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Abstract: 
 
We characterize the equilibrium level of emissions, the equilibrium stock of global pollution and 
the discounted net social welfare for both the cooperative and non-cooperative equilibria when 
the countries face the threat of a sudden irreversible jump in the global damages at an unknown 
date. The goal is to analyze the impact of this type of uncertainty on the equilibrium behavior of 
the countries. We find that it can have a significant effect on those equilibria. Countries reduce 
their emissions to mitigate their exposure to this threat. As the level of threat rises, countries 
adjust their emissions to lower the stock of pollutant. However, although initially this threat has 
the effect of lowering the discounted net welfare, it can in the long run have a net positive 
effect on welfare. The emissions trajectory is non-monotonic and discontinuous, but only under 
the threat. 
 
Keywords: Global pollution, Environmental uncertainty, Regime shift, Stochastic differential 
games 
 
 

Résumé:  
 
Je considère un monde dans lequel les pays souffrent uniformément de la pollution globale. Ils 
font face à une menace continuelle de voir les dommages causés par cette pollution globale 
s’accroître subitement de façon irréversible. Je caractérise le niveau des émissions, le stock de 
pollution, et le niveau de bien-être actualisé en équilibre coopératif et non-coopératif. L’objectif 
visé est d’analyser l’impact de ce type d’incertitude sur les équilibres issus des comportements 
stratégiques des pays. Je trouve que cette incertitude peut avoir un effet significatif sur ces 
équilibres. Les pays réduisent leurs émissions pour mitiger leur exposition à cette menace. Plus 
la menace est grande, plus les pays ajustent leurs émissions afin de réduire davantage le stock 
de pollution globale. Cependant, en dépit du fait que cette incertitude diminue le bien-être net 
initial, elle peut à long terme avoir un effet net positif sur ce bien-être. La trajectoire des 
émissions est non-monotone et discontinue, mais seulement en présence de la menace. 
 

Mots clés: Pollution globale, environnement incertain, changement de régime, jeux différentiels 
stochastiques 
 
Classification JEL: C61, C7, D81, Q54 
 
 



1 Introduction

There is scientific evidence that the accumulation of greenhouse gas could drive the world

to an environmental catastrophic state. Such a catastrophic state would be irreversible and

the level of CO2 which may provoke it is uncertain.1 This type of global environmental

catastrophic risk has become of special concern in recent years. Our limited subjective

knowledge about such future environmental damages raises the necessity to contemplate

strategies to mitigate the cost of such risks.

This issue has been largely neglected in the literature on the international control of pol-

lution. Long (1992) and Van Der Ploeg and De Zeeuw (1992) have analyzed in a differential

game the common pollution problem between countries, but in a deterministic setting. They

find that, in the non-cooperative equilibrium steady state, the level of pollution is greater

than in the cooperative equilibrium state state. Recently, Bramoullé and Treich (2009) have

incorporated uncertain damage costs to investigate the optimal pollution control between

polluters. They find that emissions are always lower under uncertainty than under certainty

and that uncertainty may actually improve social welfare. A drawback of that paper is

that it makes use of a static framework, which may not be appropriate to deal with stock

pollution.

We try to remedy this. The basic model used in this paper is related to that of

Dockner and Long (1993). They derive the Nash equilibrium in emissions of a differential

pollution game between two neighboring polluters under perfect certainty. They find that the

first-best steady state can be supported in the long run as a steady-state of the non-linear

Nash equilibrium if the discount rate is sufficiently small. Rubio and Casino (2002) later

show that this result holds only if the initial stock of pollutant lies above the steady-state

level of the cooperative equilibrium.

In a world where there is a threat of disruption of future environmental damages, the

question arises as to how best decision makers can adapt their strategies in response to such

1See for example IPCC (2007) and U.S. Climate Change Science Program (2009).



a threat. More precisely, can it be optimal for decision makers to reduce their emissions in

order to ensure themselves again such threat? How will such a threat impact social welfare?

Those are the type of issues addressed in this paper.

The issue of pollution control under a threat of regime shifts has also been analyzed by

a few other authors. Clarke and Reed (1994) analyze the tradeoff between consumption and

pollution decisions under the threat of a catastrophic event. Tsur and Zemel (1998) and

de Zeeuw and Zemel (2011) examine the impacts of the threat of environmental disruptions

on the efficient level of pollution. Our approach differs from that of the three papers cited

above in some key respects. First, those papers deal with a local pollution problem (in a

world constituted of one country with a single decision maker). In our analysis, pollution

is global and the world is made of an arbitrary number of countries that undertake their

emission decisions strategically. Second, in those papers the “country” considered in the

open loop Nash equilibrium (OLNE) chooses and commits to a time path of emissions at the

outset of the planning horizon. In the present paper, emission strategies of the countries are

derived from a Markov perfect Nash equilibrium (MPNE). It is well known that the MPNE

is subgame perfect whereas the OLNE is not.2 Finally, it is also important to mention that

those papers study the effects of uncertainty by comparing the steady state under the threat

with that of the no-threat case, but they ignore the effects of the threat on welfare. We

perform our analysis in terms of equilibrium trajectories and we also look at the effects of

the threat on welfare.

We will assume that the state of damages can be either low or high. When it is currently

low, there is a positive known probability that it will jump up to its high level at some

unknown future date.3 When it is currently high, it will stay into that state forever. We

show that when countries act non-cooperatively the threat of a sudden jump in the damages

impacts their behavior in the same way as it does in the cooperative equilibrium.4 They

2See for instance Karp and Newbery (1993).
3There is an ongoing debate on whether or not human actions can trigger climate change. See for

instance Evans and Steven (2007).
4Threats of disruption in resource economics have been analyzed and discussed by a few authors. See for
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reduce their emissions to mitigate their exposure to threat, which in turn lowers the stock of

pollutant. That threat initially lowers the discounted net welfare, but, in the long-run, it can

increase it. The time path of emissions is non-monotone and discontinuous, but only in the

presence of the threat. Overall the non-cooperative equilibrium creates a social distortion

in terms of the environmental quality and social welfare. It results in a lower social welfare,

higher emissions and a higher stock of pollutant as compared to the cooperative equilibrium.

The remainder of this paper proceeds as follows. Section 2 presents the model. In

Section 3, we derive the equilibrium that results from the full coordination of emissions

control. In addition, we investigate the effects of the threat of a sudden jump in the damages

on that equilibrium. The Nash equilibrium of emissions is derived in Section 4. We then

analyze the effects of the threat of a jump on the equilibrium emission levels, the equilibrium

stock of pollutant and the equilibrium discounted net welfare. We also compare the outcome

resulting from that analysis to those obtained from the first best. Section 5 concludes.

2 Set up of the model

Consider a world of N identical countries whose production activity has as by-product some

pollution that damages a shared environmental resource. It will be assumed that one unit

of production generates one unit of emission. Let qi denote the emissions (production) of

country i. The current aggregate emissions of the world is then Q =
∑N

i=1 qi.

The current stock of pollutant is denoted z(t). We assume that the quantity of pollutants

emitted today by the world adds to the current stock of pollutant according to the following

differential equation:

ż(t) = Q(t)− ρz(t), ρ ∈ (0, 1), z(0) = z0, (1)

where ρ is the purification rate of the stock of pollutant.

As in Dockner and Long (1993), the typical country’s instantaneous benefit function is

example Loury (1983), Bergström et al. (1985), Laurent-Lucchetti et al. (2011), Hillman and Long (1983),
Gaudet and Lasserre (2011), Long (1975), Bahel (2011) and Polasky et al. (2011).
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given by

U(q(t)) = σq(t)− 1

2
q2(t),

where σ is a positive parameter. The stock of pollutant at each date generates the same

level of damages in each country (i.e. the pollution is global). Those damages are subject to

uncertainty. The damage function can be written as the product of two functions: a deter-

ministic part, which will be assumed quadratic and denoted D(z(t)) = 1
2
z(t)2; a stochastic

part, denoted θ(t), which captures the stochastic state of nature. Hence, at any time t, the

global damages are given by:

θ(t)

2
z(t)2.

