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Abstract:  
We propose to combine clinical trial and estimates of behavioral responses in the 
population to quantify the value of new drug innovations when such values cannot be 
obtained by randomized experiments alone. New drugs are seen as having two distinct 
effects on patients. First, they can provide better outcomes for patients currently under 
treatment, due to better clinical efficacy. Second, they can also provide treatment access 
to more patients, perhaps by reducing side effects or expanding treatment. We compare 
these “clinical” and “access” effects using claims data, data on the arrival rate of new 
drugs, and the clinical trials literature on the effectiveness of these drugs. We find that 
the effect of new drug introductions on the number of patients treated accounts for a 
substantial majority of the value created by new drugs. 
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Introduction 
There is much debate among policymakers and researchers about the value of 

pharmaceutical innovation.  Some argue that the health improvements generated by 

spending on research and development more than justify its cost.1 Others argue that a 

great deal of pharmaceutical innovation is of an incremental nature that does little to 

improve patient health, above and beyond the benefits of existing treatments.2 

To be sure, a substantial body of evidence already exists on these questions.  For 

example, Lichtenberg relates trends in drug launches by disease to trends in disease 

specific mortality in 52 countries from 1982 to 2001.3  The results show that new drugs 

accounted for 40% of the increase in life expectancy during this period.  On the other 

hand, several important papers in the medical literature have concluded from selected 

clinical trial data that new drugs are not beneficial.2  The advantage of the first study is its 

broader applicability but its main disadvantage is that the mechanisms are unclear and the 

identification strategy depending on very strong assumptions (e.g. the arrival rate of new 

drugs is exogeneous to disease trends).  The advantage of the second is its proximity to 

the mechanisms that run from new drugs to health, an approach which helps ensure that 

the relationship between drug arrival and health trends is a causal one.  

In this paper, we combine the virtues of these two opposed approaches, by conducting 

a systematic study of new drug benefits, based on well-defined mechanisms for health 

improvement. We hope to overcome the problems both of spurious correlation and of 

narrow specificity.  An additional innovation is our consideration of effects on mortality 

and the onset of other diseases. We take this as a second-best but practical approach to 

deriving such population estimates. When social experiments are too costly, or are 
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opposed on ethical grounds, we believe this approach can lead to valuable information for 

decision makers. 

Our approach incorporates evidence on clinical efficacy from reviews of the medical 

literature, as well as the effects of new drug launches on drawing more people into 

treatment.  We refer to these as the “clinical effects” and “access effects” of new drug 

launches, respectively.  A new drug can have therapeutic advantages over existing 

treatments, in terms of reduced mortality or morbidity risk. This “clinical effect” 

improves the outcomes of the population already treated using existing therapies.4 In 

addition, new drugs often alleviate side effects, or allow the treatment of previously 

untreatable patients, leading to an “access effect.” Where important assumptions need to 

be made, we deliberately take a conservative approach, hoping our estimates can be 

tought off as lower bounds on the effect of new drugs. 

We begin by specifying a simple conceptual framework for quantifying the benefits 

of new drugs, and then present estimates of the clinical and access effects, along with the 

total estimated benefit of new drug introductions.  We then provide some context for our 

results, by simulating the effects of new drug introductions on health for cancer patients.   

Conceptual Framework 
By definition, patients diagnosed with a particular disease are either treated or untreated.  

The advent of a new drug can have impacts on the health of both these groups.  The 

“clinical effect” is the impact on the treated, while the “access effect” is the impact on the 

untreated. 

Clinical effect.  When a new drug is discovered, treated patients have the option of 

switching to it and gaining the incremental clinical benefits — if any — of the new drug, 
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compared to existing treatments.  Therefore, the total clinical benefit of a new drug 

discovery is equal to:  the number of treated patients who switch to the new drug, 

multiplied by the marginal benefit of the new drug compared to the best available 

alternative.  The latter number is the clinical benefit of the drug in a head-to-head trial.  

When we implement this calculation, we assume that all treated patients eventually 

switch to a therapy that is superior to alternatives, but not to one that is inferior. 

Access effect

To illustrate the action of the framework above, consider a new drug for the treatment 

of heart disease.  Assume this hypothetical new drug reduces mortality by 10%, 

compared to the best available existing treatment.  Compared with no treatment, 

however, it leads to a 20% decrease in mortality risk.  Now, suppose half of diagnosed 

heart disease patients take the best-available existing treatment, while the other half is 

untreated.  Since untreated patients are likely to be healthier than the treated, it is not 

clear who faces higher or lower mortality risks.  For simplicity in this example, assume 

that both treated and untreated patients face the same survival probability.  Finally, 

assume the introduction of the new drug means that half the currently untreated patients 

.  A new drug may be indicated for some untreated patients who were 

previously unable to receive therapy, due to side effects or comorbidities.  In this respect, 

new drug discoveries can have benefits for the untreated population as well.  The size of 

this benefit is equal to the number of untreated patients who switch to the new drug, 

multiplied by the marginal benefit of the new drug compared to no treatment.  The latter 

is the clinical benefit of the drug compared to a placebo, assuming that the untreated 

patients already derive the psychological benefits of placebo treatment. 
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receive access to the new treatment.  In our example, the new drug has the following 

effects: 

1. The treated population, or 50% of the diagnosed population, enjoys a 10% 

reduction in mortality; 

2. Half the untreated population, or 25% of the diagnosed population, switches 

from no treatment to the new treatment, and enjoys a 20% reduction in 

mortality; 

3. Half the untreated population, or 25% of the diagnosed population, continues to 

remain untreated and derives no benefit. 

The average mortality reduction equals: [ ] [ ] [ ] %10%20*%25%10*%50%0*%25 =++ .  

We now present our methods for estimating each component of this calculation.   

Data and Methods 
We estimate the health effects of new drugs for the following conditions: heart disease, 

hypertension, stroke, lung disease, cancer (excluding skin cancer), diabetes, and 

depression. These broadly defined conditions span the most prevalent health problems in 

the United States population.  

For each of these conditions, one could in principle consider the whole universe of 

new drugs and calculate an average effect for each of them. This is likely to be a difficult 

task. However, top-selling drugs are the most likely to have clinical effects, and have 

been in general the most studied and reviewed.  This makes the estimated clinical 

benefits more reliable.  For each of our diseases, therefore, we survey the clinical effects 

for the top 5 selling drugs in that disease group, and assume conservatively that all other 

drugs outside the top 5 have no therapeutic benefits.  Therefore, we estimate the effects 
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of drugs in two parts:  calculate the probability that a new drug will be a “top-seller,” and 

apply the expected therapeutic benefit of a top-selling drug. 

List of New Top Selling Drugs 
We construct a list of new top-selling drugs from INGENIX, a large, nationwide, 

longitudinal claims-based database (1997-2004).5 This database has roughly 8 million 

person years of observations from over 40 employers and contains detailed information 

on prescription drug, outpatient and inpatient expenditures.  We start with a list of all new 

drugs approved by the Food and Drug Administration (FDA) from 1995 to 2002. We 

consider new chemical entities (NCEs) as well as reformulation and recombination drugs, 

but exclude generics. Next, we map each new drug to at least one particular health 

condition, based on approved indications for each drug. 

We use the above mapping of drugs to health conditions and the INGENIX data on 

sales of drugs from 1997 to 2004 to rank drugs for each health condition according to 

revenues in the 2nd year following introduction.6 We define the top 5 drugs for each 

health condition as “top selling drugs”. The name of the drug, generic name, and the 

introduction date are presented in Appendix A. We compute the fraction of drugs that 

were top selling for each health condition by the dividing the number of top selling drugs 

for each health condition by the total number of drugs approved for each health condition 

during the period 1995 to 2002. 

