λ(Ht) = ∇2C̃(Ht) satisfies Proposition 3. Such generalization (e.g., LS to a

family scale invariant loss functions) is computationally cumbersome and the resulting loss

function is likely to be difficult to interpret.

Alternatively, we propose, starting from (4) or (5), to choose ex-ante some functional form

for C̃(·), possibly homogeneous, and verify on a case by case basis whether the resulting loss

function satisfies Proposition 3. As an example, consider C̃(·) = Tr(Ad) for some d ≥ 2 and

where A is symmetric and positive definite. Since the trace is a linear operator, the resulting

loss function, homogeneous of degree d, takes the form

L(Σ̂t,Ht) = Tr(Σ̂d
t ) − Tr(Hd

t ) − dTr[Hd−1
t (Σ̂t − Ht)].
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3 Ranking multivariate GARCH models

In this section, we provide details on the set of competing models and on the volatility proxy

that is used as the target in the evaluation.

3.1 Forecasting models set

We focus on the ranking of multivariate volatility models that belong to the multivariate

GARCH (MGARCH) class. Consider a N -dimensional discrete time vector stochastic pro-

cess rt. Let μt = E(rt|�t−1) be the conditional mean vector and Hm,t = E(rtr
′
t|�t−1) the

conditional variance matrix for model m so that we can write the model of interest as:

rt = μt + H
1/2
m,tzt,

where H
1/2
m,t is a (N × N) positive definite matrix and zt is an independent and identically

distributed random innovation vector with E(zt) = 0 and V ar(zt) = IN .

In the empirical application in Section 5, we consider 16 specifications for Hmt which are

frequently used in practice. As detailed in Section 4, for the simulation study, we consider a

different forecasting models set (10 models), in order to control for the degree of similarity

between models. The specifications considered in this paper are: diagonal BEKK (D-BEKK)

model (Engle and Kroner, 1995), multivariate RiskMetrics model (J.P.Morgan, 1996), Con-

stant Correlation (CCC) model (Bollerslev, 1990), Dynamic Conditional Correlation (DCC)

model (Engle, 2002) and Generalized Orthogonal GARCH (GOG) model (van der Weide,

2002). The univariate GARCH specifications specifications for the conditional variance equa-

tions used in the DCC, CCC and GOG are: GARCH (Bollerslev, 1986), GJR (Glosten,

Jagannathan, and Runkle, 1992), Exponential GARCH (Nelson, 1991b), Asymmetric Power

ARCH (Ding, Granger, and Engle, 1993), Integrated GARCH (Engle and Bollerslev, 1986),

RiskMetrics (J.P.Morgan, 1996) and Hyperbolic GARCH (Davidson, 2004). Table 2 pro-

vides a summary of the forecasting models set used in the simulation and the application

respectively.

In the GJR model, the impact of squared innovations on the conditional variance is dif-

ferent when the innovation is positive or negative. The asymmetric power ARCH model

(APARCH) is a general specification which includes seven other ARCH extensions as special

cases. The Exponential GARCH model (EGARCH) accommodates the asymmetric relation
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Table 2: Forecasting models sets

Simulation study
BEKK-type CCC GOG
Diag. BEKK GARCH GARCH
RiskMetrics IGARCH IGARCH

EGARCH EGARCH
RM HYGARCH

Note: Simulation based on bivariate models. CCC and GOG specifica-
tion use the same conditional variance specification for all series.

Empirical application
BEKK-type CCC DCC GOG
Diag. BEKK GARCH GARCH GARCH
RiskMetrics IGARCH IGARCH IGARCH

APARCH APARCH APARCH
GJR GJR GJR
RM RM

Note: Empirical application based on trivariate models. CCC, DCC
and GOG specification use the same conditional variance specification
for all series.

between shocks and volatility by expressing the latter as a function of both the magnitude

and the sign of the shock. The Integrated GARCH (IGARCH) model is a variation of the

GARCH model in which the sum of the ARCH and GARCH parameters are constrained to

be equal to one, while the RiskMetrics model (RM) is basically an IGARCH model where

the constant is set to zero and the ARCH and GARCH coefficients are fixed to 0.06 and 0.94

respectively. Finally, the Hyperbolic GARCH model (HYGARCH) allows to account for long

run dependence in the volatility. The functional forms for Ht are briefly defined in Table

3. See Bauwens, Laurent, and Rombouts (2006) for further details. All the specifications

are characterized by a constant conditional mean and the models are estimated by quasi

maximum likelihood. The sample log-likelihood is given (up to a constant) by

− 1
2

T∑
t=1

log | Hm,t | −
1
2

T∑
t=1

(rt − μ)
′
H−1

m,t(rt − μ), (15)

where T is the size of the estimation sample. We maximize numerically for μ and the parame-

ters in Hm,t. All calculations and results reported in this paper are based on programs written

by the authors using Ox version 6.0 (Doornik, 2002) and G@RCH version 6.0 (Laurent, 2009).
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Table 3: Multivariate GARCH specifications

Model Multivariate GARCH models for Ht (N = 2) # par.

DBEKK(1,1) Ht = C∗′
0 C∗

0 + A∗′
εt−1ε

′
t−1A

∗ + G∗′
Ht−1G

∗ 7

RiskMetrics Ht = (1 − α)εt−1ε
′
t−1 + αHt−1, (α = 0.96) 0

GOG V −1/2εt = Lft 1+univ.

Ht = V 1/2LZtLV 1/2

Zt = diag(σ2
f1,t

, . . . , σ2
fm,t

)

L = PΛ1/2U , U =
∏

i<j Ri,j(δi,j), −π ≤ δi,j ≤ π

CCC Ht = DtRDt 1+univ.

Dt = diag(h1/2
1,1,t . . . h

1/2
N,N,t)

DCC(1,1) Ht = DtRtDt 3+univ.

Rt = diag(q−1/2
1,1,t . . . q

−1/2
N,N,t)Qtdiag(q−1/2

1,1,t . . . q
−1/2
N,N,t)

Dt = diag(h1/2
1,1,t . . . h

1/2
NNt)

ut = D−1
t εt

Qt = (1 − α − β)Q̄ + αut−1u
′
t−1 + βQt−1

Univariate GARCH models in Zt and Dt (l = 1, 2)

GARCH(1,1) hl,t = ωl + αlε
2
l,t−1 + βlhl,t−1 6

EGARCH(1,0) log(hl,t) = ωl + g(zl,t−1) + βllog(hl,t−1) 8

g(zl,t−1) = θl,1zl,t−1 + θl,2(|zl,t| − E(|zl,t|))

GJR(1,1) hl,t = ωl + αlε
2
l,t−1 + γlS

−
l,t−1ε

2
l,t−1 + βlhl,t−1 8

S−
l,t = 1 if εl,t < 0; S−

l,t = 0 if εl,t ≥ 0

APARCH(1,1) hδl

l,t = ωl + αl[|εl,t−1| − γlεl,t−1]δl + βlh
δl

l,t−1 10

HYGARCH(1,d,1) hl,t = ωl[1 − βl]−1 + λ(L)ε2l,t 10

λ(L) =
{
1 − [1 − βl]−1αl[1 + γl(1 − L)d]

}
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3.2 A proxy for the conditional variance matrix

Following Andersen, Bollerslev, Diebold, and Labys (2003), we rely on the realized covariance

(RCov) to proxy the ex-post variance. In the ideal case of no microstructure noise, this

measure, being based on intraday observations, is characterized by a degree of accuracy that

decreases as sampling frequency lowers.

Let us assume the observed return vector to be generated by a conditionally normal

N-dimensional log-price diffusion dy(u) and a N(N + 1)/2-dimensional covariance diffusion

dσ(u), with σ(u) = vech(Σ(u)) = [σij(u)] for i, j = 1, ..., N , i ≥ j and u ∈ [t, t + 1], with

mean vector process b(u)du and variance matrix a(u) = s(u)s(u)
′
, driven by a N(N + 3)/2

vector of independent standard Brownian motions W (u). Hence the diffusion process of the

system admits the following representation⎡
⎣ dy(u)

dσ(u)

⎤
⎦ = b(u)du + s(u)dW (u), (16)

with b(u) and s(u) locally bounded and measurable. Consider now the following partition for

the variance matrix of the system in (16) as

a(u) = s(u)s(u)′ =

⎡
⎣ Σ(u) Cov(dy(u), dσ(u))

Cov(dy(u), dσ(u)) V ar(dσ(u))

⎤
⎦ . (17)

Since Σ(u) identifies the continuous time process for the variance matrix of the returns, we

can define the Integrated Covariance (ICov) as (see Barndorff-Nielsen and Shephard, 2004)

ICovt+1 =
∫ t+1

t
Σ(u)du. (18)

Let us now define the intraday returns as rt+Δ = yt+Δ − yt for t = Δ, 2Δ, ..., T and where

1/Δ is the number of intervals per day. In this setting ICovt can be consistently estimated

by the Realized Covariance (RCov) (Andersen, Bollerslev, Diebold, and Labys, 2003) which

is defined as

RCovt+1,Δ =
1/Δ∑
i=1

rt+iΔr′t+iΔ. (19)