There are two states of nature: θ > 0 and θ+m. The state θ corresponds to low damages,

whereas the state θ +m corresponds to high damages. Initially the countries are not fully

informed about future realizations of the states of damages. They know however that there

are two states of nature and they know the probabilities associated to them. The transition

between the two states is defined by the following stochastic process:

θ(t+ dt)− θ(t) =











m with probability βdt

0 with probability 1− βdt

}

, if θ(t) = θ

0 with probability 1 , if θ(t) = θ +m

(2)

where 0 ≤ βdt ≤ 1 and where β is a known non-negative parameter. Hence as long as the

current state of nature is low damages (θ(t) = θ), with probability βdt it will jump up to

the state of high damages θ+m over the interval [t, t+ dt]. Once the state of high damages

(θ(t) = θ+m) has occurred, it will never revert back to the low-damage state.5 The level of

severity of the jump in the damages is captured by the parameter non-negative real number

m. We assume that initially the state of nature is that of low damages.

The flow of net benefits to the typical country is therefore stochastic and given by;

π(q(t), z(t), t) = σq(t)− 1

2
q2(t)− θ(t)

2
z2(t). (3)

5As shown in Appendix A, this implies that the lifetime of the state of low damage is finite. In other
words, the countries know that the irreversible upward jump in the damages will happen but they do not
know the date of occurrence of such an event.
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For m > 0, the net benefit (3) will be discontinuous at the eventual date of the jump in the

state of damages. The particular case of m = 0 (or β = 0) corresponds to the well known

deterministic model of pollution control, the value of the jump being zero (or the probability

of the jump occurring being zero).

To characterize the effect of the possibility of such a jump in the damages on strategic

behavior of countries, we investigate, in order, the cooperative equilibrium and the non-

cooperative equilibrium.

3 Cooperative equilibrium

In the cooperative setting, at any date t, countries decide jointly the emission levels that

maximize the sum of their expected discounted net benefit. If z(t) is the current stock of

pollutant and θ(t) is the current state of nature, then the value function in current value at

the date t is:6

W (z(t), θ(t)) = max
q1,...,qN

{
N
∑

i=1

Et

∫ ∞

t

e−r(s−t)[σqi(s)−
1

2
q2i (s)−

θ(s)

2
z2(s)]ds},

subject to (1)-(2).

The Hamilton-Jaccobi-Bellman equation associated to this stochastic optimization is

rW (z, θ(t)) = max
q1,...,qN

{
N
∑

i=1

(σqi −
1

2
q2i )−Nθ(t)z2/2 + (

N
∑

k=1

qk −ρz)Wz(z, θ(t))

+E{∆W |θ(t)}}, (4)

where r is the discount rate and where:7

E{∆W |θ(t)} =

{

β[W (z, θ +m)−W (z, θ)], if θ(t) = θ

0, if θ(t) = θ +m.
(5)

The first-order conditions for the maximization of the right-hand side of (4) are, for i =

1, ..., N :

σ − qi +Wz(z, θ(t)) ≤ 0; qi ≥ 0; (σ − qi +Wz(z, θ(t))qi = 0. (6)

6Since the problem is autonomous and has an infinite horizon, W (z(t), θ(t)) depends only on the current
state variables and not explicitly on the current date t (see Kamien and Schwartz, 1981, p. 164).

7We use the generalized Itô lemma for jump process in deriving this Bellman equation.
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Thus, given the current state of nature, if the equilibrium emissions are positive at the

date t the marginal benefit derived from polluting by a country must be equal to the marginal

social cost of pollution, −Wz(z, θ(t)).

For an interior solution we get, from (6), that:

qi = σ +Wz(z, θ(t)). (7)

Substituting for this expression into (4) results in the following state dependent differential

equation:

rW (z, θ(t)) = Nσ2/2−Nθ(t)z2/2 + (Nσ − ρz)Wz +NWz(z, θ(t))
2/2 + E{∆W |θ(t)}. (8)

Given the particular structure of (8), it is helpful to determine first its solution for the state

of high damages and then use that solution to solve for the state of low damages.

3.1 The cooperative policy: state of high damages

Under this state, from (5), we have E{∆W |θ(t)} = 0. Hence (8) becomes:

rW (z, θ+m) = Nσ2/2−N(θ+m)z2/2+ (Nσ− ρz)Wz(z, θ+m) +NWz(z, θ+m)2/2. (9)

It is shown in Appendix B that the following value function solves (9):8

W (z, θ +m) = −A
2
z2 − Bz + C, (10)

where the coefficients A, B and C are given by:

A = [−(2ρ+ r) +
√

(2ρ+ r)2 + 4N2(m+ θ)]/2N > 0,

B = σAN/[NA + r + ρ] > 0,

C = [σ2N − 2σBN +B2N ]/2r > 0,

A′ ≡ ∂A

∂m
> 0; B′ ≡ ∂B

∂m
> 0; C ′ ≡ ∂C

∂m
< 0 and σ > B.

8This functional form implicitly means that we restrict our attention only on linear strategies in this
study. Since we have to do with a linear quadratic game, non-linear strategies may exist as well; see among
others, Tsutsui and Mino (1990) or Dockner and Long (1993). However, it can be shown that linear and
non-linear strategies yield the same steady-state.
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Therefore expression (7) states that if the state of high damages prevails at a given date

when the current stock of pollutant is z, then the equilibrium emission rate will be given by:

qi(z, θ +m) = σ − B − Az. (11)

Equation (11) gives the typical country’s decision rule in the cooperative equilibrium once

the state of high damages has occurred.

3.2 The cooperative policy: state of low damages

Under this state, from (5), we have that E{∆W |θ(t)} = β[W (z, θ+m)−W (z, θ)]. Substitut-

ing into (8) and rearranging we find that W (z, θ) is the solution of the following differential

equation:

(r+β)W (z, θ) = Nσ2/2−Nθz2/2+(Nσ−ρz)Wz(z, θ)+NWz(z, θ)
2/2+βW (z, θ+m), (12)

where W (z, θ +m) is given by (10).

Again, it is shown in Appendix B that the following quadratic form provides a solution:

W (z, θ) = −a1
2
z2 − a2z + a3. (13)

where the coefficients a1, a2, a3 are given by:

a1 = [−(2ρ+ r + β) +
√

(2ρ+ r + β)2 + 4N(Aβ +Nθ)]/2N,

a2 =
Nσa1 + βB

Na1 + ρ+ r + β
,

a3 = [σ2N + 2Cβ − 2σNa2 +Na22]/2(r + β),

a′1 ≡
∂a1
∂β

> 0; a′2 ≡
∂a2
∂β

> 0; a′3 ≡
∂a3
∂β

< 0 and σ > a2.

Making use of (7), we get that the typical country’s decision rule at any date t when the

state of damages is low is given:

qi(z, θ) = σ − a2 − a1z.

From now on we will denote by ν > 0 the uncertain date at which the jump in the

damages occurs.
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Using (1), the dynamic of the stock of pollutant on the interval of time [0, ν] can be

rewritten as:

ż(t) ≡ Nqi(z(t), θ)− ρz(t) = N [σ − a2 − a1z(t)]− ρz(t).

A particular solution of that differential equation is:

zL = N(σ − a2)/(ρ+Na1),

where L stands for the state of low damages. The general solution of the homogenous

equation associated to that differential equation is:

z(t) = ξe−(ρ+Na1)t,

where ξ is an arbitrary parameter. Hence the general solution of the above equation is:

zcL(t) = zL + ξe−(ρ+Na1)t.