Calculating Effects on Health 
For each of the top selling drugs, we survey the medical literature for clinical trials. 

When more than one estimate is available, we average the effects found.  We found at 

least one trial reporting an estimate for each health effect.   
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We searched for the impacts of top-selling drugs on mortality, and on the incidence of 

all 6 other health conditions under consideration.  However, we follow Goldman et al. 

(2005) in ruling out some causal links, based on expert opinion.7 For example, we assume 

that there is a causal link between hypertension and diabetes, but not from hypertension 

to cancer. We do not investigate the effect of new drugs on recovery or cure rates.  Table 

1 summarizes results from the survey of the literature for those effects. Appendix C gives 

detail on the calculation of each estimate. These calculations provide the estimates of (1) 

the effects of the drug as compared to the best available alternative and (2) the effects of 

the drug as compared to placebo.  As discussed earlier the clinical effect of new drug is 

simply the estimate in (1) times the size of the treated population.  

Access Effect:  Change in Fraction Untreated 
To calculate the access effect, we need to estimate the decrease in the fraction of 

untreated individuals following the introduction of a new drug. We estimate this effect 

using prescription claims data from INGENIX. By merging the drug consumption data 

with data on the introduction date of new drugs (from Appendix B),  we get a panel data 

set of the number of prescriptions consumed monthly for each class before and after the 

introduction of the top 5 drugs (from 1997.1 to 2004.12).8 Our strategy is to compute the 

effect of drug launches on class-level prescriptions, relative to the secular trend in 

prescriptions for that class. The associated regression model includes the natural 

logarithm of monthly prescriptions in a class c as the dependent variable. The model 

covariates include class fixed-effects (dummy variables for each class) that control for 

time-invariant differences in prescriptions for each class and linear class-specific time 

trends that control for pre-existing time trends in sales.9 



 8 

The key independent variables are a series of dummy variables that take the value 

of 1 when a new top selling drug has been on the market for:  zero to three months, four 

to six months, seven to twelve months, and more than 12 months, respectively. We use 

the longest-run effects, twelve months after introduction, to compute the eventual change 

in fraction of untreated population due to new launches. 

Access and Incidence Rates by Conditions 
Three more parameters are needed to compute average relative risks from 

equation 1. First, we need to know, for each condition, the fraction untreated.  This is the 

fraction of diagnosed individuals not taking existing drugs. Second, we need estimates of 

the mortality risks for those treated and untreated. We use the Health and Retirement 

Study (HRS) for that purpose. The HRS is a nationally representative longitudinal study 

of the age 50+ population. It asks about lifetime prevalence of the seven conditions we 

use as well as the consumption of drugs for those diagnosed with these conditions. It also 

tracks mortality. Mortality rates from the HRS closely track the corresponding figures 

from life-tables.10 

To construct estimates of mortality risk, we use hazard models estimated on the 

1992-2002 waves of the HRS. The hazard models include baseline demographics, disease 

indicators from the previous wave, health-risk behaviors, and age. We use similar models 

to estimate the risk of onset of health conditions. Appendix D presents the model used 

along with point estimates and goodness-of-fit tests on the HRS data. Table 3 gives the 

lifetime prevalence in 2004 of various conditions, the fraction untreated among the 

diagnosed population and predicted transition rates based on hazard models. 

[TABLE 3 HERE] 
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Of the 54.6% of individuals aged 50+ in 2004 with hypertension, only 11% do not 

take medication for that condition according to the HRS. A somewhat larger fraction with 

diabetes and heart disease does not take medication (18.3% and 33.8%). Cancer and 

stroke are the two conditions with the fewest respondents treated with drugs (77.2% and 

63.3% are untreated). The next column presents the estimates of the reduction in the 

fraction untreated following introduction of a new drug.  Finally, predicted incidence 

rates prior to new drug introduction are roughly similar across groups of treated and 

untreated patients, but perhaps slightly higher in the treated group. Hence, we explicitly 

account for the fact that therapeutic benefits of treatment may be lower for the currently 

untreated, because their condition is likely less severe. 

Results 

Access Effects 
New drugs may increase the proportion of the diagnosed population that receives 

treatment.  This can happen through the amelioration of side effects, expansion of 

therapeutic eligibility criteria, or greater awareness.  Table 2 presents estimation results 

from multivariate regressions that estimate the effects of top-seller launches on the 

number of prescriptions within a drug class. Figure 2 presents the key findings based on 

these regressions. 

[TABLE 2 HERE] 

[FIGURE 2 HERE] 

The results show that the introduction of top-selling chemical entities significantly 

increases the use of drugs within their drug class. For example, prescriptions in a drug 

class increase by an average of 7% in the first three months, 18.3% (or an additional 
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11.3%) by months four to six, 24.5% by months seven to twelve after an NCE 

introduction to that drug class. These effects are not limited to the first year after the 

introduction of a NCE. In fact, our estimates show little evidence of decay when 

considering time frames longer than the first year after introduction (21.3% vs. 24.5%).  

This long-run effect is statistically significant at the 5% level.11 

Clinical Effects 
New drugs can also improve health by directly reducing mortality or reducing the onset 

of new conditions. As discussed earlier, we need to compute the clinical effects of new 

drugs relative to placebo, and relative to the best-available alternative.  The results are 

shown in Table 1. 

[TABLE 1 HERE] 

The blanks in the table indicate that there is no clinical pathway between the two 

conditions.  Therefore, we restrict these effects to be zero. 

Average Effects of Top-Selling Drug Launches 
We combine the previous elements — access effects and clinical effects — to 

construct the effect on health for the average new top-seller introduction.  This combines 

the estimated effects of a top-seller on access and health.  Table 4 shows how new top 

selling drugs for each of the seven diseases we study would reduce mortality and the risk 

of onset of serious health conditions.  

[TABLE 4 HERE]  

The results show that new top selling drugs for lung disease, diabetes and cancer would 

have reduced annual mortality risk by 11%, 9% and 7% respectively. Drugs for other 

diseases we considered including heart disease, hypertension and stroke had no direct 
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effect on mortality. However, new top selling drugs for these diseases significantly 

reduced the risk of onset of new health conditions.  For example, new top-selling drugs 

for heart disease reduced annual risk of suffering a stroke by 8%. Similarly, new top-

selling drugs for hypertension reduced the annual risk of suffering from heart disease and 

stroke by 3.6% and 2.6% respectively. It is important to note that Table 4 presents the 

health effects of a select group of new drugs – the top sellers within each disease 

category. However, not every new drug would be a top seller. 

Probability of Top-Seller 
We have adopted the conservative assumption that any drug that is not a top-seller has no 

beneficial impacts.  Therefore, the access and clinical effects are effectively discounted 

by the probability that a new drug will be a top-seller.  Table 5 presents the results of this 

calculation.  

[TABLE 5 HERE] 

The table illustrates the entire time-series of new drug introductions and new top-

seller introductions by disease, and presents the resulting probability of top-seller, 

estimated over the 1995 to 2002 data.  The estimated probability ranges from 9% (cancer) 

to 33% (stroke). 

Average Effects of a New Drug Introduction 
The next step is to calculate the effect of the average new drug introduction.  This 

combines the probability that the drug will be a top-seller, with the expected health 

benefits of a top-seller drug.  We continue to maintain the conservative assumption that 

all drugs other than top-sellers have no effects on health. 
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Table 6 presents the expected effect of a new drug for each of the seven diseases 

assuming that drugs other than those on our top 5 list had no clinical effects. The 

numbers reported in this table essentially weight the total effect of top selling drugs with 

the probability that the drug would be a top seller.  