In fact, since the process defined by (16) does not allow for jumps in the returns, it holds that

plim
Δ→0

RCovt+1,Δ = ICovt+1. (20)
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In this paper, the RCov serves as a proxy for the true conditional variance matrix when

evaluating the forecasting performance of the different MGARCH models. The result (20)

suggests that the higher the intraday frequency used to compute RCov, and hence the amount

of information available, the higher the accuracy of the proxy. The advantage of using RCov

is that it satisfies assumption A2.5 (see Barndorff-Nielsen and Shephard,2002 and Hansen

and Lunde, 2006b) and therefore it ensures convergence of the approximated ordering to the

true one under the inconsistent loss function (see Proposition 2). On the other hand, RCov

is a valid proxy even when based on very low intraday sampling frequencies. The use of RCov

allows to study the behavior of the ordering as a function of the level of accuracy of the proxy

for consistent and inconsistent loss functions. As noted by Andersen, Bollerslev, Diebold,

and Labys (2003), positive definiteness of the variance matrix is ensured only if the number

of assets is smaller then 1/Δ. When this condition is violated then the realized covariance

matrix fails to be of full rank (i.e., rank(RCov) = 1/Δ < dim(RCov)) and RCov will meet

only the weaker requirement to be semi-positive definite. Since the setting defined in this

paper requires positive definiteness of the variance proxy, we restrict our analysis on the

range of proxies that meet this requirement. Note that, other volatility proxies can be used

instead, such as the multivariate realized kernels (see Barndorff-Nielsen, Hansen, Lunde, and

Shephard, 2008a and Barndorff-Nielsen, Hansen, Lunde, and Shephard, 2008b, Hansen and

Lunde, 2006b, Zhou, 1996) or the range based covariance estimators (Brandt and Diebold,

2006).

4 Simulation study

We investigate the ranking of the MGARCH models with respect to two dimensions: the

quality of the volatility proxy and the choice of the loss function. According to Proposition 2,

we find that if the quality of the proxy is sufficiently good, both consistent and inconsistent loss

functions rank properly. However, when the quality of the proxy is poor, only the consistent

loss functions rank correctly. Our findings also hold when the sample size in the estimation

period increases.
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4.1 Setup

Varying the quality of the proxy requires knowledge of the intraday sample paths for the

returns. This can be obtained through the simulation of a multivariate diffusion process. In

the spirit of Meddahi (2002) and Voev and Lunde (2006), we generate continuous sample paths

such that the resulting RCov estimators, at different time sampling frequencies, are consistent

for ICov. Contrary to the previous literature, the diffusion approximation we introduce here,

the bivariate CCC-EGARCH(1,0) model, allows to fully control for the nature and the size of

the leverage effect and to preserve the correlation structure of the vector stochastic process

[yi,t, ..., σ
2
i,j,t, ...]

′, i, j = 1, ..., N and i ≤ j ensuring internal consistency of the model.

We consider the bivariate CCC-EGARCH(1,0) model (see Table 3) which admits a diffu-

sion limit, of the type introduced by (16), defined by the continuous time vector stochastic

process [y1,t, y2,t, log(σ2
1,t), log(σ2

2,t)]
′ with drift and scale given respectively by

b(y,Σ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

ω1 − θ1 log(σ2
1,t)

ω2 − θ2 log(σ2
2,t)

⎤
⎥⎥⎥⎥⎥⎥⎦

(21)

and

a(y,Σ) = s(y,Σ)s(y,Σ)′

=

⎡
⎢⎢⎢⎢⎢⎢⎣

σ2
1t ρσ1,tσ2,t α1σ1,t ρα2σ1,t

ρσ1,tσ2,t σ2
2,t ρα1σ2,t α2σ2,t

α1σ1,t ρα1σ2,t α2
1 + γ2

1(1 − 2/π) ρα1α2 + γ1γ2C

ρα2σ1,t α2σ2,t ρα1α2 + γ1γ2C α2
2 + γ2

2(1 − 2/π)

⎤
⎥⎥⎥⎥⎥⎥⎦

, (22)

where C = 2
π

[√
1 − ρ2 + ρ arcsin(ρ) − 1

]
. The conditional variance matrix is computed, at

each point in time as σ(1,2),t = ρ
√

σ2
1,tσ

2
2,t. The matrix s(y,Σ) is computed from a(y,Σ) by

spectral decomposition. The diffusion approximation of the CCC-EGARCH model has been

derived following Nelson (1991a). For details on the weak convergence of stochastic processes

see Strook and Varadhan (1979), Ethier and Kurtz (1986) and Kushner (1984). Details are

available upon request.

The CCC-EGARCH specification has been preferred to alternative MGARCH specifica-

tions - e.g., the DCC model - because it is sufficient to ensure a certain degree of dissimilarity

25



between the true DGP and the set of competing models while keeping the limiting diffusion

fairly tractable.

For the simulation study, we use the following parameter values: ωi = −0.02, θi = 1−βi =

0.03, αi = −0.09, γi = 0.4 and ρ = 0.9 which ensure realistic dynamics for the return process.

Our results are based on 500 replications with an estimation sample T = 2000 observations and

a forecasting sample of 500 observations. The continuous time process (16) is approximated

by generating 1/Δ = 7200 observations per day - i.e., 5 observations per minute. The set

of MGARCH models is estimated on daily returns and recursive 1-step ahead forecasts are

computed. Although, a discussion on finite sample properties of the diffusion approximation

is beyond the scope of this paper, it is important to stress that, in this setting, to achieve

asymptotics we must set 1/Δ and T such that ΔT → ∞. In a different yet related setting,

Barone-Adesi, Rasmussen, and Ravanelli (2005) showed that, in finite samples, the discrete

time coefficient can be severely biased. On the other hand, our aim is to generate enough

intraday observations to compute RCov at frequencies sufficiently high to approximate (20),

thus a sufficiently large sample size is unfeasible given the available computational power.

To overcome this problem, the set of forecasting models is defined such that all competing

models are expected to be inferior. Apart from the CCC-EGARCH(1,0), the set of competing

models includes the diagonal BEKK, RiskMetrics, CCC-GARCH(1,1), CCC-IGARCH(1,1),

CCC-RiskMetrics, GOG-GARCH(1,1), GOG-EGARCH(1,0), GOG-IGARCH(1,1) and GOG-

HYGARCH(1,1) (see Table 3).

The true conditional variance matrix is measured by the integrated covariance (ICov)

defined in (18). To proxy the daily variance matrix of day t, we use the realized covariance

(RCovt,Δ), as defined in (19), based on equally spaced intraday returns sampled at 14 different

frequencies, ranging from 1 minute (most accurate) to 24 hours (least accurate), over the

forecasting horizon. In our setting, the bivariate dimension implies that the lowest available

sampling frequency that ensures positive definiteness of RCov is 12 hours. However, when

reporting our simulation results, we also include the 24 hours frequency to (qualitatively)

assess whether the evaluation based on a singular realized variance matrix has an impact on

the ordering.

Since we are comparing estimated models, the underlying order, except for the best model,

is unknown ex-ante and it is determined by the specific loss function used in the evaluation.
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We consider the ranking implied by three consistent, LF , LE and LS , and three inconsistent

loss functions, L1M , LPF and LLF,2, respectively.

4.2 Sample performance ranking and objective bias

We focus first on the ability of the loss function to detect the true model as the best. We

compute the frequencies at which each model shows the smallest sample performance where

the latter is defined as the average value of the loss function over the T forecasts.

Table 4 reports the frequencies for the consistent loss functions: the Frobenius dis-

tance, the Euclidean distance and the Stein loss function. Unsurprisingly, we find the CCC-

EGARCH model ranking first most often for all consistent loss functions at all frequencies

for RCov. When ICov is used, this frequency is between 50% and 54%. The remaining is

distributed among the other models (from 0% to 7%) in such a way that no model domi-

nates. One exception is the GOG-EGARCH (17%) when the Frobenius and the Euclidean

distances are used. This result is not surprising since the GOG-EGARCH model is the only

model in the set that allows for a leverage effect. Note that the frequency associated to the

GOG-EGARCH is stable across RCov frequencies, that is, it only represents the ability of

the GOG-EGARCH to mimic the dynamics in the variance structure generated by the DGP.

An interesting case is the CCC-RM. When the Frobenius and the Euclidean distances

are used, the frequencies associated to the CCC-RM increase progressively from about 6% at

ICov to 10% at RCov12h revealing a behavior that, as we will see in the following, typically

suggests the presence of the objective bias. However, the set of models includes also the CCC-

IGARCH, a model which shares most of the characteristics of the CCC-RM. The frequencies

of the CCC-IGARCH decrease from 5% to 2% in such a way to compensate, at each RCov

frequency, the increase in the frequency associated to the CCC-RM. The joint probability of

CCC-IGARCH and CCC-RM to rank first is indeed about 12% for both LF and LE and is

stable across RCov.

As expected, LF and LE show very similar patterns. Both loss functions share the same

structure with the only difference given by the weights assigned to the covariances (i.e., Λ̂

in Proposition 4), which are double weighted in the Frobenius distance. In this case, using

different matrices of weights does not affect the distribution of the models.

On the other hand, the Stein loss function shows a different distribution across models.
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The frequency at which the CCC-EGARCH ranks first is slightly larger than with the previous

two distances and there is no evidence of a shift in the ordering between CCC-IGARCH and

CCC-RM. Also, the frequency associated to the GOG-EGARCH, which is potentially the best

alternative model, is again stable across frequencies but this model ranks first only about 11%

of the times.