Since zcL(0) = z0, we have ξ = z0 − zL. Denote by zcL(t) the equilibrium stock of pollutant,

qcL(t) the equilibrium emissions rate and W c
L(t) the discounted net welfare at date t ∈ [0, ν),

where the superscript c stands for the cooperative equilibrium. Their respective expressions

are:9

zcL(t) = N(σ − a2)/(ρ+Na1) + [z0 −N(σ − a2)/(ρ+Na1)]e
−(ρ+Na1)t, (14a)

qcL(t) = σ − a2 − a1z
c
L(t), (14b)

W c
L(t) = −a1zcL(t)2/2− a2z

c
L(t) + a3, (14c)

Let zcν ≡ zcL(ν).

Using (1) and (11), we get the dynamics of the stock of pollutant after the eventual jump

in the damages:

ż(t) ≡ qi(z(t), θ +m)− ρz(t) = N [σ − B − Az(t)]− ρz(t).

9In this paper, we consider only small values of the initial stock of pollutant z0, in order to get positive
emissions.
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We use a similar approach as for the state of low damages to solve this differential equation.

The solution of that equation with the initial condition z(ν) = zcν will be the equilibrium

stock of pollutant under the high damage state once has occurred. Its expression at any date

t ∈ [ν,∞) is:

zcH(t) = N(σ −B)/(ρ+NA) + [zcν −N(σ − B)/(ρ+NA)]e−(ρ+NA)(t−ν), (15a)

from which we derive the equilibrium emission levels (qcH(t)) and discounted net welfare

(W c
H(t)) at any date t ∈ [ν,∞):

qcH(t) = σ − B − AzcH(t), (15b)

W c
H(t) = −AzcH(t)2/2− BzcH(t) + C. (15c)

The following proposition characterizes the cooperative equilibrium steady state.

Proposition 1 In the fully cooperative equilibrium, we have:

(i) The steady state of the stock of pollutant exists and its expression is given by:

zsteac = N(σ − B)/(ρ+NA).

The stock of pollutant converges to zsteac and the emissions rate approaches asymptotically its

steady-state, qsteac = σ −B −Azsteac .

(ii) The steady state of emissions and that of the stock of pollutant are lower than they would

be in the absence of the threat of a jump in the damages.

Proof. (i) Since the lifetime of the state of low damages is finite, the dynamics of the long

run of the stock of pollutant and emissions rate are given respectively by (15a) and (15b).

They clearly converge respectively to zsteac and qsteac .

(ii) Notice that the steady state of the stock of pollutant and the steady state of emissions

in the no threat context are given respectively by zsteac |m=0
and qsteac |m=0

. Making use of

the values of A and B given in Section 3.1, it is easy to see that ∂zsteac /∂m < 0. Thus

zsteac < zsteac |m=0
. We also have qsteac = σ − B − AN(σ − B)/(ρ + NA). Differentiating and

9



rearranging, we get: ∂qsteac /∂m = −B′ρ/(ρ +NA) − ρNA′(σ − B)/(ρ +NA)2 < 0. Hence,

qsteac < qsteac |m=0
.

3.3 Effects of the threat of a jump

To investigate the effect of the threat of a jump in the damages on the equilibrium emissions

rate, the equilibrium stock of pollutant, and the equilibrium welfare, we first make the

comparison with what would occur in the absence of such a threat.

Denote respectively by z̃c(t), q̃c(t), and W̃ (t) the equilibrium stock of pollutant, the

emissions rate and the discounted net welfare at the date t for the case of no threat, which

corresponds in this model to either m = 0 or β = 0. Then, (a) for all t ∈ [0, ν), z̃c(t) ≡

zcL(t)|β=0
, q̃c(t) ≡ qcL(t)|β=0

, and W̃ (t) ≡ W c
L(t)|β=0

; (b) for all t ∈ [ν,∞), z̃c(t) ≡ zcH(t)|m=0

and q̃c(t) ≡ qcH(t)|m=0
, and W̃ (t) ≡W c

H(t)|m=0
.

Proposition 2 In the cooperative equilibrium, we have:

(i) z̃c(t) > zcL(t) for all t ∈ (0, ν],

(ii) q̃c(t) > qcL(t) for all t ∈ [0, ν),

(iii) W̃ (0) > W c
L(0).

Proof. See Appendix B.1.

Proposition 2 states that for any feasible value of the initial stock of pollutant, the

emission level and its resulting stock of pollutant are lower under the threat of a jump in the

damages than its absence. This holds for the whole duration of the state of low damages.

The following corollary shows that those results also hold in the state of high damages.

Corollary 3.1 In the cooperative equilibrium, after the failure of the state of low damages,

namely during the interval of time [ν,∞), the following results hold.

(i) z̃c(t) > zcH(t) for all t ∈ [ν,∞).

(ii) q̃c(t) > qcH(t) for all t ∈ [ν,∞).

Proof. See Appendix B.2.
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Thus the countries anticipate the fact that, although the date of the jump in damages

is uncertain, it will occur in finite time with certainty. This incites them to alleviate their

exposure to high damages by adopting a lower emissions path, which in turn generates a

lower stock of pollutant.

q(t)

tν0

Figure 1: Effects of the threat on the optimal emissions.

Since a′2 > 0 and a′1 > 0 we have a2 > a2|β=0
≡ B and a1 > a1|β=0

≡ A. Hence,

a2 −B + (a1 − A)zcν > 0, which, rearranging, yields

qi(z
c
ν , θ +m) ≡ σ − B −Azcν > σ − a2 − a1z

c
ν ≡ qi(z

c
ν , θ).

This implies that the emission level jumps up at the date at which the state of low damages

ends (i.e. at date t = ν). Consequently, as illustrated by the thin line in Figure 1, the

emissions trajectory under the threat is discontinuous and is non-monotone. This is in

contrast to the literature on pollution control with no threat of a jump in the damages,

which suggests that the transition of the emission levels from the initial date to the steady-

state is continuous and monotone (as illustrated by thick line in Figure 1). The above

findings show that those results do not hold when the threat of an upward jump in the

damages prevails.
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Let us now consider the effect of an increase in the threat of an upward jump in the

damages in the cooperative equilibrium. Denote by Xβ the random variable representing

the duration of the state of low damages and notice that pr(Xβ > s) = pr(θ(s) = θ|θ(0) =

θ) = ℓ(s) = e−βs. Hence, if β1 > β2 ≥ 0, then pr(Xβ2
> s) > pr(Xβ1

> s) for all s > 0 and

pr(Xβ2
> 0) = pr(Xβ1

> 0) = 1. Since β1 > β2 ≥ 0 are arbitrary, we can conclude that at

each date t ∈ [0, ν), the level of threat of a jump occurring in the next instant is increasing

in β. We have the following results.

Proposition 3 In the cooperative equilibrium,

(i) At all positive dates, the higher the level of threat of a jump in the damages, the lower is

the stock of pollutant.

(ii) At the initial date, an increase in the threat of an upward jump in the damages always

decreases the discounted net welfare. In the long run, such an increase has no effect on the

discounted net welfare.

Proof. (i) It was shown in Proposition 2 that ∂zcL(t)/∂β < 0 for all t ∈ (0, ν]. Since

zcL(ν) = zcν , we then have ∂zcν/∂β < 0. From (15a), we can derive the following: ∂zcH(t)/∂β =

(∂zcν/∂β)e
−(ρ+NA)(t−ν) < 0 for all t ≥ ν.

(ii) Since z0 ≥ 0, a′1 > 0, a′2 > 0 and a′3 < 0, it is an easy matter to derive from (14c)

the following ∂W c
L(z0)/∂β = −a′1z20/2 − a′2z0 + a′3 < 0. In the long run the discounted net

welfare is equal to: W c
H(z

stea
c ) = −A(zsteac )2/2 − Bzsteac + C. It does not depend on β, the

sole parameter that allows us to capture variations in threat.

At any date, the comparison between the discounted net welfare under the threat of a

jump, W (z(t)), and that with no threat of a jump, W̃ (z̃(t)), can be carried out as follows:

W (z(t))− W̃ (z̃(t)) = {W (z(t))−W (z̃(t))}+ {W (z̃(t))− W̃ (z̃(t))}.