The average new drug has a fairly modest effect on health.  New launches in 

diabetes, lung disease, and cancer lower mortality risk by 2.3%, 1.5%, and 0.7%, 

respectively.  Launches in other categories have no effects.  These effects were 

conservatively estimated.  Therefore, the long-run health effects should be viewed as 

lower bounds on the true benefits from new drugs.  

Decomposing Access and Clinical Effects 
As discussed earlier, new drugs can improve health through two channels. First 

they can increase the proportion of people (access effect). Second, they can improve the 

outcomes of those who switch from old therapies to new therapies (clinical effect). 

Access effects are often overlooked but might be very important. To illustrate this we 

estimate the effects of new drugs under 2 scenarios: (1) new drugs have no access effect; 

(2) new drugs have both clinical effects and access effects (estimates reported in Tables 4 

and 6). Comparing estimates from the above scenarios allows us to compute the fraction 

of the total effect of new drugs that can be attributed to the access effect. Table 7 reports 

the findings from this analysis.  

[INSERT TABLE 7 HERE]  

The overall pattern of results is striking. For most new top-selling drugs the 

access effect accounts for all the health benefits of new drugs.  Indeed, with the exception 

of lung disease and cancer, all the benefits are driven by the access effect.  The access 
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effects are easier to identify empirically than the clinical effects.  Therefore, our 

quantitative approach reveals benefits that are tilted towards these quantifiable 

components.  In most of the clinical trials we reviewed new drugs did not offer any 

greater clinical benefits compared to existing treatments. 

Simulation of the Effects on Population Health 
The above estimates show the effects of new drugs on annual mortality risks and risk of 

onset of new conditions. Such estimates, although useful in their own right, can also be 

used to simulate impacts on long run population health. To illustrate this, we use a the 

microsimulation model developed and described in our companion paper on the effects of 

global pharmaceutical regulation.  That model is described more fully in that paper, and 

in the technical appendix.  Briefly, its core is a set of predicted health transition rates 

which are used to simulate the health transitions that the US population is projected to 

experience under various scenarios.  We apply the estimated impacts of new innovation 

to those health transitions to calculate the long-run effects on health and health spending 

of new drug introductions.  

We start the simulation with the 2004 HRS sample of respondents aged 55+. We then 

predict each respondent’s transition probabilities to the various conditions he/she does 

not already have. Next, we randomly draw the number of top-selling drug introductions 

using the probabilities calculated in Table 5 and the historical average number of new 

drugs. If at least one top selling drug is introduced for a particular condition, we apply the 

appropriate average clinical effect calculated in Table 4 to the predicted probabilities of 

those diagnosed with the condition.  We then use the model to “age” the population 
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forward, which involves mortality for some respondents, disease onset for others, and no 

changes for a third set.   

To estimate the health benefits from the introduction of new drugs, we consider the 

following experiment, where the probability of a new top selling drug for cancer doubles 

permanently from 0.09 to 0.18. We consider how this affects the number of individuals 

with cancer, as well life-expectancy, from 2005 to 2025.  

From our estimates, new cancer drugs only affect survival rates but not the likelihood 

of being diagnosed with other conditions. Figure 4 shows that doubling the arrival rate of 

top-selling cancer drugs increases the size of the population with cancer, due to the 

reduction in cancer mortality.  Table 8 shows that, by 2025, population is higher by 

242,000 individuals. Average life-expectancy across all 55 year-olds increases by an 

average of 26.9 days from 2005 to 2025.   

Using a value of statistical life-year of $200,000, which is a middle-of-the-road 

estimate from the research by Viscusi and Aldy,12 this represents roughly an average 

benefit of $14,700 per individual. This change can be compared to the change in 

pharmaceutical profits required to generate this additional innovation.  Acemoglu and 

Linn (2004) estimated that a 1% increase in pharmaceutical sales leads to an 

approximately 4% increase in the number of new chemical entities annually.13  This 

means sales would need to increase by 25% to generate such a gain in population health. 

Total worldwide sales for cancer drugs in 2005 were $48.3 billion.14 Hence, the increase 

in sales necessary for that change in innovation would be $12.1 billion, or $186 per 

individual aged 55+ in the U.S. in 2004.15 Since individuals aged 55+ live on average for 

23.1 years, this means that to support this permanent increase in innovation, they would 
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need to pay on average an additional $4.3K over their life-time.  This implies a 

reasonably high rate of return on stimulating pharmaceutical R&D investments, where 

the benefit is roughly three times the cost. 

Of course, there is no feedback in this simulation from changes in health to sales, 

which in turn may affect future innovation. For example, as the population with cancer 

grows, so do sales of cancer drugs.  This can provide further stimulus for innovation. We 

are looking at the long-term effect of permanently changing the rate of innovation, 

without allowing for a behavioral response from the pharmaceutical industry.  Our 

companion paper on the impacts of global pharmaceutical regulation incorporates this 

feedback loop. 

Conclusion 
This paper presented a novel methodology to assess the health effects of new drugs. 

We incorporated clinical evidence along with access effects following the introduction of 

drugs to calculate average effects on mortality risks and risk of onset of new health 

conditions. The results show that new drugs for most of the conditions we studied offer 

substantial health benefits. They either reduce mortality directly or reduce the onset of 

other serious health conditions. The results also showed that access effects which are 

often overlooked account for a majority of the health benefits of new drugs.  

The estimates we developed could be used as inputs in models of population health. 

Such models can then be used to analyze various scenarios which may affect 

pharmaceutical innovation. We analyze the effects of increasing innovation in cancer 

drugs by 50%. We found that such an increase in innovation offers significant health 

benefits which more than offset the costs of providing these drugs. We should emphasize 
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that we have been rather conservative on the health benefits of new drugs. In particular, 

we have assumed drugs other than those in the top 5 for each condition did not have any 

effect on population health. When clinical evidence from the literature was not available 

or not statistically significant for any of the Top 5 drugs, we assumed there was no effect. 

This allows us to put a lower bound on the health effects. As we have shown, even with 

such conservative estimates, innovation in cancer drugs appeared to yield substantial 

benefits relative to their cost. 
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Figure 1 Effects of a New Drug 
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Figure 2 Access Effect 

 

Notes: Based on Estimation Results from Table 2. Regression of monthly log(number 
of prescriptions) on launch of new chemical entities and reformulations.
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Figure 3 Health Effects of Increased Innovation for Cancer Drugs  
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Table 1 Summary of Clinical Effects Found in Medical Literature 
                                  
  Relative Risk (RR) for New Drug Divided by a Control Group, where control is P=Placebo, E=Existing Treatment 

  Heart disease Hypertension Stroke Lung Disease Diabetes Cancer Depression Mortality 
Condition 
treated RR(P) RR(E) RR(P) RR(E) RR(P) RR(E) RR(P) RR(E) RR(P) RR(E) RR(P) RR(E) RR(P) RR(E) RR(P) RR(E) 
heart disease         0.475 1             1 1 1 1 
hypertension 0.643 1     0.729 1             1 1 1 1 
stroke                         1 1 1 1 
lung disease                         1 1 1 0.796 
diabetes 0.690 1 1 1 0.533 1             1 1 0.52 1 
cancer         1 1             1 1 0.837 0.728 
depression                             1 1 

Notes: See Appendix C for details on the calculations. This matrix assumes a set of causal clinical mechanisms described in Goldman et al. (2004). Empty cell 
implies that there is no causal clinical mechanism in the model. 
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Table 2 Access Effect Regression Results 
  

        

  Coefficient P-Value   
Launched 0~3 
Months 0.067 0.417 

Number of 
observations: 
2711       

Launched 3~6 
Months 0.183 0.095   

      
R-Square: 
0.973 

Launched 6~12 
Months 0.245 0.032 

  

      
Time period: 
Jan 1997~Dec 
2004 Launched >=12 

Months 0.213 0.042 
      
Notes: OLS regression of log(number of prescriptions). 
Standard errors allow for clustering at the USC-5 class level. 
  