In Proposition 2, we have shown that a consistent loss function always detects the optimal

forecast, if it exists, independently from the level of accuracy of the proxy. In fact, Table 4

shows that all consistent loss function point to the correct model. However, the ranking of

two imperfect forecasts may differ between loss functions. In particular, it will depend on how

each specific loss function penalizes deviations from the target. Consistency of the ranking is

in fact intended only with respect to the accuracy of the proxy and for a given loss function

and not as invariance of the ordering with respect to the choice of the loss function. The

latter is only ensured between the optimal forecast and any other point in the space of the

forecast matrices (see Jensen (1984)).

Apart from the issue related to finite sample properties of the diffusion approximation,

the fact that the frequencies associated to the true model seem low when the loss is computed

with respect to the true covariance is explained by the fact that we allow for a fairly high

degree of similarity between models. The CCC-EGARCH model with a moderate leverage

effect can also be accommodated by other models in the set. However, the presence of leverage

effect in the DGP implies that models ignoring this feature of the data are expected to be

inferior. From Table 4 we also learn that when the quality of the proxy deteriorates (the

sampling frequency decreases), the relative sample performances are invariant, which implies

consistency of the ranking of these loss functions across RCov frequencies.

Table 5 reports the frequencies at which each model shows the smallest sample perfor-

mance but for the inconsistent loss functions, i.e., L1M , LPF and LLF,2. These loss functions

deliver the true ranking when the target variance is ICov. Indeed, the CCC-EGARCH is

always correctly detected as the best model, though the frequencies vary substantially across

loss functions. When relying on RCov1m to RCov1h, the frequencies associated to each model

remain stable and there is no dominant model other than CCC-EGARCH. Hence, as shown

in Proposition 2, when the proxy is nearly perfect there is no evidence of the presence of ob-

jective bias. Starting from RCov2h, the frequency at which the CCC-EGARCH model ranks

28



first starts declining while the performance of potentially inferior models increases rapidly

as the quality of the proxy lowers. The CCC-EGARCH frequency drops from about 50%

to about 38%, 36% to 22% and 26% to 12% at the 12h frequency, respectively for each loss

function. In accordance with the results in Proposition 2, we find that as the quality of

the proxy deteriorates inferior models seem to emerge. Although when using L1M there is

no model that dominates the CCC-EGARCH, the GOG-EGARCH and the CCC-RM follow

closely. These models rank first in 18% and about 5% of the cases respectively when using

RCov1m to RCov30m and in 29% and 20% when using RCov12h. The relative improvement

in the sample performance of inferior models, as the frequency of RCov lowers, signals the

presence of objective bias.

When considering LLF,2, we find two models, namely the GOG-EGARCH and the GOG-

IGARCH, that outperform the true model when the proxy is computed using returns sampled

at 8h and 12h. In this case, we observe a particular behavior: the frequencies associated to

the GOG-EGARCH (about 22%) and the GOG-IGARCH (20% to 23%) are fairly constant

across proxies. However, the frequency associated to the CCC-EGARCH drops fast as the

proxy becomes less accurate. Even if the CCC-EGARCH is found to be the best model in

35% of the times when using a proxy based on 1h returns, this frequency falls to 22% at

RCov12h.

The same remarks apply to the results obtained using LPF . In this case, surprisingly we

find the DBEKK to rank first more often than the true model when the proxy is computed

using returns sampled at a frequency of 2h or lower.

In the first part of this simulation study, we focused on the detection of the best model

in terms of sample performance. However, the analysis carried out so far, offers only a

partial insight on the role of the objective bias. Indeed, in presence of a high degree of

dissimilarity between the true and the competing models, the detection of the best model

may not be affected. However, the objective bias may still be relevant for what concerns the

other positions in the ranking. We now investigate whether the whole ordering is preserved

despite the deterioration of the quality of the proxy. Since we are ranking over a set of

estimated volatility models, the true ranking implied by a given loss function, except for the

best model, is not known ex-ante. However, the underlying ordering implied by a given loss

function, can be identified by ranking the models with respect to the true covariance, i.e.,
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Table 4: Frequencies at which each model shows smallest loss ( consistent loss functions)

Frobenius distance (LF )

DBEKK RM CCCG CCCE CCCI CCCRM GOGG GOGE GOGI GOGHY

ICov 0.002 0.008 0.058 0.508 0.052 0.068 0.036 0.172 0.076 0.020
RCov1m 0.002 0.006 0.058 0.510 0.048 0.068 0.040 0.172 0.072 0.024

RCov5m 0.002 0.006 0.060 0.504 0.048 0.076 0.042 0.166 0.070 0.026

RCov10m 0.004 0.004 0.054 0.512 0.040 0.084 0.036 0.168 0.070 0.028

RCov15m 0.002 0.008 0.056 0.504 0.040 0.076 0.038 0.174 0.076 0.026

RCov20m 0.002 0.006 0.048 0.520 0.044 0.082 0.036 0.172 0.074 0.016

RCov30m 0.002 0.004 0.058 0.512 0.042 0.084 0.038 0.170 0.072 0.018

RCov1h 0.002 0.002 0.058 0.522 0.032 0.092 0.034 0.156 0.072 0.030

RCov2h 0.006 0.004 0.048 0.528 0.030 0.070 0.034 0.172 0.070 0.038

RCov3h 0.002 0.006 0.038 0.526 0.036 0.090 0.034 0.152 0.080 0.036

RCov4h 0.006 0.002 0.044 0.496 0.040 0.098 0.026 0.170 0.074 0.044

RCov6h 0.002 0.006 0.042 0.524 0.026 0.082 0.022 0.162 0.096 0.038

RCov8h 0.006 0.006 0.040 0.494 0.018 0.130 0.040 0.152 0.080 0.034

RCov12h 0.010 0.000 0.050 0.526 0.018 0.100 0.022 0.158 0.078 0.038

Euclidean distance (LE)

ICov 0.006 0.008 0.064 0.512 0.036 0.062 0.040 0.178 0.074 0.020
RCov1m 0.006 0.006 0.060 0.508 0.040 0.066 0.040 0.176 0.074 0.024

RCov5m 0.006 0.006 0.058 0.514 0.038 0.070 0.040 0.170 0.072 0.026

RCov10m 0.004 0.004 0.052 0.518 0.036 0.074 0.034 0.176 0.080 0.022

RCov15m 0.006 0.006 0.056 0.514 0.034 0.076 0.030 0.176 0.074 0.028

RCov20m 0.004 0.004 0.046 0.526 0.042 0.078 0.036 0.168 0.080 0.016

RCov30m 0.006 0.002 0.054 0.520 0.038 0.076 0.038 0.172 0.078 0.016

RCov1h 0.004 0.002 0.054 0.532 0.030 0.086 0.030 0.162 0.070 0.030

RCov2h 0.004 0.004 0.044 0.526 0.026 0.074 0.036 0.184 0.068 0.034

RCov3h 0.004 0.006 0.038 0.528 0.034 0.088 0.034 0.152 0.082 0.034

RCov4h 0.004 0.002 0.046 0.491 0.036 0.096 0.030 0.172 0.074 0.042

RCov6h 0.004 0.006 0.042 0.518 0.026 0.080 0.020 0.166 0.100 0.038

RCov8h 0.004 0.006 0.040 0.516 0.020 0.118 0.036 0.150 0.076 0.034

RCov12h 0.008 0.000 0.050 0.532 0.020 0.100 0.020 0.152 0.080 0.038

Stein loss function (LS)

ICov 0.004 0.000 0.058 0.540 0.116 0.004 0.042 0.102 0.076 0.058
RCov1m 0.004 0.000 0.060 0.542 0.114 0.004 0.038 0.098 0.080 0.060

RCov5m 0.004 0.000 0.060 0.550 0.112 0.004 0.040 0.092 0.076 0.062

RCov10m 0.004 0.000 0.058 0.552 0.106 0.006 0.038 0.100 0.074 0.062

RCov15m 0.004 0.000 0.060 0.552 0.116 0.004 0.036 0.098 0.068 0.062

RCov20m 0.004 0.000 0.048 0.560 0.112 0.004 0.040 0.108 0.066 0.058

RCov30m 0.004 0.000 0.058 0.558 0.112 0.004 0.040 0.102 0.060 0.062

RCov1h 0.004 0.000 0.056 0.552 0.112 0.008 0.038 0.104 0.064 0.062

RCov2h 0.002 0.000 0.058 0.558 0.106 0.004 0.038 0.114 0.066 0.054

RCov3h 0.000 0.004 0.060 0.560 0.094 0.006 0.032 0.106 0.078 0.060

RCov4h 0.002 0.002 0.060 0.540 0.112 0.002 0.034 0.112 0.084 0.052

RCov6h 0.000 0.004 0.064 0.524 0.102 0.004 0.038 0.112 0.088 0.064

RCov8h 0.004 0.002 0.052 0.516 0.108 0.002 0.034 0.122 0.098 0.062

RCov12h 0.004 0.002 0.048 0.540 0.106 0.006 0.034 0.108 0.090 0.062

Note: D-BEKK: Diagonal BEKK; RM: RiskMetrics; CCC-G,-E,-I,-RM: Constant Conditional Correlation with
GARCH, EGARCH, IGARCH and RiskMetrics univariate conditional variances; GOG-G,-E,-I,-HY: General-
ized Orthogonal GARCH with GARCH, EGARCH, IGARCH and HYGARCH univariate conditional variances
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Table 5: Frequencies at which each model shows smallest loss: inconsistent loss functions