The threat lowers the stock of pollutant, keeping the risk fixed (first term). The same current

stock of pollutant generates more risk (second term). The first term on the right-hand side

captures the strategic effect. Since W ′′(z) < 0 and W ′(z) < 0, this effect is always positive
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except at the initial date.10 The second term on the right-hand side captures the effect of

the threat of a jump in the damages, which by Proposition 2 is always negative. Both effects

work in opposite directions, so that the net effect can be either positive or negative.

In the long run, it is possible for the discounted net welfare under the threat to be greater

than in the no-threat case. Indeed, there exist values of the parameters for which this is the

case. For instance, with σ = 100; ρ = 0.005; r = 0.025; θ = 1; N = 2; β = 1; m = 100, we get

W (zsteac ) = −0.594 > −59.995 = W̃ (z̃steac ). Therefore the existence of the threat can improve

social welfare. More generally, we show in Appendix B.3 that, in the long run, the strategic

effect can dominate the threat effect, but only if r > ρ and N ≥ (r + ρ)
√
ρ/
√

θ(r − ρ).

It is interesting to note that some results differ from those obtained by Bramoullé and Treich

(2009) in their static model. They analyze the effects of uncertainty on the optimal emissions

and welfare for risk-averse polluters. One of their results is that with a constant-elasticity

damage function, small risks would have a net positive effect on welfare. In this paper the

damage function has a constant elasticity with respect to the stock of pollutant, but polluters

are risk-neutral. We have shown that uncertainty lowers the discounted net welfare at the

initial date, irrespective of the level of risk.

4 Non-cooperative equilibrium

This section derives the Nash equilibrium for the differential game in pollution control defined

by (1), (2) and (3). In this setting, at any date t, each country decides unilaterally the

emission strategy that maximizes its own discounted net benefit, considering as given the

emission strategies of the other countries. The countries being identical, we restrict attention

to symmetric equilibria. If z(t) is the current stock of pollutant and θ(t) the current state

of nature, the current value function of the typical country j, j = 1, ..., N , is:

V (z, θ(t)) = max
qj

{Et

∫ ∞

t

e−r(s−t)[σqj(s)−
1

2
q2j (s)−

θ(s)

2
z(s)2]ds},

10At the initial date, since z(0) = z̃(0) = z0, the expression of the strategic effect is: W c

L
(z0) −W c

L
(z0),

which is equal to zero so that the uncertainty effect outweighs the strategic one.
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subject to (1), (2) and (3).

The associated Hamilton-Jacobi-Bellman equation is:

rV (z, θ(t)) = max
qj

{σqj −
1

2
q2j − θ(t)z2/2 + (

N
∑

k=1

qk − ρz)Vz(z, θ(t)) + E{∆V |θ(t)}}, (16)

where:

E{∆V |θ(t)} =

{

β[V (z, θ +m)− V (z, θ)], if θ(t) = θ

0, if θ(t) = θ +m.
(17)

The first-order conditions for the maximization of the right-hand side of (16) require, for

j = 1, ..., N :

σ − qj + Vz(z, θ(t)) ≤ 0; qj ≥ 0; (σ − qj + Vz(z, θ(t)))qj = 0. (18)

In the above expressions, −Vz(z, θ(t)) represents the private marginal cost of pollution.

Hence, if at date t the emissions rate of country j is positive, it must be the case that the

marginal benefit derived from polluting is equal to its marginal private cost of the polluting.

For such an interior solution, we have:

qj = σ + Vz(z, θ(t)). (19)

Substituting the optimal emissions (19) into (16) yields:

rV (z, θ(t)) = (N − 1/2)Vz(z, θ(t))
2 + (Nσ − ρz)Vz(z, θ(t)) + σ2/2− θ(t)z2/2

+ E{∆V |θ(t)}. (20)

As for the cooperative case, we will first solve (20) for the state of high damages before

solving it for the state of low damages.

4.1 The unilateral policy: state of high damages

In the state of high damages (17) yields E{∆V |θ(t)} = 0. Equation (20) can therefore be

rewritten as:

rV (z, θ+m) = (N − 1/2)Vz(z, θ+m)2+(Nσ− ρz)Vz(z, θ+m)+σ2/2− (θ+m)z2/2. (21)
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As shown in Appendix C, a solution is:

V (z, θ +m) = −Â
2
z2 − B̂z + Ĉ, (22)

where the coefficients Â, B̂ and Ĉ are given by:

Â = [−(2ρ+ r) +
√

(2ρ+ r)2 + 4(2N − 1)(θ +m)]/2(2N − 1),

B̂ = σNÂ/[r + ρ+ (2N − 1)Â],

Ĉ = [σ2 − 2σNB̂ + (2N − 1)B̂2]/2r.

Using (19), we can then derive the typical country’s decision rule for emission, which is given

by:

qnj (z, θ +m) = σ − B̂ − Âz. (23)

4.2 The unilateral policy: state of low damages

In the low-damages state, E{∆V |θ(t)} = β[V (z, θ + m) − V (z, θ)]. Substituting into (20)

and rearranging yields the following differential equation:

(N−1/2)Vz(z, θ)
2+(Nσ−ρz)Vz(z, θ)−(r+β)V (z, θ)+βV (z, θ+m)+σ2/2−θz2/2 = 0, (24)

where V (z, θ +m) is given by (22).

It is shown in Appendix C that the following is a solution:

V (z, θ) = −1

2
u1z

2 − u2z + u3,

where:

u1 = [−(2ρ+ r + β) +

√

(2ρ+ r + β)2 + 4(2N − 1)(Âβ + θ)]/2(2N − 1),

u2 =
Nσu1 + βB̂

(2N − 1)u1 + ρ+ r + β
,

u3 = [σ2 + 2βĈ − 2σNu2 + u22(2N − 1)]/2(r + β),

Letting the superscript n stand for the non-cooperative equilibrium, the decision rule for

emissions is

qnj (z, θ) = σ − u2 − u1z.
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Knowledge of the positive parameters u1, u2, u3, Â, B̂, Ĉ allows us to summarize the char-

acterization of the linear Markov perfect equilibrium as follows:

Proposition 4 The N-tuple (qn1 , ..., q
n
N) given, for j = 1, 2, ..., N , by:

qnj (z, θ(t)) =

{

σ − u2 − u1z, if θ(t) = θ

σ − B̂ − Âz, if θ(t) = θ +m

constitutes the unique stationary linear Markov perfect equilibrium and the corresponding

current discounted net welfare for each country is:

V (z, θ(t)) =

{

−1
2
u1z

2 − u2z + u3, if θ(t) = θ

−1
2
Âz2 − B̂z + Ĉ, if θ(t) = θ +m

It is interesting to note that for the case where β = 0, m = 0 and N = 2, Proposition 4

yields exactly the same linear Markov perfect equilibrium and discounted net welfare as in

Dockner and Long (1993). This proposition is a generalization of their result to an arbitrary

number of countries and uncertainty about the date of a possible jump in the damages.

The following proposition characterizes the non-cooperative equilibrium steady state.

Proposition 5 In the non-cooperative emissions game,

(i) The stock of pollutant converges asymptotically to its steady-state, zstean = N(σ− B̂)/(ρ+

NÂ), which is smaller than it would be in the absence of the threat of a jump in the damages

and larger than it would be in the cooperative equilibrium;

(ii) The steady state emissions rate is qstean = σ − B̂ − Âzstean , which is larger than the

individual emissions rate in the cooperative equilibrium, but smaller than it would be if their

were no threat of a jump in the damages.

Proof. See Appendix C.2.