 
  

 



 23 

 
 

Table 3  HRS Disease Prevalence, Drug Usage, and Predicted Incidence Rate 
                           

    fraction 
untreated 
before 
introduction 

reduction 
in fraction 
untreated 

Predicted Incidence Rate Prior to Introduction For 

    Heart disease Hypertension Stroke Depression Mortality 
condition 
treated prevalence untreated treated untreated treated untreated treated untreated treated untreated treated 
heart disease 0.253 0.338 0.141         0.026 0.030 0.028 0.031 0.037 0.047 
hypertension 0.546 0.110 0.110 0.048 0.050     0.022 0.023 0.024 0.024 0.026 0.027 
stroke 0.080 0.632 0.078             0.039 0.040 0.063 0.069 
lung disease 0.102 0.467 0.114             0.040 0.047 0.047 0.053 
diabetes 0.176 0.183 0.174 0.068 0.071 0.074 0.081 0.032 0.032 0.029 0.030 0.041 0.040 
cancer 0.141 0.772 0.049         0.022 0.022 0.026 0.021 0.040 0.037 
mental 0.165 0.426 0.122                 0.032 0.029 
Notes: Calculations from HRS 2004 data. Sample weights used.                    
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Table 4 Average Risk Reduction in Mortality and Disease Onset of a Top Selling Drugs 

                  
  Average Risk Reduction Following Introduction of New Blockbuster Drug 
condition 
treated heart hypertension stroke 

lung 
disease diabetes cancer depression mortality 

heart     6.7%       0.0% 0.0% 
hypertension 3.8%   2.9%       0.0% 0.0% 
stroke             0.0% 0.0% 
lung disease             0.0% 11.5% 
diabetes 5.2% 0.0% 8.1%       0.0% 8.5% 
cancer     0.0%       0.0% 6.6% 
depression               0.0% 
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Table 5 Probability of a New Top Selling Drug for Each Health Condition, 1998-2002 
                                          
New drugs Heart   Hypertension   Stroke   Lung Disease   Diabetes   Cancer   Depression 

  total top   total top   total top   total top   total top   total top   total top 
1995 8 0   8 0   4 0   4 0   2 0   8 1   0 0 
1996 5 1   6 1   1 0   8 1   2 0   10 0   2 1 
1997 4 1   6 1   3 2   7 0   3 1   6 0   3 1 
1998 6 1   4 1   1 0   5 0   0 0   7 1   2 1 
1999 1 0   1 0   2 1   5 0   4 2   7 2   4 1 
2000 4 1   2 0   2 1   4 3   6 2   5 0   1 0 
2001 5 0   2 1   1 1   7 1   1 0   4 1   2 0 
2002 5 1   3 1   1 0   5 1   2 0   6 0   3 1 

Total 38 5   32 5   15 5   45 6   20 5   53 5   17 5 
Average 4.75 0.625   4 0.625   1.875 0.625   5.625 0.75   2.5 0.625   6.625 0.625   2.125 0.625 
Fraction top   0.13     0.16     0.33     0.13     0.25     0.09     0.29 
Notes: Information on new chemical entities, new formulation, and new combination drugs taken from the FDA websites. The FDA lists indications for each drug which were then mapped to our set of 
conditions. The top-selling drugs are identified in Appendix A according to revenues, two years after introduction according to the INGENIX database. 
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Table 6 Expected Effect of a New Drug 

                      
    Expected Risk Reduction Following Introduction of a New Drug   

  
condition 
treated heart hypertension stroke 

lung 
disease diabetes cancer depression mortality   

  heart     2.2%       0.0% 0.0%   
  hypertension 0.5%   1.0%       0.0% 0.0%   
  stroke             0.0% 0.0%   
  lung disease             0.0% 1.5%   
  diabetes 0.7% 0.0% 2.7%       0.0% 2.1%   
  cancer     0.0%       0.0% 0.6%   
  depression               0.0%   
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Table 7 Fraction of Access Effect out of Total Effect 
 

                  
  Fraction of Access Effect 
condition 
treated heart hypertension stroke 

lung 
disease diabetes cancer depression mortality 

heart     100.0%       100.0% 100.0% 
hypertension 100.0%   100.0%       100.0% 100.0% 
stroke             100.0% 100.0% 
lung disease             100.0% 0.0% 
diabetes 100.0% 100.0% 100.0%       100.0% 100.0% 
cancer     100.0%       100.0% 12.1% 
depression               100.0% 

 
 
 
 
 
 
 
 
 
 



 28 

 
Table 8 Health Effects of Increased Innovation for Cancer Drugs 

                        
  Simulation outcomes(millions) 

  Diagnosed with Cancer   Population  

Remaining Life-Expectancy               
(at age is 55) 

year base high prob effect   base high prob effect   base high prob effect 
2005 9.894 9.894 0.000   65.088 65.111 0.023   23.12 23.13 0.010 
2006 10.445 10.476 0.003   67.357 67.366 0.009   23.15 23.21 0.059 
2007 10.916 10.934 0.019   69.504 69.574 0.070   23.19 23.26 0.071 
2008 11.293 11.337 0.045   71.585 71.672 0.086   23.27 23.38 0.116 
2009 11.647 11.715 0.068   73.673 73.757 0.084   23.33 23.46 0.136 
2010 11.965 12.055 0.090   75.764 75.857 0.094   23.33 23.47 0.143 
2011 12.246 12.338 0.092   77.891 77.971 0.080   23.37 23.48 0.117 
2012 12.466 12.562 0.096   80.037 80.163 0.126   23.40 23.51 0.109 
2013 12.747 12.880 0.133   82.175 82.324 0.149   23.44 23.52 0.077 
2014 12.976 13.130 0.154   84.409 84.580 0.171   23.41 23.48 0.074 
2015 13.218 13.408 0.189   86.623 86.802 0.180   23.46 23.49 0.035 
2016 13.404 13.638 0.235   88.792 89.015 0.222   23.43 23.48 0.051 
2017 13.700 13.926 0.226   91.019 91.225 0.206   23.40 23.44 0.038 
2018 13.962 14.155 0.192   93.134 93.363 0.229   23.42 23.44 0.019 
2019 14.215 14.423 0.209   95.281 95.523 0.242   23.43 23.47 0.039 
2020 14.476 14.714 0.238   97.371 97.605 0.234   23.37 23.48 0.109 
2021 14.727 14.995 0.268   99.318 99.550 0.232   23.39 23.44 0.055 
2022 15.009 15.292 0.283   101.123 101.370 0.246   23.38 23.43 0.051 
2023 15.367 15.616 0.249   102.751 103.010 0.259   23.35 23.43 0.074 
2024 15.641 15.899 0.258   104.227 104.541 0.314   23.32 23.41 0.081 
2025 15.891 16.158 0.266   105.658 105.900 0.242   23.34 23.42 0.083 

Notes: Simulation repeated 30 times. Remaining life expectancy is life years divided by population age 55 alive in that year. 
Probability a new cancer drug is a blockbuster drug is 0.09 in base scenario and 0.18 in the high probability scenario. 
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Appendix Table:  Top 5 Drugs by Health Condition 