Entrywise 1 - (matrix) norm (L1M )

DBEKK RM CCCG CCCE CCCI CCCRM GOGG GOGE GOGI GOGHY

ICov 0.004 0.004 0.054 0.506 0.024 0.060 0.030 0.186 0.110 0.022

RCov1m 0.004 0.004 0.052 0.504 0.028 0.060 0.032 0.182 0.110 0.024

RCov5m 0.004 0.004 0.046 0.506 0.024 0.066 0.038 0.180 0.108 0.024

RCov10m 0.006 0.004 0.042 0.516 0.024 0.064 0.034 0.174 0.108 0.028

RCov15m 0.006 0.002 0.040 0.512 0.022 0.068 0.030 0.180 0.114 0.026

RCov20m 0.006 0.002 0.040 0.506 0.024 0.072 0.032 0.178 0.116 0.024

RCov30m 0.006 0.002 0.044 0.506 0.022 0.068 0.028 0.184 0.114 0.026

RCov1h 0.008 0.002 0.046 0.504 0.024 0.076 0.018 0.190 0.106 0.026

RCov2h 0.010 0.002 0.052 0.476 0.022 0.096 0.010 0.218 0.090 0.024

RCov3h 0.010 0.008 0.042 0.474 0.022 0.100 0.016 0.212 0.092 0.024

RCov4h 0.012 0.008 0.030 0.458 0.022 0.122 0.010 0.224 0.088 0.026

RCov6h 0.016 0.018 0.012 0.424 0.020 0.150 0.008 0.258 0.070 0.024

RCov8h 0.018 0.028 0.012 0.402 0.010 0.178 0.008 0.260 0.068 0.016

RCov12h 0.024 0.028 0.006 0.376 0.010 0.208 0.000 0.292 0.052 0.004

Frobenius distance - log (LLF,2)

ICov 0.016 0.000 0.038 0.362 0.032 0.030 0.036 0.220 0.204 0.062

RCov1m 0.016 0.000 0.044 0.356 0.032 0.032 0.034 0.224 0.204 0.058

RCov5m 0.022 0.000 0.040 0.352 0.034 0.032 0.038 0.220 0.204 0.058

RCov10m 0.020 0.000 0.038 0.346 0.036 0.034 0.040 0.222 0.202 0.062

RCov15m 0.022 0.000 0.042 0.342 0.032 0.032 0.032 0.222 0.210 0.066

RCov20m 0.020 0.000 0.044 0.348 0.030 0.032 0.038 0.216 0.210 0.062

RCov30m 0.024 0.000 0.036 0.346 0.032 0.032 0.040 0.220 0.220 0.056

RCov1h 0.024 0.002 0.034 0.346 0.030 0.038 0.030 0.224 0.216 0.056

RCov2h 0.030 0.004 0.032 0.334 0.034 0.044 0.030 0.218 0.232 0.042

RCov3h 0.044 0.006 0.028 0.318 0.032 0.052 0.036 0.226 0.214 0.044

RCov4h 0.046 0.006 0.020 0.306 0.030 0.058 0.040 0.232 0.220 0.042

RCov6h 0.062 0.018 0.018 0.254 0.030 0.080 0.026 0.232 0.232 0.048

RCov8h 0.066 0.018 0.018 0.240 0.026 0.104 0.020 0.230 0.242 0.036

RCov12h 0.082 0.030 0.024 0.218 0.020 0.120 0.018 0.224 0.232 0.032

Frobenius distance - prop. (LPF )

ICov 0.132 0.004 0.044 0.260 0.124 0.040 0.086 0.170 0.048 0.092

RCov1m 0.136 0.004 0.044 0.254 0.126 0.040 0.086 0.170 0.050 0.090

RCov5m 0.140 0.004 0.040 0.256 0.130 0.036 0.092 0.172 0.046 0.084

RCov10m 0.134 0.004 0.042 0.242 0.136 0.036 0.102 0.178 0.044 0.082

RCov15m 0.142 0.004 0.042 0.228 0.144 0.034 0.096 0.176 0.048 0.086

RCov20m 0.130 0.004 0.040 0.240 0.134 0.036 0.106 0.178 0.046 0.086

RCov30m 0.144 0.002 0.040 0.228 0.134 0.034 0.102 0.180 0.042 0.094

RCov1h 0.158 0.004 0.034 0.228 0.132 0.036 0.100 0.176 0.042 0.090

RCov2h 0.208 0.000 0.026 0.204 0.132 0.028 0.092 0.180 0.034 0.096

RCov3h 0.254 0.002 0.028 0.180 0.134 0.030 0.082 0.176 0.028 0.086

RCov4h 0.276 0.004 0.030 0.158 0.130 0.024 0.100 0.164 0.028 0.086

RCov6h 0.304 0.002 0.032 0.154 0.120 0.034 0.078 0.162 0.030 0.084

RCov8h 0.338 0.004 0.036 0.132 0.114 0.028 0.078 0.172 0.028 0.070

RCov12h 0.356 0.000 0.032 0.120 0.130 0.036 0.084 0.142 0.024 0.076

Note: D-BEKK: Diagonal BEKK; RM: RiskMetrics; CCC-G,-E,-I,-RM: Constant Conditional Correlation with
GARCH, EGARCH, IGARCH and RiskMetrics univariate conditional variances; GOG-G,-E,-I,-HY: General-
ized Orthogonal GARCH with GARCH, EGARCH, IGARCH and HYGARCH univariate conditional variances
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ICov.

Without loss of generality, we consider next only one consistent (Frobenius distance) and

one inconsistent (entrywise 1 - (matrix) norm) loss function. Figure 1(a) shows the ranking

based on the average performance (over the 500 replications) implied by the consistent loss

function for various levels of proxy quality. In the following, for reference, we also report

the evaluation based on RCov1d. As pointed out in the previous section, at this sampling

frequency RCov does not meet the requirement of positive definiteness which may affect

the evaluation. Figure 1(a) shows that the ranking is fairly stable across RCov frequencies

meaning that the LF is able to consistently order models even when the quality of the proxy

deteriorates. Shifts in position affect only the middle of the classification and can be justified

by the extremely close average sample performances between the models, with differences at

RCov12h smaller than 10−2 (Figure 1(b)). Figures 1(b) and 1(c) provide some insights to

disentangle the role of the accuracy of the variance matrix proxy. Figure 1(c) reports the

model average performances normalized to the average performance of the CCC-EGARCH

model. Constant discrepancies between models (Figure 1(b)) confirms that not just the

ordering but also the degree of similarity, i.e., the relationships between models, is preserved

across RCov frequencies, while Figure 1(c) suggests that the loss of accuracy only translates

into a proportional increase the average sample performances for all models. Note that,

the increase in the variability of the proxy also induces an increase in the variability of the

loss function which, in empirical applications, may result in the impossibility to effectively

discriminate between models.

A different picture emerges when considering the inconsistent loss function (Figure 2(a)).

In this case, the ranking is preserved up to the 1h sampling frequency. Due to the presence

of the objective bias, we observe major shifts at lower frequencies at most levels of the

classification. The impact of the objective bias is amplified by the fact that except for the

first two positions, i.e., CCC-EGARCH and GOG-EGARCH, all the other models exhibit

very close average sample performances (Figure 2(b)), with differences smaller than 10−2 at

RCov12h. Inferior models like RiskMetrics and CCC-RM, 10th and 9th respectively according

to ICov, improve up to the 3rd and 2nd positions respectively. The CCC-EGARCH is

classified as the best forecasting model at all frequencies, followed by the GOG-EGARCH.

This result is due to the fact that these two models are sufficiently different from the others
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(they are the only models in the set allowing for leverage effect), with the CCC-EGARCH

clearly dominating the GOG-EGARCH (Figure 2(b)). Although the objective bias does not

become an issue when ordering between these two models, Figure 2(b) shows that, as the

frequency for RCov lowers, the average sample performance of the latter gets closer to the

CCC-EGARCH performance. Since, as underlined above, the variability of the loss function

increases along with the variability of the proxy, the probability to rank the GOG-EGARCH

first increases at low frequencies. This conclusion is consistent with the results reported in

Table 5.

Besides varying the quality of the proxy and studying several loss functions we also inves-

tigate the impact of the estimation sample size on the rankings. Increasing the sample size

to 3000 observations gives qualitatively similar results (results are available upon request).

5 Empirical application

5.1 Data description and estimation results

The empirical application is based on the Euro, British Pound and the Japanese Yen exchange

rates expressed in US dollars (EUR, GBP and JPY). The sample period goes from January

6, 1987 to June 30, 2004 (i.e., 4287 trading days). Intraday returns and realized covariances

are computed from five-minutes intervals last mid-quotes, implying 288 intraday observations

per day. The data have been provided by Olsen & Associates. Missing values are replaced by

linearly interpolating 5-minute price. The dataset has been cleaned from weekends, holidays

and early closing days. Days with too many missing values and/or constant prices are also

removed. Five-minute returns are computed as the first difference of the logarithmic prices.