In the non-cooperative equilibrium, the dynamics of the stock of pollutant during the

state of low damages is given by:

ż(t) ≡ Nqnj (z(t), θ)− ρz(t) = N [σ − u2 − u1z(t)]− ρz(t), z(0) = z0.
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By the same method as for the cooperative equilibrium, we derive the expressions for the

stock of pollutant, the emissions rate and the discounted net welfare in the state of low

damages. They are respectively given at any date t ∈ [0, ν) by

znL(t) = N(σ − u2)/(ρ+Nu1) + [z0 −N(σ − u2)/(ρ+Nu1)]e
−(ρ+Nu1)t,

qnL(t) = σ − u2 − u1z
n
L(t),

V n
L (t) = −u1znL(t)2/2− u2z

n
L(t) + u3.

Let us set znL(ν) ≡ znν . Likewise, at any date t ∈ [ν,+∞) the equilibrium stock of pollutant,

the equilibrium emission levels and the discounted net welfare of the state of high damages

are respectively given by

znH(t) = N(σ − B̂)/(ρ+NÂ) + [znν −N(σ − B̂)/(ρ+NÂ)]e−(ρ+NÂ)(t−ν),

qnH(t) = σ − B̂ − ÂznH(t),

V n
H(t) = −ÂznH(t)2/2− B̂znH(t) + Ĉ.

It is shown in Appendix D that the paths of emissions and of the stock of pollutant in

the cooperative equilibrium are lower than those in the non-cooperative equilibrium. The

reason for this is of course that the social marginal cost of pollution is higher than the private

marginal cost of pollution (i.e. −Wz(z, θ(t)) > −Vz(z, θ(t))). The disincentive to pollute is

therefore lower in the non-cooperative equilibrium than it is in the cooperative equilibrium.

As a consequence, the non-cooperative equilibrium generates a higher stock of pollutant and

a lower discounted net welfare as compared to the cooperative equilibrium. It is also shown

in Appendix D that the steady-state welfare is strictly lower than the steady-state welfare

in the cooperative equilibrium. This is to be expected, since the non-cooperative decision

rule could always have been adopted in the cooperative equilibrium, but it was not.

4.3 Effects of the threat of a jump

This section analyzes the effects of the threat of a jump in the damages on the equilibrium

emission levels, the equilibrium stock of pollutant and the equilibrium welfare resulting from
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the Nash equilibrium pollution control.

Denote respectively by z̃n(t), q̃n(t) and Ṽn(t) the equilibrium stock of pollutant, the

emissions rate and the discounted net welfare at the date t in the case where there is no threat

of a jump in the damages. Then, (a) for all t ∈ [0, ν), z̃c(t) ≡ znL(t)|β=0
, q̃n(t) ≡ qnL(t)|β=0

,

and Ṽn(t) ≡ V n
L (t)|β=0

; (b) for all t ∈ [ν,∞), z̃n(t) ≡ znH(t)|m=0
, q̃n(t) ≡ qnH(t)|m=0

, and

Ṽn(t) ≡ V n
H(t)|m=0

.

The following proposition compares the dynamics of the equilibrium stock of pollutant,

the equilibrium emission levels and the equilibrium discounted net welfare when there is a

threat of a jump in the damages to that in the absence of such a threat.

Proposition 6 In the non-cooperative emissions game, we have:

(i) q̃n(t) > qnL(t) for all t ∈ [0, ν), and q̃n(t) > qnH(t) for all t ≥ ν.

(ii) z̃n(t) > znL(t) for all t ∈ (0, ν], and z̃n(t) > znH(t) for all t ≥ ν.

(iii) Ṽn(0) > V n
L (0).

Proof. See Appendix C.3.

Proposition 6 shows that implementation by the countries of the non-cooperative emission

control under the threat of a sudden jump in the damages will result in a lower emission

path and a lower stock of pollutant path than if there were no threat of such a jump. This

result is the same as in the cooperative equilibrium. The reason for this similarity is that the

damages harm the countries equally and the state of high damages will occur with certainty

in finite time. Damages will be severe in the state of high damages if countries were to

decide not to reduce their emissions when faced with the threat of the jump in damages.

Thus the threat of a sudden jump in the damages increases the incentive to cut emissions as

compared with the case of no threat, regardless of whether the countries act cooperatively

or non-cooperatively in controlling their emissions.

Exactly as for the cooperative equilibrium, it can also be shown that a non-monotone

and discontinuous emission strategy arises, but only when the threat prevails. An exogenous

increase in the threat of an upward jump in the damages lowers the current stock of pollutant.
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Moreover, at the initial date, an increase in the threat of a jump always decreases the

discounted net welfare, whereas in the long run it has no effect on the discounted welfare. In

the long run, using a similar reasoning as for the cooperative setting, it can be shown that

this type of threat will again result in a higher welfare for each country than in its absence

only if the number of country is sufficiently large i.e. N ≥ [2ρ+ ρ2(r + 2ρ)/θ]/(r + ρ).

5 Conclusion

This paper has extended the model of pollution control by Dockner and Long (1993) in

two respects. First, an arbitrary number of countries are involved in the pollution activity.

Second, at each instant those polluters suffer from the risk of a sudden jump in their common

damages. It turns out that the equilibrium outcome is affected in much the same way by the

threat of a jump in damages whether the countries act cooperatively or non-cooperatively.

The discounted welfare, the emissions path and the path of the stock of pollutant are lower

than in the absence of the threat. Unlike in the no threat case, the emissions path is

discontinuous and it converges to its steady-state non-monotonically. An increase in this

threat decreases the discounted welfare and lowers the time path of the stock of pollutant.

However, in the long run, it is possible for this type of uncertainty to have a net positive

effect on welfare. This may be the case especially if the number of countries is large. But,

as can be expected, the non-cooperative outcome always results in a lower environmental

quality and a lower welfare than the cooperative outcome.

Our analysis may contribute to the literature of dynamic international environmental

agreements (IEAs) with a stock of pollutant.11 The general finding of that literature is that

only a small number of countries can reach such agreements. We claim that the threat of

an upward jump in the damages may increase participation in an IEA. This should be the

case because the stock of pollution in the presence of the threat is lower than in the no

threat case. Moreover, as suggested by that literature, when the stock of pollution is small

11See Rubio and Casino (2005), Rubio and Ulph (2007) and Nkuiya (2010).
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at the outset, the number of participating decreases while the stock of pollution undergoes

an increasing evolution.

Our analysis may have another important application as well. Bacterial resistance to an-

tibiotics represents an intertemporal externality, which can build up as any stock of pollution

can. In this context firms produce drugs, which allow to kill bacteria.12 To be more relevant,

that important literature needs to be generalized to the situation where there is a threat

of occurrence of a dangerous resistance regime. This will involve the type of framework

developed in this paper.

12See for instance Rudholm (2002), Herrmann and Gaudet (2009) and Herrmann (2010) for an overview
of that literature.
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Appendix

The following result known as the Gronwall’s inequality, will be helpful in this appendix.

Consider a function y : [a, b] → R which satisfies the following inequality: ẏ(t) ≥ uy(t) + v

for all t ∈ [a, b], with y(a) = ya. We must have: y(t) ≥ eu(t−a)[ya + v
∫ t

a
eu(τ−a)dτ ], for all

t ∈ [a, b], where u, v and b > a are arbitrary real numbers. For the proof, see for example

Gronwall (1919).

A Proof that the lifetime of the state of low damages is finite

Let ℓ(s) ≡ pr(θ(t + s) = θ|θ(t) = θ), the probability that the low damage state will occur

at t + s if it occurs at t.13 From the expression for θ(t) defined by (2), we know that

θ(t+ s+ ds) = θ+m with probability βds if θ(t+ s) = θ; θ(t+ s+ ds) = θ with probability

1−βds if θ(t+ s) = θ and θ(t+ s+ds) = θ with probability 0 if θ(t+ s) = θ+m. Therefore,

we have the following:

ℓ(s+ ds) = (1− βds)ℓ(s) + 0× (1− ℓ(s)).