 
Heart 

Disease Hypertension Stroke Lung Disease Diabetes Cancer Depression 

LIPITOR CARTIA XT PLAVIX ADVAIR 
DISKUS ACTOS GLEEVEC LEXAPRO 

ZETIA TRACLEER AGGRENOX FLOVENT AVANDIA CASODEX PAXIL CR 
PLAVIX ACCURETIC AGRYLIN BIAXIN XL REZULIN TEMODAR CELEXA 

CARTIA XT LOTREL ARIXTRA AUGMENTIN 
XR 

GLUCOPHAGE 
XR XELODA EFFEXOR XR 

WELCHOL VERELAN 
PM INNOHEP ZYVOX GLUCOVANCE AROMASIN WELLBUTRIN 

SR 
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Appendix A Mapping from Drug Class to Health Conditions  
 
Heart Disease Hypertension Stroke Lung Disease Diabetes Cancer Depression 
Antibiot, Penicillins Cardiac, ACE Inhibitors Thrombolytic Agents, 

NEC 
Antibiot, Penicillins Antidiabetic Ag, 

Sulfonylureas 
Antibiot, Antifungals Psychother, 

Antidepressants 

Antihyperlipidemic Drugs, 
NEC 

Cardiac, Beta Blockers Antiplatelet Agents, NEC Vaccines, NEC Antidiabetic Agents, 
Insulins 

Antiemetics, NEC Antimanic Agents, NEC 

Cardiac Drugs, NEC Vasodilating Agents, NEC Coag/Anticoag, 
Anticoagulants 

Antibiot, Cephalosporin & 
Rel. 

Antidiabetic Agents, Misc Antineoplastic Agents, 
NEC 

  

Cardiac, ACE Inhibitors Cardiac, Alpha-Beta 
Blockers 

  Antibiot, Tetracyclines   Folic Acid & Derivatives, 
NEC 

  

Cardiac, Antiarrhythmic 
Agents 

Hypotensive Agents, NEC   Antibiotics, Misc   Gonadotrop Rel Horm 
Antagonist 

  

Cardiac, Beta Blockers Cardiac, Calcium Channel   Antituberculosis Agents, 
NEC 

  Immunosuppressants, NEC   

Cardiac, Cardiac 
Clycosides 

Symnpatholytic Agents, 
NEC 

  Sulfonamides & Comb, 
NEC 

  Interferons, NEC   

Cardiac, Cardiac 
Glycosides 

Sympatholytic Agents, 
NEC 

  Sulfones, NEC   Blood Derivatives, NEC   

Hemorrheologic Agents, 
NEC 

Diuretics, Loop Diuretics   Tuberculosis, NEC   Antibiot, Aminoglycosides   

Vasodilating Agents, NEC Diuretics, Potassium-
Sparing 

  Antibiot, B-Lactam 
Antibiotics 

     

Blood Derivatives, NEC Diuretics, Thiazides & 
Related 

  Antibiot, 
Erythromycn&Macrolid 

      

Cardiac, Calcium Channel  Cardiac Drugs, NEC   Anticholinergic, NEC       

Diuretics, Loop Diuretics     Autonomic, Nicotine Preps       

Diuretics, Potassium-
Sparing 

           

Diuretics, Thiazides & 
Related 

           

Thrombolytic Agents, 
NEC 

           

Antiplatelet Agents, NEC             

Coag/Anticoag, 
Anticoagulants 

      

Source: Web search and expert opinion. Printouts of the sources are available upon requests. 
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Appendix B Top 5 Drugs by Health Condition  
 

(1) Heart Disease 
 Drug Name Class Active Ingredient Innovation Type Introduction Date 
1 LIPITOR Antihyperlipidemic 

Drugs, NEC 
Atorvastatin Calcium 
 

New Ingredient 1996.12 

2 ZETIA Antihyperlipidemic 
Drugs, NEC 

Ezetimibe New Ingredient 2002.10 

3 PLAVIX Antiplatelet Agents, 
NEC 

Clopidogrel Bisulfate New Ingredient 1997.11 

4 CARTIA XT Calcium Channel 
Blocker 

Diltiazem Hydrochloride New Formulation 1998.7 

5 WELCHOL Anti-hyperlipidemic, 
NEC 

Colesevelam 
Hydrochloride 

New Ingredient 2000.5 

 
(2) Hypertension 

 

 Drug Name Class Active Ingredient Innovation Type Introduction Date 
1 CARTIA XT Cardiac, Calcium Channel Diltiazem  Hydrochloride New Formulation 1998.7 
2 TRACLEER Vasodilating Agents, 

NEC 
Bosentan New Ingredient 2001.11 

3 BENICAR Cardiac Drugs, NEC  Olmesartan Medoxomil New Ingredient  2002.4 
4 AVAPRO Cardiac Drugs, NEC  Irbesartan New Ingredient  1997.9 
5 DIOVAN Cardiac Drugs, NEC  Valsartan New Ingredient  1996.12 
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(3) Stroke 
 Drug Name Class Active Ingredient Innovation Type Introduction Date 
1 PLAVIX Antiplatelet Agents, 

NEC 
Clopidogrel 
Hydrochloride 

New Ingredient 1997.11 

2 AGGRENOX Antiplatelet Agents, 
NEC 

Dipyridamole + Aspirin New Combination 1999.11 

3 AGRYLIN Antiplatelet Agents, 
NEC 

Anagrelide 
Hydrochloride 

New Ingredient 1997.3 

4 ARIXTRA Coag/Anticoag, 
Anticoagulants 

Fondaparinux Sodium New Ingredient 2001.12 

5 INNOHEP Coag/Anticoag, 
Anticoagulants 

Tinzaparin Sodium New Ingredient 2000.7 

 
(4) Lung Disease 

 
 

 Drug Name Class Active Ingredient Innovation Type Introduction Date 
1 ADVAIR DISKUS Adrenals & Comb, NEC Fluticasone Propionate+ 

Salmeterol Salmeterol 
Xinafoate 

New Combination 2000.8 

2 FLOVENT Adrenals & Comb, NEC Fluticasone Propionate New Formulation 1996.3 
3 BIAXIN XL Antibiot, 

Erythromycn&Macrolid 
Clarithromycin New Formulation 2000.3 

4 AUGMENTIN XR Antibiot, Penicillins Amoxicillin + 
Clavulanate 

New Formulation 2002.9 

5 ZYVOX Antibiotics, Misc Linezolid New Ingredient 2000.4 
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 (5) Diabetes 
 

 Drug Name Class Active Ingredient Innovation Type Introduction Date 
1 ACTOS Antidiabetic Agents, 

Misc 
Pioglitazone 
Hydrochloride 

New Ingredient 1999.7 

2 AVANDIA Antidiabetic Agents, 
Misc 

Rosiglitazone Maleate New Ingredient 1999.5 

3 REZULIN Antidiabetic Agents, 
Misc 

Withdrawn New Ingredient 1997.1 

4 GLUCOPHAGE XR Antidiabetic Agents, 
Misc 

Metformin 
Hydrochloride 

New Formulation 2000.10 

5 GLUCOVANCE Antidiabetic Ag, 
Sulfonylureas 

Glyburide + Metformin 
Hydrochloride 

New Combination 2000.7 

 
(6) Cancer 

 Drug Name Class Active Ingredient Innovation Type Introduction Date 
1 GLEEVEC Antineoplastic Agents, 