The estimation sample ranges from January 6, 1987 to December 28, 2001 (3666 trading

days), while the remaining observations (621 trading days) are used for the out-of-sample

forecasts evaluation. Table 6 reports descriptive statistics for the estimation sample and the

forecasting sample. With respect to the daily frequency, the EUR and GBP exchange rates

share similar data characteristics and are relatively highly correlated. JPY has quite a higher

kurtosis and a more pronounced skewness. The 5-minute realized variances and correlations

are quite dispersed. For example the correlations vary between -0.12 and 0.85. We also

remark that the variances are positively skewed and the correlations negatively skewed.

The proxy for the conditional variance matrix is realized covariance (RCov) as defined
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Figure 1: Simulation results for LF (consistent)
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Table 6: Descriptive statistics

Series min mean max std.dev skew. kurt.

Estimation sample: January 6, 1987 to December 28, 2001 (3666 obs)
EUR −3.557 −0.003 3.419 0.683 0.043 4.939
GBP −4.168 −0.002 3.425 0.623 −0.161 6.140
JPY −4.207 0.003 7.724 0.729 0.619 9.503

Forecasting sample: January 3, 2002 to June 30, 2004 (621 obs)
EUR −2.001 0.051 1.837 0.647 −0.227 3.270
GBP −1.756 0.035 2.051 0.524 −0.221 3.873
JPY −2.203 0.033 2.686 0.595 −0.129 4.260

RCov5m,EUR 0.122 0.457 2.526 0.200 3.024 24.52
RCov5m,GBP 0.079 0.315 1.564 0.156 2.410 14.02
RCov5m,JPY 0.041 0.413 2.385 0.235 3.221 20.52
RCor5m,EUR,GBP 0.012 0.550 0.852 0.120 −0.303 3.359
RCor5m,EUR,JPY −0.035 0.410 0.800 0.147 −0.343 2.639
RCor5m,GBP,JPY −0.122 0.279 0.653 0.127 −0.131 2.885
Notes: The estimated correlations for the estimation sample are ρEUR,GBP = 0.720,

ρEUR,JPY = 0.493 and ρGBP,JPY = 0.415. The estimated correlations for the forecasting

sample are ρEUR,GBP = 0.721, ρEUR,JPY = 0.490 and ρGBP,JPY = 0.416.
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in (19) computed at 14 different frequencies ranging from 5 min. to 24 h. We stress again,

like in the simulation study, that we should stop at the 8h frequency if we want to have a

positive definite realized variance matrix at each point in time. We include the results until

the 24h frequency to illustrate what happens when the realized variance matrix is not positive

definite. One-step-ahead forecasts are computed from 4:05 pm to 4:00 pm Eastern Time (ET)

and are compared to the RCov using one consistent (Frobenius distance) and one inconsistent

(Entrywise 1 - (matrix) norm) loss function. Estimation results for the 16 MGARCH models

are reported in Table 7. Note that estimates for the RiskMetrics and CCC-RM models are not

reported in Table 7 since they do not require parameter estimation (the sample correlation is

used to estimate the constant correlation in the CCC-RM). Generally speaking, we observe

that the parameters estimates for the conditional variance, covariance and correlations imply

highly persistent processes. Furthermore, in almost all cases, the null of no leverage effect

cannot be rejected at standard significance levels.

5.2 Model comparison

The empirical ranking of the 16 MGARCH models, as a function of the level of aggregation

of the data used to compute RCov, is reported in Figures 3 and 4. The consistent loss

function in Figure 3(a) points to the CCC-GARCH as the best forecasting model at almost

all frequencies. More generally, we can conclude that the subset given by the CCC and the

DCC, both with GARCH and GJR specifications for the variances, outperform all the other

models. These models exhibit particularly stable and extremely close sample performances

(Figure 3(b)). The overall ranking is well preserved across all frequencies.

The GOG model is always largely dominated by all other models regardless of the con-

ditional variance specification. There is no clear dominance between the CCC and the DCC

models and their ranking position depends on the model chosen for the conditional variance.

The GARCH/GJR represents the best combination, followed by the APARCH, RiskMetrics

and finally the IGARCH. The three models based on the RiskMetrics approach, ( i.e., Risk-

Metrics, CCC-RM and DCC-RM) are positioned in the middle of the classification. The

overall ranking is found to be particularly stable when RCov is computed using 5m to 1h

returns (Figure 3(a)). When the frequency gets lower, the ranking is apparently more volatile.

In fact, such range strikes a good compromise between the loss of accuracy (low frequencies)
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Table 7: Estimation results
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and the presence of microstructure noise (high frequencies). It is clear that the accuracy

of the volatility proxy plays an important role here. As pointed out by Hansen and Lunde

(2006a), we can observe discrepancies between the empirical and the approximated ranking

in finite samples (i.e., sampling error). Indeed, as the accuracy of the proxy deteriorates, the

loss function becomes less informative. As a result, it is more difficult to identify superior

models. This effect becomes more severe when there is a high degree of similarity between

models under evaluation.

Figure 4(a) illustrates how the presence of the objective bias can affect the ranking when

an inconsistent loss function is used. The overall ordering between models is generally pre-

served and stable across frequencies with three striking exceptions. The CCC and the DCC

models with RM conditional variances rank 5th and 8th respectively at RCov5m, but they

rapidly climb towards the top of the classification as the frequency for RCov lowers. Start-

ing from 10m frequency for RCov they reach the top of the classification, ranking first and

second. Interestingly, (see Figure 4(b)), the sample performances of these two models are

extremely close, with discrepancies at each frequency ranging between 0 and 0.02. Similarly,

the RiskMetrics model, ranking 10th when RCov5m is used, joins the top of the ranking at a

relatively high frequency. When RCov is computed using data sampled at a frequency equal

or lower then 40m, the RiskMetrics model ranks 3rd, behind the CCC-RM and DCC-RM

models. Given that these models are characterized by a dynamic in the variance structure

imposed ex-ante and independent from the data (with the only exception of the DCC-RM

for which the parameters of the dynamic correlation are estimated), it is unlikely that such

models are the best forecasting models. The presence of a biased ordering is therefore strik-

ing. The ranking obtained at low frequencies is in no way compatible with the one obtained

when a more accurate proxy is used. Since model performances are close (see Figure 4(b)),

the objective bias severely affects the ranking even when the proxy used in the evaluation is

based on rather high frequency data.

Since the CCC and the DCC models are extremely close in terms of sample performances,

in Figures 5 and 6, we concentrate the analysis on a reduced set of models (CCC is excluded).

Since we consider models characterized by a lower degree of similarity, the impact of sampling

error is now reduced. The ranking implied by the consistent loss function is highly stable for a

larger range of frequencies. Again, when the inconsistent loss function is used, the appearance
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Figure 3: Estimation results for GBP, EUR and CHF - LF (consistent)
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Figure 4: Estimation results for GBP, EUR and CHF - L1M (inconsistent)
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of the objective bias clearly affects the ordering. In Figure 6(b), we observe the relative

improvement in terms of sample performances of the DCC-RM and the RiskMetrics models

with respect to the other models in the set, with a striking dominance of the DCC-RM.

5.3 Model confidence set

To illustrate the crucial role of an adequate choice of the loss function for model selection based

on forecasting ability, we apply the Model Confidence Set (MCS) test of Hansen, Lunde, and

Nason (2009) to the reduced set considered in Figures 5 and 6. The MCS test allows to identify

a subset of equivalent models in terms of predictive ability which are superior to the others.

Note that the MCS depends on the orderings implied by a loss function (e.g., the ranking

given in Figures 5(a) and 6(a)). An unfortunate choice of the loss function can result in an

incorrect identification of the set of superior models even if the testing procedure is formally

valid. Table 8 reports the MCS obtained under LF (consistent) and L1M (inconsistent) and

three choices of the volatility proxy (RCov5m, RCov20m, RCov8h).

We apply first the MCS test using the LF . The results reported in Table 8 are consistent

across frequencies. Furthermore, the set of equally good models gets larger as the sampling

frequency for RCov lowers. This result is due to the loss of accuracy of the proxy which

translates into a higher variability of the sample evaluation of each model. Since, at a given

confidence level, it is more difficult to discriminate between models, the number of equally

good models increases.

Table 8: Model Confidence Set test.

Loss function RCov5m RCov20m RCov8h

DCC-APARCH DCC-GARCH DCC-APARCH
Frobenius distance (LF ) DCC-GARCH DCC-GJR DCC-GARCH

DCC-GJR DCC-GJR
D-BEKK

DCC-GARCH DCC-RM DCC-RM
Entrywise 1 - norm (L1M ) DCC-GJR D-BEKK

D-BEKK
Notes: The initial set contains 11 models. Significance level α = 0.05.
Sample size 621 obs. Standard errors based on 1000 bootstrap resamples.

Results based on the inconsistent L1M loss function suggest the presence of the objective

bias. Indeed, the MCS gets smaller and its composition changes as the frequency for RCov

lowers. At RCov8h the set is made up only of the DCC-RM model, which corroborates the
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Figure 5: Estimation results for GBP, EUR and CHF (reduced set) - LF (consistent)
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Figure 6: Estimation results for GBP, EUR and CHF (reduced set) - L1M (consistent)
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findings in the previous subsection.