Hence:

dℓ

ds
(s) = −βℓ(s) for all s ≥ 0. (25)

The general solution of the above differential equation is

ℓ(s) = ce−βs for all s ≥ 0,

where c is an arbitrary constant. Since ℓ(0) = 1, we must have c = 1, and hence:

ℓ(s) = e−βs for all s ≥ 0. (26)

It follows that the probability that the jump in the damage function never occurs (i.e. ν = ∞)

is ℓ(∞) = 0. Therefore pr(0 < ν <∞) = 1−pr(ν = ∞) = 1; where ν is the random variable

denoting the date at which the jump in the damages arises.

13The expression of ℓ(s) does not depend on t because the stochastic process (2) is time stationary.
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B Details for the Cooperative equilibrium

Consider first the state θ(t) = θ+m. The equilibrium value function is then obtained as the

solution to the differential equation:

rW (z, θ+m) = Nσ2/2−N(θ+m)z2/2+(Nσ−ρz)Wz(z, θ+m)+NWz(z, θ+m)2/2. (27)

The quadratic structure of terms in the above equation suggests the following guess:

W (z, θ +m) = −A
2
z2 − Bz + C,

from which we derive Wz(z, θ +m) = −Az − B. Plugging those two expressions into (27)

and equating the coefficients of powers of z, we get:

A = [−(2ρ+ r)±
√

(2ρ+ r)2 + 4N2(m+ θ)]/2N,

B = σAN/[NA + r + ρ],

C = [σ2N − 2σBN +B2N ]/2r.

In order to assure the stability of the steady state we retain for A only the positive root:

A = [−(2ρ+ r) +
√

(2ρ+ r)2 + 4N2(m+ θ)]/2N > 0.

It is an easy matter to verify that:

A′ ≡ ∂A

∂m
> 0;B′ ≡ ∂B

∂m
=
∂B

∂A
× ∂A

∂m
> 0;C ′ ≡ ∂C

∂m
=
∂C

∂B
× ∂B

∂m
< 0.

We also have: σ −B = σ(r + ρ)/(NA + r + ρ) > 0, which implies that σ > B.

Consider now the state θ(t) = θ. The equilibrium value function is then obtained as the

solution of:

(r+β)W (z, θ) = Nσ2/2−Nθz2/2+(Nσ−ρz)Wz(z, θ)+NWz(z, θ)
2/2+βW c(z, θ+m). (28)

Again, a plausible guess is:

W (z, θ) = −a1
2
z2 − a2z + a3, (29)
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which yieldsWz(z, θ) = −a1z−a2. Substituting into (28) and equating coefficients of powers

of z of the resulting polynomials, we get:

a1 = [−(2ρ+ r + β)±
√

(2ρ+ r + β)2 + 4N(Aβ +Nθ)]/2N,

a2 =
Nσa1 + βB

Na1 + ρ+ r + β
, (30)

a3 = [σ2N + 2Cβ − 2σNa2 +Na22]/2(r + β).

In order to assure the stability of the steady state, we retain only the positive root for a1:

a1 = [−(2ρ+ r + β) +
√

(2ρ+ r + β)2 + 4N(Aβ +Nθ)]/2N > 0.

We have, σ − a2 = [σ(r + ρ) + β(σ − B)]/(Na1 + ρ + r + β) > 0 which yields σ > a2.

There remains to show that a′1 ≡ ∂a1/∂β > 0, a′2 ≡ ∂a2/∂β > 0, and a′3 ≡ ∂a3/∂β < 0.

From (30), differentiating with respect β, we get:

a′1 = [−1 + ((2ρ+ r + β) + 2AN)/
√

(2ρ+ r + β)2 + 4N(Aβ +Nθ)]/2N.

Hence a′1 > 0 if and only if (2ρ+r+β)+2AN >
√

(2ρ+ r + β)2 + 4N(Aβ +Nθ). Squaring

both sides of this inequality, rearranging and using the fact that A satisfies the polynomial

NA2+(r+2ρ)A = N(θ+m), we obtain that the inequality is equivalent to m > 0, which is

true if the apprehended jump in the damages is to be positive. Hence we can conclude that

a′1 > 0.

a′2 = {Na′1[σ(r + ρ) + β(σ − B)]−Na1(σ −B) +B(r + ρ)}/(Na1 + ρ+ r + β)2

First note that a1 satisfies the polynomial Na21 + (r + β + 2ρ)a1 − (Aβ + Nθ) = 0, which,

when differentiated with respect to β yields 2[Na1 + (r + β + 2ρ)/2]a′1 = A − a1. The

left-hand side being positive, we therefore have the A − a1 > 0. Now using the fact that

B(r + ρ) = (σ − B)AN , a′2 can be rewritten as a′2 = {Na′1[σ(r + ρ) + β(σ − B)] + N(σ −

B)(A− a1)}/(Na1 + ρ+ r + β)2, which is positive since σ > B, as just shown above.
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a′3 = [N(B − a2)(B − σ + a2 − σ) + 2Na′2(r + β)(a2 − σ)]/2(r + β)2,

because 2rC = N(σ − B)2. Since σ > B, σ > a2, and

B − a2 = (A− a1)(σ − B)N/(Na1 + r + ρ+ β) > 0, it follows that a′3 < 0.

B.1 Proof of Proposition 2

(i) From (14a), we derive the following:

∂zcL(t)

∂β
= −N [a′2(ρ+Na1) +Na′1(σ − a2)]

1− e−(ρ+Na1)t

(ρ+Na1)2
− tNa′1(z0 −

N(σ − a2)

ρ+Na1
)e−(ρ+Na1)t

If z0 ≥ [N(σ− a2)]/[ρ+Na1], then ∂z
c
L(t)/∂β < 0 for all t ∈ (0, ν], since a′2 > 0, a′1 > 0 and

σ − a2 > 0. If z0 < [N(σ − a2)]/[ρ+Na1], then ∂z
c
L(t)/∂β < 0 if and only if:

tNa′1(−z0 +
N(σ − a2)

ρ+Na1
)e−(ρ+Na1)t < N [a′2(ρ+Na1) +Na′1(σ − a2)]

1− e−(ρ+Na1)t

(ρ+Na1)2

Rearranging, one gets:

a′1(−z0 +
N(σ − a2)

ρ+Na1
) <

[a′2(ρ+Na1) +Na′1(σ − a2)]

(ρ+Na1)

e(ρ+Na1)t − 1

(ρ+Na1)t
. (31)

Set ψ(s) = es−1
s

for all s > 0. We have ψ′(s) > 0 and ψ(s) > 1 for all s > 0. We also

have a′1(−z0 + N(σ−a2)
ρ+Na1

) <
a′
2
(ρ+Na1)+Na′

1
(σ−a2)

(ρ+Na1)
for non-negative values of z0. Combining these

two facts allows to see that inequality (31) always holds. Therefore ∂zcL(t)/∂β < 0 in that

case as well. We can therefore conclude that zcL(t) < zcL(t)|β=0 = z̃c(t) for all t ∈ (0, ν].

(ii) Set A∗ = A|m=0
; B∗ = B|m=0

; A∗ = a1|β=0
and B∗ = a2|β=0

, with a1, a2, A and B as given

in Section 3, and set y(t) = q̃c(t)− qcL(t) = qcL(t)|β=0
− qcL(t). We want to show that y(t) > 0

for all t ∈ [0, ν). From (14a) and (14b), one obtains:

y(t) = a2 − B∗ + a1z
c
L(t)−A∗z̃c(t), (32)

and y(0) = a2 − B∗ + z0(a1 − A∗). Since a2 > B∗ and a1 > A∗, it follows that y(0) > 0.

Differentiating equation 32 with respect to time yields: ẏ(t) = a1ż
c
L(t) − A∗ ˙̃zc(t). Making

use of (1), (14a) and (14b), this expression can be rewritten as ẏ(t) = −(ρ + NA∗)y(t) +
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N(a1 − A∗)qcL(t) + ρ(a2 − B∗). Since qcL(t) ≥ 0, a1 > A∗ and a2 > B∗, it follows that

ẏ(t) ≥ −(ρ + NA∗)y(t) for all t ∈ [0, ν). By Gronwall’s inequality, we then have y(t) ≥

y(0)e−(ρ+NA∗)t > 0 for all t ∈ [0, ν).