NEC 
Imatinib Mesylate New Ingredient 2001.5 

2 CASODEX Antineoplastic Agents, 
NEC 

Bicalutamide New Ingredient 1995.10  

3 TEMODAR Antineoplastic Agents, 
NEC 

Temozolomide New Ingredient 1999.8 

4 XELODA Antineoplastic Agents, 
NEC 

Capecitabine New Ingredient 1998.4 

5 AROMASIN Antineoplastic Agents, 
NEC 

Exemestane New Ingredient 1999.10 
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(7) Depression 

 Drug Name Class Active Ingredient Innovation Type Introduction  Date 
1 LEXAPRO Psychother, 

Antidepressants 
Escitalopram Oxalate New Indication 2002.8 

2 PAXIL CR Psychother, 
Antidepressants 

Paroxetine 
Hydrochloride 

New Formulation 1999.2 

3 CELEXA Psychother, 
Antidepressants 

Citalopram 
Hydrovromide 

New Ingredient 1998.7 

4 EFFEXOR XR Psychother, 
Antidepressants 

Venlafaxine 
Hydrochloride 

New Formulation 1997.1 

5 WELLBUTRIN SR Psychother, 
Antidepressants 

Buproprion 
Hydrochloride 

New Formulation 1996.10 
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Appendix C Details and Reference for Calculation of Clinical Effects in Table 1  
 

Causal Link
From                 To                     Drug                 Control Group Reference          Calculation

heart stroke LIPITOR Placebo Schwartz, G. G., Olsson Ag, Ezekowitz Md, et al. Effects of 
atorvastatin on early recurrent ischemic events in acute coronary 
syndromes the MIRACL study a randomized controlled trial.  
Journal of the American Medical Association. 2001;285(13):1711-
1718.

translate RRR into 
annual RRR by 
assuming RRR to be 
conatant over years

hypertenstion heart LIPITOR Placebo Sever, P. S., Dahlof, B., Poulter, N. R., et al. Prevention of 
coronary and stroke events with atorvastatin in hypertensive 
patients who have average or lower-than-average cholesterol 
concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial--
Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised 
controlled trial. Lancet. 2003;361(9364):1149-1158.

translate RRR into 
annual RRR by 
assuming RRR to be 
conatant over years

hypertension stroke LIPITOR Placebo Sever, P. S., Dahlof, B., Poulter, N. R., et al. Prevention of 
coronary and stroke events with atorvastatin in hypertensive 
patients who have average or lower-than-average cholesterol 
concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial--
Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised 
controlled trial.[comment]. Lancet. 2003;361(9364):1149-1158.

translate RRR into 
annual RRR by 
assuming RRR to be 
conatant over years

diabetes heart LIPITOR Placebo Colhoun, H. M., Betteridge, D. J., Durrington, P. N., et al. Primary 
prevention of cardiovascular disease with atorvastatin in type 2 
diabetes in the Collaborative Atorvastatin Diabetes Study 
(CARDS): Multicentre randomised placebo-controlled trial. Lancet. 
2004;364(9435):685-696.

translate RRR into 
annual RRR by 
assuming RRR to be 
conatant over years

diabetes stroke LIPITOR Placebo Colhoun, H. M., Betteridge, D. J., Durrington, P. N., et al. Primary 
prevention of cardiovascular disease with atorvastatin in type 2 
diabetes in the Collaborative Atorvastatin Diabetes Study 
(CARDS): Multicentre randomised placebo-controlled trial. Lancet. 
2004;364(9435):685-696.

translate RRR into 
annual RRR by 
assuming RRR to be 
conatant over years

lung disease mortality ZYVOX Vancomycin ZYVOX label at FDA: 
http://www.fda.gov/cder/foi/label/2005/021130s008,009,021131s0
09,010,021132s008,009lbl.pdf

RRR=cure rate in 
treatment group/ 
cure rate in control 
group

diabetes mortality ACTOS or AVANDIA Placebo Michael Sheehan, Current Therapeutic Options in Diabetes 
Mellitus, Clinical Medicine and Research, 2003, Vol. 1, No. 3

KayTee Khaw, Nicholas Wareham, Robert Luben, Sheila 
Bingham, Suzy Oakes, Ailsa Welch,Nicholas Day. Glycated 
haemoglobin, diabetes, and mortality in men in Norfolk cohort of 
European Prospective Investigation of Cancer and Nutrition 
(EPICNorfolk).British Medical Journal. Volume 322(7277), 6 
January 2001, pp 15-18. 

cancer mortality TEMODAR+radiotherapy radiotherapy Stupp et al. Radiotherapy plus Concomitant and Adjuvant 
Temozolomide for Glioblastmoa, New England Journal of 
Medicine, March 10, 2005

TAXOTERE+XELODA TAXOTERE FDA drug label of XELODA: 
http://www.fda.gov/cder/foi/label/2005/020896s016lbl.pdf

cancer mortality GLEEVEC Interferon-α+Cytarabine Roy L, Guilhot J, Krahnke T et al. Survival Advantage from 
Imatinib Compared with the Combination Interferon-α plus 
Cytarabine in Chronic-phase Chronic Myelogenous Leukemia: 
Historical Comparison Between Two Phase 3 Trials. Blood. 
2006;108:1478-1484.

translate RRR into 
annual RRR by 
assuming RRR to be 
conatant over years

Both lower 
Hemoglobin A1C 
levels by 1.5 
percentage points,a 
1 % increase in 
HbA1c leads a 
relative risk increase 
of 1.28 relative to 
placebo, so RRR= 
1/(1.28)(1.5))= 0.52. 

RRR=average of 
RRR in each clinical 
trial, which is 
translated tinto 
annual RRR by 
assuming RRR to be 
conatant over years

Notes: all the values not available from clinical literature are imputed as 1, i.e., assuming no clinical effect.
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Appendix D Health Transition Model  

 
This appendix describes the methodological approach used for the estimation of 

the transition model as well as the simulation of future health transitions. We use the 
observed (reported) medical history of respondents in the Health and Retirement Study to 
infer incidence rates as a function of prevailing health conditions, age and other socio-
demographic characteristics (sex, race, risk factors such as obesity and smoking). The 
data from the Health and Retirement Study consists of a series of record of disease 
prevalence, recorded roughly every 2 years, from 1992 to 2002. Since incidence can only 
be recorded every two years, we use a discrete time hazard model. 

The estimation of such model is complicated by three factors. First, the report of 
conditions is observed at irregular intervals (on average 24 months but varying from 18 to 
30) and interview delay appears related to health conditions. Second, the presence of 
persistent unobserved heterogeneity (frailty) could contaminate the estimation of 
dynamic pathways or “feedback effects” across diseases. Finally, because the HRS 
samples is from a population of respondents aged 50+, inference is complicated by the 
fact that spells are left-censored, some respondents are older than 50 when first observed 
and have health conditions for which we cannot establish the age of onset.  