6 Conclusion

Two important issues arise when we want to rank several multivariate volatility models with

respect to their forecasting performance. First, there is the choice of the loss function (how can

we compare predicted variance matrices) and second the choice of a proxy of the unobservable

volatility measure used to evaluate models forecasts. In fact, when the unobservable volatility

is substituted by a proxy, the ordering implied by a loss function may be biased with respect

to the intended one.

In this paper, we first define sufficient conditions for a loss function to satisfy to ensure

consistency between the true, but unobservable, ranking - based on the true conditional

variance matrix - and the approximated one - based on a proxy. Second, we identify a

necessary and sufficient functional form for the loss function to ensure consistent ordering,

under the use of a proxy, in matrix and vector spaces. Finally, we provide a large set of

consistent parameterization that yield loss functions with different characteristics such as the

degree of homogeneity, shape, etc.

In the simulation study, we sample from a continuous time multivariate diffusion process

and estimate discrete time multivariate GARCH models to illustrate the sensitivity of the

ranking to different choices of the loss functions and to the quality of the proxy. We observe

that if the quality of the proxy is sufficiently good, both consistent and inconsistent loss

functions rank properly. However, when the quality of the proxy is poor, only the consistent

loss functions rank properly. Our findings also hold when the sample size in the estimation

period increases. This is an important message for the applied econometrician.

The application to three foreign exchange rates nicely illustrates, in an out-of-sample

forecast comparison among 16 multivariate GARCH models, to what extent the ranking and

the Model Confidence Set test are affected when we combine an uninformative proxy with an

inconsistent loss function.

There are several extensions for future research. First, this paper ranks multivariate

volatility models based on statistical loss functions and focuses on conditions for consistent

ranking from a more theoretical viewpoint. At some point an economic loss function has to be

introduced when the forecasted volatility matrices are actually used in financial applications
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such as portfolio management and option pricing. It is clear that the model with the smallest

statistical loss is always preferred but it may happen that other models with small statistical

losses become indistinguishable in terms of economic loss. This issue has not been addressed

in this paper. Second, multivariate volatility forecast comparison for higher horizons than

one day is not studied yet. Third, other proxies than realized covariance that enter the loss

functions should be further investigated.

Appendix A: Proofs

Proof of Proposition 1. To illustrate the validity of Proposition 1, consider the second

order Taylor expansion of L(Σ̂t,Ht) around the true value Σt:

L(Σ̂t,Ht) ∼= L(Σt,Ht)+
(

∂L(Σt,Ht)
∂σt

)′

(σ̂t−σt)+
1
2

[
(σ̂t − σt)′

∂2L(Σt,Ht)
∂σt∂σ

′
t

(σ̂t − σt)
]

. (23)

Taking conditional expectations with respect to �t−1 we get

Et−1[L(Σ̂t,Ht)] ∼= L(Σt,Ht) +
1
2

[
Et−1

(
ξ
′
t

∂2L(Σt,Ht)
∂σt∂σ

′
t

ξt

)]
, (24)

because, under A2.2 and A2.4 and when Proposition 1 is satisfied, we have:

(a) Et−1

[(
∂L(Σt,Ht)

∂σt

)′
ξt

]
=
(

∂L(Σt,Ht)
∂σt

)′
Et−1(ξt) = 0, i.e., σ̂t is conditionally unbiased with

respect to σt;

(b) for all m,
(

∂2L(Σt,Hm,t)
∂σt∂σ′

t

)
= Ψ(σ2

t , .), i.e., the last term in (24) does not depend on model

m.

Hence Et−1

[
L(Σ̂t,Ht)

]
and L(Σt,Ht) induce the same ordering over m.

To conclude, (24) implies that in order to achieve consistency between the approximated and

the true ranking, the equivalence between Et−1

[
L(Σ̂t,Ht)

]
and L(Σt,Ht) is not required,

but it suffices that the discrepancy, Et−1

(
ξ
′
tΨ(σ2

t , .)ξt

)
, is constant across models, thus not

affecting the ranking.

Proof of Proposition 2. Under assumptions A2.1 to A2.4, considering (24), the first order

conditions in (3) are

∂Et−1

[
L(Σ̂(s)

t ,Ht)
]

∂hk,t
− ∂L(Σt,Ht)

∂hk,t

∼=
1
2

[
∂

∂hk,t
Et−1

(
ξ
(s)′
t Ψ(σ2

t , ht)ξ
(s)
t

)]
(25)
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∼=
1
2

∂

∂hk,t
Et−1

⎡
⎣∑

l,m

ξ
(s)
l,t ξ

(s)
m,tΨ(σ2

t , ht)l,m

⎤
⎦ (26)

∼=
1
2

∑
l,m

∂Ψ(σ2
t , ht)lm

∂hk,t
Et−1[ξ

(s)
l,t ξ

(s)
m,t] (27)

∼=
1
2

∑
l,m

∂Ψ(σ2
t , ht)lm

∂hk,t
V

(s)
l,m,t (28)

for all s, with l,m = 1, ..., N(N +1)/2, k = 1, ..., N(N +1)/2 and where V
(s)
l,m,t = Et−1[ξ

(s)
l,t ξ

(s)
m,t]

and Ψ(σ2
t , ht)l,m represent respectively the element [l,m] of the variance matrix of the proxy

V
(s)
t = Et−1[ξ

(s)
t ξ

(s)′
t ] and of Ψ(σ2

t , ht), the matrix of second derivatives of L(., .) with respect

to σ2
t .

The first order conditions imply that H
∗(s)
t is the solution of

∂Et−1

[
L(Σ̂(s)

t ,H
∗(s)
t )

]
∂hk,t

= 0 ∀k

and, under A2.3, A1.1 ensures that second order conditions are satisfied. Then, we have that

− ∂L(Σt,H
∗(s)
t )

∂hk,t

∼=
1
2

∑
l,m

∂Ψ(σ2
t , .)lm

∂hk,t
V

(s)
l,m,t. (29)

Under i), i.e., ∂Ψ(σ2
t ,.)lm

∂hk,t
= 0 ∀k, the first order conditions of the loss function based on the

proxy lead to the same optimal forecast as if the true variance matrix was observable, even

in presence of a noisy volatility proxy. From A1.2 it follows that

∂L(Σt,H
∗(s)
t )

∂hk,t
= 0 ⇔ H

∗(s)
t = Σt ∀s,

that is the optimal forecast equals the conditional variance. By assumption A1.2, A2.2 and

A2.4, we also have that H∗
t = Σt = Et−1(Σ̂t).

Under ii), i.e., ∂Ψ(σ2
t ,ht)lm

∂hk,t
	= 0 for some k, then as s → ∞, by A2.5 and (29) we have

∂L(Σt,H
∗(s)
t )

∂hk,t

p→ 0 ⇔ H
∗(s)
t

p→ Σt ∀s

which concludes the proof.

Proof of Proposition 3. To prove the proposition, we proceed as in Patton (2009). We

show the equivalence of the following statements:

47



-S1: the loss function takes the form in the proposition;

-S2: the loss function is consistent in the sense of Definition 2;

-S3: the optimal forecast under the loss function is the conditional variance matrix.

Step 1: S1⇒S2. The result follows directly form Proposition 1, in fact:

∂2L(Σt,Ht)
∂σt∂σ′

t

= ∇2C̃(Σt) = Ψ(σ2
t , .)

since ∂2(C(Ht)′σt)
∂σt∂σ′

t
= 0, and does not depend on Ht.

Step 2: S2⇒S3. By assumption A3.2, there exists an H∗
t in the support of L(Σ̂t,Ht) such

that H∗
t = Et−1(Σ̂t). This implies that ∀Ht ∈ int(Ḣ) \ {H∗

t }:

Et−1

[
L(Σ̂t,H

∗
t )
]

≤ Et−1

[
L(Σ̂t,Ht)

]

and therefore by the law of iterated expectations:

E
[
L(Σ̂t,H

∗
t )
]

≤ E
[
L(Σ̂t,Ht)

]
.

Then by Definition 2, under S2, we can write

E(L(Σ̂t,H
∗
t )) ≤ E(L(Σ̂t,Ht)) ⇔ E(L(Σt,H

∗
t )) ≤ E(L(Σt,Ht))

if we set Ht = Σt, then by assumptions A1.1 to A1.3, E(L(Σt,Σt)) = 0 ⇒ E(L(Σt,H
∗
t )) = 0

and therefore H∗
t = Σt.

Step 3: S1⇔S3. The last step uses the arguments of Gourieroux and Monfort (1995),

which prove sufficiency and necessity of the linear exponential functional form for the pseudo

true density to prove consistency of the pseudo maximum likelihood estimator.

First, we prove sufficiency (S1⇒S3). Consider the first order conditions evaluated at the

optimum (Ht = H∗
t ), that is

∂Et−1

[
L(Σ̂t,Ht)

]
∂ht

= C(H∗
t ) + ∇2C̃(Ht)vech(Et−1(Σ̂t) − H∗

t ) − C(H∗
t ) = 0

= ∇2C̃(Ht)vech(Et−1(Σ̂t) − H∗
t ) = 0

⇔ Et−1(Σ̂t) = H∗
t .