(iii) Since z0 ≥ 0, a′1 > 0, a′2 > 0 and a′3 < 0, it follows that W c
L(0) = −a1z20/2− a2z0 + a3 <

W c
L(0)|β=0

≡ W̃c(0).

B.2 Proof of corollary 3.1

(i) Using result (i) from Proposition 2 at the instant of time t = ν, one gets: z̃c(ν) > zcν . Set

g(t) = z̃c(t)− zcH(t) for all t ≥ ν. Clearly we have g(ν) = z̃c(ν)− zcν > 0. It is easy to show

that ġ(t) = −(ρ + NA∗)g(t) + N(B − B∗) + N(A − A∗)zcH(t). Since A > A∗, B > B∗ and

zcH(t) ≥ 0 we have ġ(t) ≥ −(ρ +NA∗)g(t). Making use of Gronwall’s inequality, we obtain

g(t) ≥ g(ν)e−(ρ+NA∗)(t−ν) > 0, for all t ≥ ν. Result (i) then follows.

(ii) Let us first prove that qcH(ν) = σ − B − Azcν < q̃c(ν) = σ − B∗ − A∗z̃c(ν). Notice

that limβ→+∞ a1(β) = A and limβ→+∞ a2(β) = B; in addition, a1(β), a2(β) are increasing

in β, and hence A and B are respectively their minimum upper bound. Since qcL(t) =

σ − a2 − a1z
c
L(t) ≤ σ − B∗ − A∗z̃c(t) = q̃c(t) for all t ∈ [0, ν), by continuity of z̃c(t) and

zcL(t) at the point t = ν that inequality also works for t = ν. Hence we have σ +B +Azcν >

σ + a2(β) + a1(β)z
c
ν ≥ σ + B∗ + A∗z̃c(ν). Rearranging the first and the last term of these

inequalities, one obtains qcH(ν) = σ −B −Azcν < σ − B∗ −A∗z̃c(ν) = q̃c(ν).

Now, we are going to prove that qcH(t) < q̃c(t) for all t ≥ ν. Set p(t) = q̃c(t) − qcH(t)

for all t ≥ ν. Since qcH(ν) < q̃c(ν), we have p(ν) > 0. Using a similar method as above,

we get that ṗ(t) = −(ρ +NA∗)p(t) + ρ(B − B∗) + N(A − A∗)qcH(t), from which we derive:

ṗ(t) > −(ρ + NA∗)p(t) for all t ≥ ν. Applying Gronwall’s inequality, we obtain p(t) ≥

p(ν)e−(ρ+NA∗)(t−ν) > 0 for all t ≥ ν. Hence q̃c(t) > qcH(t) for all t ≥ ν.

B.3 Proof that W (zsteac ) > W̃ (z̃steac ) if and only if ρ(r + ρ)2 ≤ N2θ(r − ρ).

Recall that W̃ (z̃steac ) = W (zsteac )|m=0 and W (zsteac ) ≡ W (zsteac , θ + m) = −A(zsteac )2/2 −

Bzsteac + C. Replacing A, B, C and zsteac by their values given respectively in Section 3.1
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and in Proposition 1, we get:

W (zsteac ) = σ2N(r + ρ)[N2(ρ− r)(θ +m) + ρ2(ρ+ r)]/2r[ρ(r + ρ) +N2(θ +m)]2,

from which we derive

∂W (zsteac )/∂m = −σ2N3(r + ρ)[N2(ρ− r)(θ +m) + ρ(ρ+ r)2]/2r[ρ(r + ρ) +N2(θ +m)]3.

It is helpful to distinguish three cases.

Case 1 : if ρ ≥ r then, ∂W (zsteac )/∂m < 0 for all m > 0. Hence W (zsteac )|m=0 > W (zsteac ).

Case 2 : if ρ(r + ρ)2 > N2θ(r − ρ) > 0, then W (zsteac ) is convex in m; in addition, we have

limm→∞W (zsteac ) = 0 < W (zsteac )|m=0. Therefore W (zsteac )|m=0 > W (zsteac ).

Case 3 : if N2θ(r − ρ) ≥ ρ(r + ρ)2, ∂W (zsteac )/∂m > 0 for all m > 0. Hence W (zsteac ) >

W (zsteac )|m=0. The result then follows.

C Details for the non-cooperative equilibrium

Consider first the state θ(t) = θ+m. The equilibrium value function must then be a solution

to the following differential equation:

rV (z, θ+m) = (N − 1/2)Vz(z, θ+m)2+(Nσ− ρz)Vz(z, θ+m)+σ2/2− (θ+m)z2/2. (33)

Given the quadratic nature of the instantaneous benefit function, a plausible guess is:

V (z, θ +m) = −Â
2
z2 − B̂z + Ĉ. (34)

Using a similar argument as for the cooperative equilibrium, we get that this will indeed be

a solution if:

Â = [−(2ρ+ r) +
√

(2ρ+ r)2 + 4(2N − 1)(θ +m)]/2(2N − 1) > 0,

B̂ = σNÂ/[r + ρ+ (2N − 1)Â], (35)

Ĉ = [σ2 − 2σNB̂ + (2N − 1)B̂2]/2r.
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We have σ− B̂ = σ[(r+ρ)+ Â(N −1)]/[r+ρ+(2N −1)Â] > 0, and hence σ > B̂. Applying

the chain rule for differentiation, we obtain the following results:

Â′ ≡ ∂Â

∂m
> 0; B̂′ ≡ ∂B̂

∂m
=
∂B̂

∂Â
× ∂Â

∂m
> 0; Ĉ ′ ≡ ∂Ĉ

∂m
=
∂Ĉ

∂B̂
× ∂B̂

∂m
< 0.

Consider next the state θ(t) = θ. The equilibrium value function must then solve:

(N−1/2)Vz(z, θ)
2+(Nσ−ρz)Vz(z, θ)−(r+β)V (z, θ)+βV (z, θ+m)+σ2/2−θz2/2 = 0. (36)

Again a plausible guess is:

V (z, θ) = −u1
2
z2 − u2z + u3. (37)

Using a similar method as for the cooperative equilibrium, we find that it will indeed be a

solution if:

u1 = [−(2ρ+ r + β) +

√

(2ρ+ r + β)2 + 4(2N − 1)(Âβ + θ)]/2(2N − 1),

u2 =
Nσu1 + βB̂

(2N − 1)u1 + ρ+ r + β
,

u3 = [σ2 + 2βĈ − 2σNu2 + u22(2N − 1)]/2(r + β).

There remains to determine the signs of u′1 ≡ ∂u1/∂β, u
′
2 ≡ ∂u2/∂β, and u

′
3 ≡ ∂u3/∂β.

u′1 = [−1 +
(β + r + 2ρ) + 2(2N − 1)Â

√

(2ρ+ r + β)2 + 4(2N − 1)(Âβ + θ)
]/2(2N − 1).

Using a similar argument as for the proof of a′1 > 0, while taking into account the fact that

Â satisfies (2N − 1)Â2 + (r + 2ρ)Â = m+ θ, we verify that u′1 > 0. Notice that u1 satisfies

the polynomial (2N −1)u21+(2ρ+β+ r)u1− (Âβ+ θ) = 0, which, upon differentiation with

respect to β, yields u′1[2(2N − 1)u1 + 2ρ+ β + r] = Â− u1. Since the left-hand side of this

equality is positive, so is its right-hand side. Therefore Â > u1 as stated.

u′2 = {Nσ(ρ+r)u′1+βu′1(Nσ−(2N−1)B̂)+u1[(2N−1)B̂−Nσ]+B̂(r+ρ)}/[(2N−1)u1+r+ρ+β]
2.