Since we have a stock sample from the age 50+ population, each respondent goes 
through an individual specific series of intervals. Hence, we have an unbalanced panel 
over the age range starting from 50 years old. Denote by  0ij  the first age at which 
respondent i is observed and 

iiTj  the last age when he is observed. Hence we observe 
incidence at ages 0 ,...,

ii i iTj j j= . Record as , ,ii j mh =1 if the individual has condition m as 
of age ij . We assume the individual specific component of the hazard can be 
decomposed in a time invariant and variant part. The time invariant part is composed of 
the effect of observed characteristics ix  and permanent unobserved characteristics 
specific to disease m , ,i mη . The time variant part is the effect of previously diagnosed 

health conditions , 1,ii j mh − − , (other than the condition m) on the hazard.2

, , 1, ,i im j i m i j m m i mz x hβ γ η− −= + +

 We assume an 

index of the form . Hence, the latent component of the 
hazard is modeled as 

 
*
, , , 1, , , , ,

0

,    

1,..., ,  ,..., ,  1,...,
i i i i

i

i j m i m i j m m i m m j i j m

i i iT

h x h a

m M j j j i N

β γ η ε− −= + + + +

= = =
. (D.1) 

We approximate , im ja  with an age spline. After several specification checks, a node at 
age 75 appears to provide the best fit. This simplification is made for computational 
reasons since the joint estimation with unrestricted age fixed effects for each condition 
would imply a large number of parameters..   
Diagnosis, conditional on being alive, is defined as 
 

                                                 
2 With some abuse of notation, 1ij −  denotes the previous age at which the respondent was observed. 
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*

, , , , , 1,

0

max( ( 0), ) 

1,..., ,  ,..., ,  1,...,
i i i

i

i j m i j m i j m

i i iT

h I h h

m M j j j i N
−= >

= = =
.  (D.2) 

 
As mentioned in the text we consider 7 health conditions to which we add functional 
limitation (disability) and mortality. Each of these conditions is an absorbing state. The 
same assumption is made for ADL limitations, the measure of disability we use. The 
occurrence of mortality, censors observation of diagnosis for other diseases in a current 
year. Mortality is recorded from exit interviews and tracks closely the life-table 
probabilities. 
 
Interview Delays 

As we already mentioned, time between interviews is not exactly 2 years. It can 
range from 18 months to 30 months. Hence, estimation is complicated by the fact that 
intervals are different for each respondents. More problematic is that delays in the time of 
interview appears related to age, serious health conditions and death (Adams et al., 2003). 
Hence a spurious correlation between elapsed time and incidence would be detected 
when in fact the correlation is due to delays in interviewing or finding out the status of 
respondents who will be later reported dead. To adjust hazard rates for this, we follow 
Adams et al. (2003) and include the logarithm of the number of months between 
interviews, ,log( )

ii js  as a regressor.  
  
Unobserved Heterogeneity 

The term , ,ii j mε  is a time-varying shock specific to age ij . We assume that this 
last shock is Type-1 extreme value distributed, and uncorrelated across diseases.3

imη
 

Unobserved difference  are persistent over time and are allowed to be correlated 
across diseases 1,...,m M= .  However, to reduce the dimensionality of the heterogeneity 
distribution for computational reasons, we consider a nested specification. We assume 
that heterogeneity is perfectly correlated within nests of conditions but imperfectly 
correlated across nests. In particular, we assume that each of first 7 health conditions 
(heart disease, hypertension, stroke, lung disease, diabetes, cancer and mental illness) 
have a one-factor term im m iCη τ α=  where mτ  is a disease specific factor-loading for the 
common individual term iCα . We assume disability and mortality have their own specific 
heterogeneity term iDα  and iMα . Together, we assume that the triplet ( , , )iC iD iMα α α  has 
some joint distribution that we will estimate. Hence, this vector is assumed imperfectly 
correlated. We use a discrete mass-point distribution with 2 points of support for each 
dimension (Heckman and Singer, 1984). This leads to K=8  potential combinations. 

 
 
Likelihood and Initial Condition Problem 

Parameters { }1 1
( , , , , )M

m m m m m
Fαθ β γ µ τ

=
= , where Fα  are the parameters of the 

discrete distribution, can be estimated by maximum likelihood. Given the extreme value 

                                                 
3 The extreme value assumption is analogous to the proportional hazard assumption in continuous time.  
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distribution assumption on the time-varying unobservable (a consequence of the 
proportional hazard assumption), the joint probability of all time-intervals until failure, 
right-censoring or death conditional on the individual frailty is the product of Type-1 
extreme value univariate probabilities. Since these sequences, conditional on unobserved 
heterogeneity, are also independent across diseases, the joint probability over all disease-
specific sequences is simply the product of those probabilities.  

For a given respondent with frailty ( , , )i iC iD iMα α α α=  observed from initial age 

0ij  to a last age
iTj , the probability of the observed health history is (omitting the 

conditioning on covariates for notational simplicity) 

 1, ,

0

1 1

1
(1 )(1 )0

, , ,
1

( ; , ) ( ; ) ( ; )
T Ti i

ij m ij M

i

i i

j jM
h h

i i i j ij m i ij M i
m j j j j

l h P Pθ α θ α θ α−
−

− −−

= = =

   
= ×   
      
∏∏ ∏  (D.3) 

We make explicit the conditioning on 
0 0 0, , ,0 , ,( ,..., ) '

i i ii j i j i j Mh h h= , we have no information 
on health prior to this age.  

To obtain the likelihood of the parameters given the observables, it remains to 
integrate out unobserved heterogeneity. The complication is that 

0, ,ii j mh − , the initial 
condition in each hazard is not likely to be independent of the common unobserved 
heterogeneity term which needs to be integrated out. A solution is to model the 
conditional probability distribution 

0,( | )
ii i jp hα . Implementing this solution amounts to 

including initial prevalence of each condition at baseline each hazard. Therefore, this 
allows for permanent differences in the probability of a diagnosis based on baseline 
diagnosis on top of additional effects of diagnosis on the subsequent probability of a 
diagnosis. The likelihood contribution for one respondent’s sequence is therefore given 
by 
 
 

0 0, ,( ; ) ( ; , )
i ii i j k i k i j

k
l h p l hθ θ α=∑  (D.4) 

where the kp  are probabilities for each combination of points of support kα  k=1,…,K.  
The BFGS algorithm is used to maximize the log sum of likelihood contributions in 
equation (12) over the admissible parameter space.  
 
Clinical Restrictions 

Although statistically speaking, all elements of mγ  for all diseases should be 
unrestricted, it is likely that some of these estimates will reflect associations rather than 
causal effects because they help predict future incidence. Although we control for various 
risk factors, it is likely to that we do not observe some factors which are correlated with 
other diseases. In Medical terms however, some of these effects might be ruled 
improbable and we use results from the Medical literature to guide restrictions to impose 
on the elements of the mγ .  

We use a set of clinical restrictions proposed by Goldman et al. (2005) based on 
expert advice. It turns out that these restrictions are not rejected in a statistical sense one 
we include initial conditions and unobserved frailty. 
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Table D.1 Clinical Restrictions 

prevalence t-1 heart
blood 

pressure stroke
lung 

disease diabetes cancer mental disability mortality
heart x x x x

blood pressure x x x x x
stroke x x x

lung disease x x x
diabetes x x x x x x
cancer x x x x
mental x x x

disability x x x

hazard at (t)

Notes: x denotes a parameter which is allowed to be estimated.  
 
Descriptive Statistics and Estimation Results  

For estimation, we construct an unbalanced panel from pooling all cohorts 
together. We delete spells if important information is missing (such as the prevalence of 
health conditions). Hence, in the final sample, a sequence can be terminated because of 
death, unknown exit from the survey (or non-response to key outcomes), or finally 
because of the end of the panel.  

In each hazard, we include a set of baseline characteristics which capture the 
major risk factors for each condition. We consider education, race & ethnicity, marital 
status, gender and behaviors such as smoking and obesity. Finally, as discussed 
previously, we also include a measure of the duration between interviews in month. The 
average duration is close to 2 years. Table D.2 gives descriptive statistics at first 
interview. 
 