Second, to prove necessity (S3⇒S1), consider that at the optimum we must have Et−1(Σ̂t) =

H∗
t , and consequently

Et−1

(
∂L(Σ̂t,H

∗
t )

∂ht

)
= 0,
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for any conditional distribution Ft ∈ F .

Applying Lemma 8.1 in Gourieroux and Monfort (1995), there exists a square matrix Λ

of size k = N(N + 1)/2 which is only function of H∗
t such that

∂L(Σ̂t,H
∗
t )

∂ht
= Λ(H∗

t )vech(Σ̂t − H∗
t ). (30)

Since we want to ensure that H∗
t is the minimizer of L(Σ̂t,H

∗
t ) then we must have

∂Et−1[L(Σ̂t,Ht)]
∂ht∂h′

t
satisfying second order necessary or sufficient conditions. Using assumption

A3.3 we can interchange differentiation and expectation (see L’Ecuyer (1990) and L’Ecuyer

(1995) for details) to obtain

Et−1

(
∂L(Σ̂t,H

∗
t )

∂ht∂h′
t

)
= Et−1

(
∂Λ(H∗

t )vech(Σ̂t − H∗
t )

∂ht

)

= Et−1

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣

K∑
i=1

∂Λ(H∗
t )1i

∂h1
(σi − h∗

i ) ...
K∑

i=1

∂Λ(H∗
t )1i

∂hk
(σi − h∗

i )

...
. . .

...
K∑

i=1

∂Λ(H∗
t )ki

∂h1
(σi − h∗

i ) ...
K∑

i=1

∂Λ(H∗
t )ki

∂hk
(σi − h∗

i )

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠− Λ(H∗

t )

= −Λ(H∗
t ),

with K = N(N + 1)/2.

Now, it suffices to integrate (30) (up to a constant and/or a term that solely depends on

Σ̂t) to recover the loss function of the form stated in the proposition. In fact, if we define

Λ(Ht) = ∇2C̃(Ht) = C ′(Ht),

and rewrite (30) as

C ′(Ht)vech(Σ̂t) − C ′(Ht)vech(Ht),

we have that

C ′(Ht)vech(Σ̂t) =
∂C(Ht)′vech(Σ̂t)

∂ht

C ′(Ht)vech(Ht) =
∂C(Ht)′vech(Ht)

∂ht
− C(Ht)

=
∂C(Ht)′vech(Ht)

∂ht
− ∂C̃(Ht)

∂ht
.

Therefore (30) admits as primitive

C(Ht)′vech(Σ̂t) − C(Ht)′vech(Ht) + C̃(Ht).
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Rearranging and allowing for a term that depends on Σ̂t, we obtain

L(Σ̂t,Ht) = C̃(Ht) + C̃(Σ̂t) + C ′(Ht)vech(Σ̂t − Ht),

where ∂C̃(Σ̂t)
∂ht

= 0, which concludes the proof.

Proof of Corollary 1. Since Σ̂t and Ht are symmetric, then

Tr[C̄(Ht)(Σ̂t − Ht)] =
∑

i

c̄i,i(Ht)(σ̂i,i,t − hi,i,t) + 2
∑
i<j

c̄i,j(Ht)(σ̂i,j,t − hi,j,t) for i, j = 1, ..., N

=
∑

i

∂C̃(Ht)
∂hi,i,t

(σ̂i,i,t − hi,i,t) + 2
∑
i<j

1
2

∂C̃(Ht)
∂hi,j,t

(σ̂i,j,t − hi,j,t)

= C(Ht)′vech(Σ̂t − Ht),

with C(Ht)′ as defined in Proposition 2.

Proof of Remark 1. The proof of part i) of the Remark follows from Proposition 3.

For the second part, notice that

∂2L(Σt,Ht)
∂σt∂σ′

t

= −C̃ ′′
σt

(Σt),

since if f [·] is a linear map, then f [C̄(Ht)(Σt−Ht)] is linear in σi,j,t ∀i, j = 1, ..., N . Hence, the

general conclusion of Proposition 1 holds even under violation of A1.2: the ordering implied

by Et−1[L(Σ̂t,Ht)] is apparently consistent for the one based on L(Σt,Ht) in the sense that is

insensitive to the substitution of the true variance matrix by a proxy (by the same reasoning

provided in the proof of Proposition 1), i.e., arg min
Ht∈Ḣ

L(Σt,Ht) = arg min
Ht∈Ḣ

Et−1

[
L(Σ̂t,Ht)

]
.

We now show that, though apparently consistent, the ordering obtained when f [·] 	≡ Tr[·]

is not a valid one, that is it differs from any valid or acceptable ordering and in particular it

holds H∗
t 	= Et−1(Σ̂t) = Σt.

Consider the first order conditions of (6) evaluated at the optimum H∗
t , that is

∂Et−1

[
L(Σ̂t,Ht)

]
∂ht

= C(H∗
t ) + f ′

ht
[C̄(H∗

t )(Et−1(Σ̂t) − H∗
t )] = 0. (31)

Recall that C(Ht) = ∇C̃(Ht) and f ′
ht

is the gradient of f with respect to ht. Using the fact

that f is a linear map, the typical element of the gradient of Et−1

[
L(Σ̂t,Ht)

]
, indexed by

i, j = 1, ..., N , i ≤ j is (we omit the time index to simplify notation)

∂Et−1

[
L(Σ̂t,Ht)

]
∂hi,j

= C̃ ′
hi,j

(H∗
t ) + f

[
∂C̄(H∗

t )
∂hi,j

(Et−1(Σ̂t) − H∗
t )
]
− f

[
C̄(H∗

t )
∂H∗

t

∂hi,j

]
= 0. (32)
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To deliver an appropriate ordering, the loss function must be such that it is uniquely

minimized at H∗
t = Et−1(Σ̂t) = Σt, that is optimal forecast is the true conditional variance.

Therefore, it must be the case that

∂Et−1

[
L(Σ̂∗

t ,Ht)
]

∂hi,j
= f

[
∂C̄(H∗

t )
∂hi,j

(Et−1(Σ̂t − H∗
t )
]

= 0.

Therefore, in (6), it must hold

f

[
C̄(H∗

t )
∂H∗

t

∂hi,j

]
= C̃ ′

hi,j
(H∗

t ). (33)

Since ∂H∗
t

∂hi,j
, for all i, j = 1, ..., N i ≤ j, is a N × N symmetric matrix with elements indexed

by [i, j] and [j, i] equal to 1 and zero elsewhere, (33) holds if and only if f(.) = Tr(.). In fact,

from (33)

i = j =⇒ Tr

[
C̄(H∗

t )
∂H∗

t

∂hi,i

]
= c̄i,i(H∗

t ) = C̃ ′
hi,i

(H∗
t ) (34)

i 	= j =⇒ Tr

[
C̄(H∗)

∂H∗

∂hi,j

]
= 2c̄i,j(H∗

t ) = C̃ ′
hi,j

(H∗
t ).

Substituting (34) in (32), we obtain

∂Et−1

[
L(Σ̂∗

t ,Ht)
]

∂hi,j
= C̃ ′

hi,j
(H∗

t ) + Tr

[
∂C(H∗

t )
∂hij

(Et−1(Σ̂t) − H∗
t )
]
− C̃ ′

hij
(H∗

t )

= Tr

[
∂C(H∗

t )
∂hi,j

(Σ̂t − H∗
t )
]

,

and finally

∂Et−1

[
L(Σ̂t,Ht)

]
∂ht

=

⎡
⎢⎢⎢⎢⎢⎢⎣

Tr
[

∂C̄(H∗
t )

∂h1,1
(Et−1(Σ̂t) − H∗

t )
]

...

T r
[

∂C̄(H∗
t )

∂hi,j
(Et−1(Σ̂t) − H∗

t )
]

...

⎤
⎥⎥⎥⎥⎥⎥⎦

= 0

⇔ H∗
t = Et−1(Σ̂t),

which concludes the proof.

Proof of Proposition 4. By Proposition 2, a consistent loss functions based on the forecast

error must have the form

L(Σ̂t − Ht) = C̃(Ht) − C̃(Σ̂t) + C(Ht)′vech(Σ̂t − Ht). (35)
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Consider

∂L(Σ̂t − Ht)
∂ht

= ∇2C̃(Ht)vech(Σ̂t − Ht) (36)

∂L(Σ̂t − Ht)
∂σt

= C(Ht) − C(Σ̂t). (37)

Note that since the loss function is only based on the forecast error then L(Σ̂t − Ht) then

L(Σ̂t −Ht) = L(Ht − Σ̂t), i.e., L(., .) is symmetric under 180◦ rotation around the origin and,

which implies

− ∂L(Σ̂t − Ht)
∂ht

=
∂L(Σ̂t − Ht)

∂σt
, (38)

and therefore

∇2C̃(Ht)vech(Σ̂t − Ht) = C(Ht) − C(Σ̂t),

for all Σ̂t and Ht. Differentiating both sides of (38) with respect to σt we obtain

∇2C̃(Ht) = ∇2C̃(Σ̂t),

which implies

∇2C̃(Ht) = Λ, (39)

where Λ is a matrix of constants.