Since the denominator of u′2 is positive, its sign is that of its numerator. Using (35), the

numerator of u′2 can be rewritten as: Nσ(ρ + r)u′1 +
Nσ(r+ρ)β

r+ρ+(2N−1)Â
u′1 +

Nσ(r+ρ)

r+ρ+(2N−1)Â
(Â − u1),
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which is positive since each of the terms are positive. Therefore u′2 > 0.

u′3 = {(B̂−u2)((2N−1)B̂−σN+(2N−1)u2−σN)+2(r+β)u′2[(2N−1)u2−σN ]}/2(r+β)2,

because 2rĈ = σ2 − 2σNB̂ + (2N − 1)B̂2. Since we have:

(2N − 1)B̂ − σN = −σN(r + ρ)/[(2N − 1)Â+ r + ρ] < 0,

(2N − 1)u2 − σN = [−σN(r + ρ) + β((2N − 1)B̂ − σN)]/[(2N − 1)u1 + r + ρ+ β] < 0, and

B̂ − u2 = −σN(r + ρ)(2N − 1)(u1 − Â)/[(2N − 1)u1 + r + ρ+ β][r + ρ+ (2N − 1)Â] > 0,

it follows that u′3 < 0.

C.1 Proof that A > Â, B > B̂, a1 > u1 and a2 > u2

Since N2 > 2N − 1 for N ≥ 2, we have:

−(2ρ+ r) +
√

(2ρ+ r)2 + 4N2(θ +m) > −(2ρ+ r) +
√

(2ρ+ r)2 + 4(2N − 1)(θ +m)

1/2N ≥ 1/2(2N − 1)

Multiplying side by side both inequalities, we verify that A > Â.

We have B− B̂ = σN [(r+ρ)(A− Â)+(N −1)AÂ]/(r+ρ+NA)(r+ρ+(2N −1)Â) > 0

and hence B > B̂.

Since 4N(Aβ +Nθ) > 4(2N − 1)(Âβ + θ) for N ≥ 2, it follows that:

−(2ρ+ r + β) +
√

(2ρ+ r + β)2 + 4N(Aβ +Nθ) >

−(2ρ+ r + β) +

√

(2ρ+ r + β)2 + 4(2N − 1)(Âβ + θ)

But recall that we also have:

1/2N > 1/2(2N − 1).

By multiplying side by side those two inequalities we verify that a1 > u1.

Finally, since B > B̂, using (30) it is easy to verify that:

a2 >
Nσa1 + βB̂

(2N − 1)a1 + ρ+ r + β
= f(a1),
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from which we derive:

f(a1)− f(u1) =
(a1 − u1)[σN(ρ+ r) + σNβ − (2N − 1)βB̂]

((2N − 1)a1 + ρ+ β + r)((2N − 1)u1 + ρ+ β + r)
.

Using (35), we get that σNβ− (2N − 1)βB̂ = Nσβ(r+ ρ)/(r+ ρ+ (2N − 1)Â) > 0. It then

follows that a2 > f(a1) > f(u1) = u2.

C.2 Proof of Proposition 5

(i) From Appendix A we know that pr(0 < ν < ∞) = 1. Thus, almost surely the state

of high damages must occur at a finite date. This means that time path of the stock of

pollutant is in the long run given by znH(t), which converges to zstean . Since A > Â and

B > B̂ we have:

N(σ − B̂) > N(σ − B)

1/(ρ+NÂ) > 1/(ρ+NA).

Multiplying those inequalities side by side, we get:

zstean = N(σ − B̂)/(ρ+NÂ) > N(σ −B)/(ρ+NA) = zsteac .

The proof that the presence of the threat of a jump in the damages results in a lower stock

of pollutant than when that threat is not present is similar to that used to derive the same

result for the cooperative equilibrium.

(ii) Notice that at the steady state, we have: ż = Nq− ρz = 0. Hence, qstean = ρzstean /N and

qsteac = ρzsteac /N . Since we have just shown that zstean > zsteac , it follows that qstean > qsteac .

C.3 Proof of Proposition 6

(i) Using a similar method as for the proof of (ii) in Proposition 2, with u2 replacing a2 and

u1 replacing a1 we get q̃n(t) ≡ qnL(t)|β=0
> qnL(t) for all t ∈ (0, ν]. By a similar argument as

for the proof of (ii) in Corollary 3.1, we obtain q̃n(t) ≡ qnH(t)|m=0
> qnH(t) for all t ∈ (ν,∞].

(ii) The solution for znL(t), for t ∈ (0, ν], can be obtained from zcL(t) by replacing a1 by u1
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and a2 by u2. The proof of ∂zcL(t)/∂β < 0 for all t ∈ (0, ν] in Proposition 2 rested only on

the facts that a1, a
′
1, a2, a

′
2 > 0. Since u1, u

′
1, u2, u

′
2 > 0, we can conclude that ∂znL(t)/∂β < 0

for all 0 < t ≤ ν as well. Therefore z̃n(t) ≡ znL(t)|β=0
> znL(t) for all t ∈ (0, ν]. We also have

z̃n(t) ≡ znH(t)|m=0
> znH(t) for all t ∈ (ν,∞]. Indeed, its proof is similar to that of (i) in

Corollary 3.1 in which Â∗ ≡ Â|m=0
plays the role of A∗ whereas B̂∗ ≡ B̂|m=0

plays the role of

B∗.

(iii) Since z0 ≥ 0, u′1 > 0, u′2 > 0 and u′3 < 0, we have V n
L (0) = −u1z20/2 − u2z0 + u3 <

V n
L (0)|β=0

≡ Ṽn(0).

D Comparison of the cooperative and non-cooperative equilibria

Set ∆(t) = qnL(t) − qcL(t) for all t ∈ [0, ν). Using the expressions for qcL(t) and qnL(t) given

respectively in Section 3 and in Section 4, we get ∆(t) = a1z
c
L(t)− u1z

n
L(t) + a2 − u2. Since

z0 ≥ 0, a1 > u1 and a2 > u2, it follows that ∆(0) = (a1−u1)z0+ a2−u2 > 0. Differentiating

∆(t), we obtain ∆̇(t) = N(a1 − u1)q
c
L(t) − (ρ + Nu1)∆(t) + ρ(a2 − u2). Since qcL(t) > 0,

a1 > u1 and a2 > u2, it follows that ∆̇(t) ≥ −(ρ+Nu1)∆(t) for all t ∈ [0, ν). Using Gronwall’s

inequality, we get ∆(t) ≥ ∆(0)e−(ρ+Nu1)t > 0. Thus qnL(t) > qcL(t) for all t ∈ [0, ν). Applying

again Gronwall’s inequality, we verify that qnH(t) > qcH(t) for all t ≥ ν.

Now set h(t) = znL(t) − zcL(t) for all t ∈ [0, ν]. We have h(0) = z0 − z0 = 0 and

ḣ(t) = N(a2−u2)− (ρ+Nu1)h(t)+N(a1−u1)z
c
L(t). Since a2 > u2, a1 > u1, and z

c
L(t) ≥ 0,

it follows that ḣ(t) ≥ −(ρ + Nu1)h(t) + N(a2 − u2). Using Gronwall’s inequality, we get

h(t) > h(0)e−(ρ+Nu1)t = 0 for all t ∈ (0, ν]. Hence znL(t) > zcL(t) for all t ∈ (0, ν]. Using once

more Gronwall’s inequality, we verify similarly that znH(t) > zcH(t) for all t ≥ ν.

Finally, we may compare the steady-state levels of welfare. In the two cases, the steady

state occurs after the state θ + m is reached. Set µ(z) = W (z, θ + m)/N and V (z) =

V (z, θ +m), the welfare of each individual country in respectively the cooperative and the

non-cooperative equilibrium. By definition the cooperative solution maximizes the global

welfare of the N identical countries and hence, for any given identical initial stock of pollution
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z, µ(z) ≥ V (z). In particular we have µ(zsteac ) ≥ V (zsteac ). But we know from Proposition 5

that zstean > zsteac , therefore, since clearly Vz(z) < 0, we have µ(zsteac ) > V (zstean ).
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