Table D.2 Baseline Characteristics in Estimation Sample 

Characteristics  (at first interview) N mean std. dev. min max
age in years 21302 64.1 11.2 50 103
less than high school 0.350 0.477 0 1
some college education 0.346 0.476 0 1
black 0.140 0.347 0 1
hispanic 0.068 0.251 0 1
married 0.703 0.457 0 1
male 0.431 0.495 0 1
ever smoked 0.591 0.492 0 1
obese (BMI>30) 0.210 0.407 0 1
duration between interviews (in 
months), averaged over all waves 23.4 2.8 1.8 30.9
Notes: All HRS Cohorts (HRS, AHEAD, CODA, War Babies)  

 
Estimates of the hazard models are presented in Table D.3. Estimates can be interpreted 
as the effect on the log hazard. 
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Table D.3 Estimates with Heterogeneity and Clinical Restrictions 

prevalence t-1 pe pe pe pe pe pe pe pe pe
heart -0.212 * 0.037 -0.160 * 0.599 **
blood pressure 0.033 0.042 0.169 * -0.115 0.426 **
stroke -0.172 0.240 * 0.864 **
lung disease -0.225 0.185 1.152 **
diabetes 0.062 0.346 ** 0.043 -0.422 ** -0.086 0.634 **
cancer -0.204 -0.141 0.222 ** 1.428 **
mental 0.336 ** 0.740 **
disability 0.199 ** 0.840 **
prevalence t=0
heart 0.076 0.483 ** 0.395 ** 0.190 ** 0.143 ** 0.272 ** 0.518 ** -0.220 **
blood pressure 0.358 ** 0.418 ** 0.046 0.578 ** 0.082 0.099 0.356 ** -0.277 **
stroke 0.030 0.238 ** -0.229 0.012 0.086 0.466 ** 0.425 ** -0.418 **
lung disease 0.511 ** 0.006 0.396 ** 0.014 0.301 ** 0.841 ** 0.627 ** -0.509 **
diabetes 0.540 ** 0.014 0.584 ** 0.014 -0.069 0.705 ** 0.711 ** 0.005
cancer 0.191 ** 0.050 0.244 0.259 ** -0.023 0.308 -0.128 -1.037 **
mental 0.335 ** 0.208 ** 0.422 ** 0.594 ** 0.171 * 0.012 0.512 ** -0.581 **
disability 0.330 ** 0.109 0.152 0.423 ** 0.127 0.057 0.478 ** -0.065

demographics
age <75 0.042 ** 0.021 ** 0.071 ** 0.019 ** 0.013 ** 0.044 ** -0.007 * 0.035 ** 0.030 **
age >75 0.038 ** -0.022 ** 0.055 ** -0.004 -0.044 ** -0.023 ** 0.038 ** 0.143 ** 0.112 **
black -0.268 ** 0.336 ** 0.153 * -0.363 ** 0.210 ** -0.092 -0.225 ** 0.447 ** 0.244 **
hispanic -0.441 ** 0.095 -0.199 -0.582 ** 0.420 ** -0.370 ** 0.194 ** 0.424 ** -0.073
male 0.336 ** -0.109 ** 0.063 -0.146 ** 0.364 ** 0.366 ** -0.458 ** -0.195 ** 0.420 **
ever smoked 0.176 ** -0.009 0.255 ** 1.040 ** 0.102 * 0.257 ** 0.187 ** 0.210 ** 0.344 **
obese (BMI>30) 0.196 ** 0.350 ** 0.106 0.059 1.065 ** 0.027 -0.032 0.552 ** -0.273 **
high school -0.169 ** -0.091 * -0.137 * -0.356 ** -0.274 ** -0.024 -0.334 ** -0.430 ** -0.029
college -0.191 ** -0.146 ** -0.252 ** -0.581 ** -0.312 ** 0.088 -0.461 ** -0.586 ** -0.168 **
log(time since l.w.) 0.996 ** 1.224 ** 1.242 ** 1.015 ** 1.296 ** 1.063 ** 1.102 ** 0.614 ** 6.547 **
constant -6.573 ** -6.121 ** -8.592 ** -7.164 ** -8.016 ** -7.859 ** -6.121 ** -4.433 ** -26.079 **
point 1 0 0 0 0 0 0 0 0 0
point 2 -1.353 ** -1.353 ** -1.353 ** -1.353 ** -1.353 ** -1.353 ** -1.353 ** -2.164 ** -2.176 **
Loading Factor 1 0.625 ** 1.637 ** 1.085 ** 0.678 ** 0.244 ** 1.308 ** 1 1
Probability estimates
point p(1,1,1) p(1,1,2) p(1,2,1) p(1,2,2) p(2,1,1) p(2,1,2) p(2,2,1) p(2,2,2)
Probability 0.193 ** 0.082 ** 0 0.024 ** 0.085 ** 0 0.530 ** 0.087 **

loglike/N -3.632

MortalityDiabetes Cancer Mental DisabilityHeart disease Blood pressure Stroke Lung disease
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To judge the fit of the model we perform a goodness-of-fit exercise. To do that, we re-
estimate the model on a sub-sample and keep part of the sample for evaluating the fit. We 
randomly select observations from the original HRS cohort with probability 0.5 and 
simulate outcomes for this cohort starting from observed 1992 outcomes. Table D.4 gives 
the observed frequencies as well as the predicted ones. Predicted and observed 
frequencies are quite close to each other in 2002.  

 
Table D.4 Goodness-of-Fit 

Prevalence Rate (Independent Draws)

year data sim data sim data sim data sim
1992 0.117 0.120 0.347 0.344 0.027 0.027 0.061 0.062
1994 0.138 0.147 0.376 0.393 0.030 0.037 0.074 0.074
1996 0.157 0.172 0.401 0.437 0.039 0.046 0.078 0.087
1998 0.176 0.196 0.435 0.478 0.047 0.055 0.088 0.097
2000 0.199 0.218 0.480 0.516 0.056 0.063 0.093 0.106
2002 0.236 0.241 0.527 0.551 0.064 0.072 0.109 0.113

# cond. 825 853 1843 1949 224 254 380 399

year data sim data sim data sim data sim
1992 0.104 0.108 0.058 0.058 0.053 0.056 0.072 0.072
1994 0.121 0.130 0.065 0.076 0.094 0.116 0.090 0.095
1996 0.137 0.150 0.078 0.093 0.160 0.164 0.104 0.115
1998 0.151 0.169 0.093 0.111 0.197 0.205 0.118 0.133
2000 0.169 0.185 0.107 0.125 0.224 0.237 0.131 0.148
2002 0.199 0.201 0.125 0.141 0.248 0.264 0.154 0.160

# cond. 695 711 436 500 867 934 540 566

data sim data sim data sim data sim
year

1992 0.475 0.476 0.317 0.311 0.136 0.138 0.072 0.075
1994 0.422 0.390 0.328 0.329 0.149 0.166 0.101 0.115
1996 0.371 0.323 0.326 0.333 0.168 0.191 0.134 0.153
1998 0.324 0.270 0.321 0.326 0.191 0.211 0.163 0.192
2000 0.279 0.230 0.312 0.315 0.215 0.229 0.194 0.226
2002 0.231 0.199 0.295 0.299 0.235 0.240 0.238 0.263

Incidence Rate
Goodness-of-Fit test 

year data sim Prevalence rates 4.05 0.774
1992 0.000 0.000 (dF = 7)
1994 0.014 0.009
1996 0.014 0.012 Np 3539
1998 0.016 0.014
2000 0.019 0.017 Nu 3500
2002 0.019 0.020

Notes: Simulation for HRS 1992 subsample (N=4131)

heart pressure stroke lung

mental

mortality

diabetes cancer disability

1 cond 2 cond 3 cond.+no conditions
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