Equation (39) implies that C(Ht) = ∇2C̃(Ht)vech(Ht) is homogeneous of degree 1, and

hence C̃(·) is homogeneous of degree 2 then so is L(Σ̂t − Ht). Applying Euler theorem for

homogeneous functions we have that 2C̃(Ht) = C(Ht)′vech(Ht). The loss function in (35)

can be rewritten as

L(Σ̂t − Ht) = −C̃(Ht) − C̃(Σ̂t) + C(Ht)′vech(Σ̂t). (40)

In order to satisfy second order conditions Λ must be negative definite, according to

Proposition 3. Since L(Σ̂t,Ht) is homogeneous of degree 2, starting from (39), we can apply

Euler theorem for homogeneous functions and obtain

C(Ht) = Λvech(Ht) (41)

C̃(Ht) =
1
2
vech(Ht)′Λvech(Ht).
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Substituting the expression for C̃(.) in (40) and rearranging we obtain the quadratic loss

L(Σ̂t − Ht) = −1
2
vech(Σ̂t − Ht)′Λvech(Σ̂t − Ht)

= vech(Σ̂t − Ht)′Λ̂vech(Σ̂t − Ht).

with Λ̂ = −1
2Λ.

Appendix B: Examples for Section 2.4

In the following examples, for ease of exposition, we consider a forecast error matrix of

dimension N = 2.

In the first three, examples we investigate the properties of loss functions belonging to

the family of quadratic loss functions defined in Proposition 4. The vector of forecast errors

of interest is therefore

vech(Σt − Ht) =

⎛
⎜⎜⎜⎝

σ1,1,t − h1,1,t

σ1,2,t − h1,2,t

σ2,2,t − h2,2,t

⎞
⎟⎟⎟⎠ ,

which allows to plot contours of the loss function.

The first loss function that we consider is the Euclidean distance, which corresponds to a

choice of Λ̂ = IK and can be expressed as

LE = (σ1,1,t − h1,1,t)2 + (σ1,2,t − h1,2,t)2 + (σ2,2,t − h2,2,t)2.

Figure 7 reports the contour of LE = 1.

The contours of LE are spheres centered at the origin. The loss function has mirror symmetry

about all coordinate planes. It is also symmetric under any rotation about the origin and,

being a symmetric polynomial, it is symmetric about the bisector planes.

The second loss function is the weighted Euclidean distance with

Λ̂ =

⎡
⎢⎢⎢⎣
1 0 0

0 4 0

0 0 2

⎤
⎥⎥⎥⎦

which implies

LWE = (σ1,1,t − h1,1,t)2 + 4(σ1,2,t − h1,2,t)2 + 2(σ2,2,t − h2,2,t)2,
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Figure 7: Euclidean distance - LE = 1

which implies that (σ2,2,t − h2,2,t) is penalized twice with respect to (σ1,1,t − h1,1,t), while the

covariance forecast error is penalized four times more. The reason behind such a particular

choice of Λ̂ is to emphasize the role of each weight and to show how they affect the shape of

the loss function. The contour of LWE = 1 is an ellipsoid centered at the origin, see Figure 8.

The contour is squeezed around the (σ1,1,t − h1,1,t) axis due to the unequal weighting. The

loss function in symmetric about all coordinate planes and it is also symmetric under a 180◦

rotation around the origin, i.e., considering the absolute forecast error vector |σt − ht| =

(0.2, 0.4, 0.8), we have

LWE(0.2, 0.4, 0.8) = LWE(−0.2,−0.4,−0.8) = 1.96

LWE(0.2, 0.4,−0.8) = LWE(0.2, 0.4,−0.8) = 1.96

LWE(0.2,−0.4, 0.8) = LWE(0.2,−0.4, 0.8) = 1.96

...

However, LWE is not symmetric about the bisector planes, i.e.

LWE(0.2, 0.4, 0.8) = 1.96 	= 2.92 = LWE(0.2, 0.8, 0.4)

	= 1.12 = LWE(0.8, 0.2, 0.4)

...
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Figure 8: Weighted Euclidean distance - LWE = 1

The third loss function is the pseudo Mahalanobis distance with

Λ̂ =

⎡
⎢⎢⎢⎣

1 0 0.6

0 4 0

0.6 0 2

⎤
⎥⎥⎥⎦ ,

that is

LM = (σ1,1,t −h1,1,t)2 +4(σ1,2,t −h1,2,t)2 +2(σ2,2,t −h2,2,t)2 +1.2(σ1,1,t −h1,1,t)(σ2,2,t −h2,2,t).

For illustrative purposes, we set only one off diagonal element of the matrix of weights different

from 0. As in the previous case, the contour of LM = 1 is an ellipsoid centered at the origin

(Figure 9). It is clear that LM is only symmetric under a 180◦ around the origin. Furthermore,

the axes of symmetry (dashed lines in Figure 9), whose directions depend on the sign of the

off diagonal elements of Λ̂, are rotated with respect to the coordinate axes (e.g. in Figure 9, Λ̂

implies an horizontal rotation). In this regard, since the loss function also includes the cross

product of the elements of (σt − ht) weighted by the off diagonal elements of Λ̂ (which can

be positive and/or negative provided Λ̂ satisfies Proposition 4), a positive weight means that,

for given absolute forecast errors |σt − ht|, LM will penalize more the outcomes where both

variances are over/under predicted. In fact, consider LM evaluated at |σt − ht| = (0.8, 0, 0.4),
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then

LM (0.8, 0,−0.4) = LM (−0.8, 0, 0.4) = 0.576

LM (0.8, 0, 0.4) = LM (−0.8, 0,−0.4) = 1.344.
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Figure 9: Pseudo Mahalanobis distance - LM = 1

In a final example, we focus on the Stein loss function. Note that a comprehensive

illustration of the geometric properties of LS is more complex then in the previous cases.

We have shown that quadratic loss functions are defined on the forecast error matrix Σt −Ht

which implies that L(Σt−Ht) : RN×N → R+ even if Σt and Ht ∈ RN×N
++ (the space of positive

definite matrices). This allows for a graphical representation of the forecast error vector, i.e.,

the vector of unique elements of Σt − Ht, in the space RN(N+1)/2. On the other hand, LS is

defined on the standardized (in matrix sense) forecast error ΣtH
−1
t which is positive definite.

Since the domain of L(ΣtH
−1
t ) is RN×N

++ ⊂ RN×N , the graphical representation of the contours

in the Euclidean space is difficult. Furthermore, unlike the loss functions based on the forecast

error matrix, LS cannot be expressed as a combination of functions of the elementwise forecast

errors, i.e., L(Σt,Ht) = L(l(σ1,t, h1,t), ..., l(σK,t, hK,t)) , except in the trivial case when Σt and

Ht are diagonal. Therefore, to illustrate the properties of the Stein loss function, we rely on

some numerical examples and the analysis of conditional loss.
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Consider a standardized forecast error matrix of dimension N = 2.

ΣtH
−1
t =

⎡
⎢⎣

σ1,2,th1,2,t−σ1,1,th2,2,t

h2
1,2,t−h1,1,th2,2,t

σ1,1,th1,2,t−σ1,2,th1,1,t

h2
1,2,t−h1,1,th2,2,t

σ2,2,th1,2,t−σ1,2,th2,2,t

h2
1,2,t−h1,1,th2,2,t

σ1,2,th1,2,t−σ2,2,th1,1,t

h2
1,2,t−h1,1,th2,2,t

⎤
⎥⎦ .

The Stein loss function defined in (14) is therefore

LS =
σ1,1,th2,2,t + σ2,2,th1,1,t − 2σ1,2,th1,2,t

h1,1,th2,2,t − h2
1,2,t

− ln(
σ1,1,tσ2,2,t − σ2

1,2,t

h1,1,th2,2,t − h2
1,2,t

) − 2

For ease of exposition, we set Σt to some arbitrary values, say

Σt =

⎡
⎣ 2 1.5

1.5 3

⎤
⎦ .

Since the loss function is expressed in terms of standardized forecast errors, we first assess

the case of over/under prediction of size ±0.5Σt. The loss when each element of Ht over/under

predicts the corresponding element of Σt (setting the others at their optimal values), is

(−) (+)

LS(h1,1,t = 2 ± 1) 2.390 0.143

LS(h2,2,t = 3 ± 1.5) 2.390 0.143

LS(h1,2,t = 1.5 ± 0.75) 2.213 0.164

LS(Ht = (1 ± 0.5)Σt) 0.613 0.144

The Stein loss function is therefore asymmetric with respect to over/under predictions,

and, in particular, underpredictions are heavily penalized. However, the conditional losses

with respect to the variances are symmetric up to a proportionality constant. Figure 10(a)

and 10(b) report LS as a function of h1,1,t for several values of h2,2,t (with h1,2,t = σ1,2,t).

Figure 10(c) reports LS as a function of both h1,1,t and h2,2,t, given h1,2,t = σ1,2,t, while Figure

10(d) reports the contours of the representation in Figure 10(c).

Of particular interest is the representation of LS as a function of the covariance. Note

that, if for any given h1,1,t and h2,2,t, then h1,2,t = ρ
√

h1,1,th2,2,t with ρ ∈ (−1, 1). The domain

of the conditional loss of h1,2,t is therefore centered at 0. Its representation is given in Figure

11 using the values suggested above. Finally, note that the conditional loss in Figure 11 is

symmetric about the vertical axis only in the trivial case where Σt is diagonal.
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