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Résumé / Abstract 
 

 

We provide the first empirical application of a new approach proposed by Lee (2007) to 

estimate peer effects in a linear-in-means model when individuals interact in groups. 

Assuming sufficient group size variation, this approach allows to control for correlated effects 

at the group level and to solve the simultaneity (reflection) problem. We clarify the intuition 

behind identification of peer effects in the model. We investigate peer effects in student 

achievement in French, Science, Mathematics and History in secondary schools in the 

Province of Québec (Canada). We estimate the model using conditional maximum likelihood 

and instrumental variables methods. We find some evidence of peer effects. The endogenous 

peer effect is large and significant in Math but imprecisely estimated in the other subjects. 

Some contextual peer effects are also significant. In particular, for most subjects, the average 

age of peers has a negative effect on own test score. Using calibrated Monte Carlo 

simulations, we find that high dispersion in group sizes helps with potential issues of weak 

identification. 
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1 Introduction

Evaluating peer effects in academic achievement is important for parents, teachers and schools. These
effects also play a prominent role in policy debates concerning ability tracking, racial integration and
school vouchers (for a recent survey, see Epple and Romano 2011). However, despite a growing lit-
erature on the subject, the evidence regarding the magnitude of peer effects on student achievement is
mixed (e.g., Sacerdote 2001, Hanushek et al. 2003, Stinebrickner and Stinebrickner 2006, Ammer-
mueller and Pischke 2009). This lack of consensus partly reflects various econometric issues that any
empirical study on peer effects must address. Identifying and estimating peer effects raises three basic
challenges. First, the relevant peer groups must be determined. Who interacts with whom? Second,
peer effects must be identified from confounding factors. Especially, spurious correlation between
students’ outcomes may arise from self-selection into groups and from common unobserved shocks.
Third, identifying the precise type of peer effect at work may be hard. Simultaneity, also called the
reflection problem by Manski (1993), may prevent separating contextual effects, i.e., the influence of
peers’ characteristics, from the endogenous effect, i.e., the influence of peers’ outcome. This issue
is important since only the endogenous effect is the source of a social multiplier. Researchers have
adopted various approaches to solve these three issues; we discuss the methods and results of previous
studies in more detail in the next section. As will be clear, however, there is no simple methodological
answer to these three challenges.

In this paper, we provide, to our knowledge, the first application of a novel approach developed
by Lee (2007) for identifying and estimating peer effects. In principle the approach is promising, as it
allows to solve the problem of correlated effects and the reflection problem with standard observational
(non-experimental) data. Moreover the exclusion restrictions imposed by the model are explicitly de-
rived from its structural specification and provide natural instruments. The econometric model does
rely on a number of crucial assumptions, however, which makes its confrontation to real data particu-
larly important. We empirically assess the approach using original administrative data on test scores at
the end of secondary school in the Canadian province of Québec. We investigate the presence of peer
effects in student achievement in Mathematics, Science, French, and History. In the process, we also
provide new economic insights regarding the sources of identification in the model. This matters in
particular to assess its robustness to alternative (non-linear) approaches.

The econometric model relies on three key assumptions. First, individuals interact in groups known
to the modeler. This means that the population of students is partitioned in groups (e.g., classes,
grade levels) and that students are affected by all their peers in their groups but by none outside of it.
This assumption is typical in studies of academic achievement but clearly arises from data constraints.
Second, each individual’s peer group is everyone in his group excluding himself. While this assumption
seems innocuous and has been used in most empirical studies, it is a key source of identification in the
model, as it will become clear below. In fact, it is a main source of difference between Manski’s (1993)
and Lee’s models. Manski’s approach can be interpreted as one in which each individual’s peer group
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includes himself.1 Third, individual outcome is determined by a linear-in-means model with group
fixed effects. Thus, the test score of a student is affected by his characteristics and by the average test
score and characteristics in his peer group. In addition, it may be affected by any kind of correlated
group-level unobservable.

Lee (2007) shows that peer effects are identified in such a framework when there are sufficient
groups of different sizes. One important contribution of our paper is to clarify the economic intuition
behind identification. Regarding the estimation of parameters, one potentially important limitation of
the method, however, is that convergence in distribution of the peer effect estimates may occur at low
rates when the average group size is large relative to the number of groups in the sample (Lee 2007).
This is also intuitive: excluding the individual or not from his peer group does not change much when
its size is relatively large.

Here two remarks are in order. First, these results are to be distinguished from the idea that the
group size is a factor in a school’s production function (e.g., Krueger 2003). In Lee’s model, the ef-
fects of group sizes which are separable from the peer effects are controlled for by fixed effects in the
structural model. Second, Lee’s identification method differs from the variance contrast approach de-
veloped by Graham (2008). The basic idea in this approach is that peer effects will induce intra-group
dependencies in behavior that introduce variance restrictions on the error terms. These restrictions are
used to identify the composite (endogenous + contextual) social interaction effects under the assump-
tion that the variance matrix parameters are independent of the reference group size.

We use administrative data on academic achievement for a large sample of secondary schools in
the Province of Québec obtained from the Ministry of Education, Recreation and Sports (MERS).
Our dependent variables are individual scores on four standardized tests taken in June 2005 (Math,
Sciences, French and History) by fourth and fifth grade secondary school students. All 4th and 5th
grade students in the province must pass these tests to graduate. One advantage of these data is that
all candidates in the province take the same exams, no matter their school and location. This feature
effectively allows us to consider test scores as draws from a common underlying distribution. Another
advantage is that our sample is representative and quite large. We have the scores of all students for
a 75% random sample of Québec schools which, over the four subjects, yields 194,553 test scores
for 116,534 students. In terms of interaction patterns, the structure of the data leads us to make the
following natural assumption. We assume that the peer group of a student contains all other students
in the same school qualified to take the same test in June 2005. In practice, a small number of students
postpone test-taking to August 2005. We extend Lee’s methodology in the empirical modeling to
address this issue. However, since the difference between observed group sizes and actual group sizes
is small, the correction has little effect on the results. Following Lee (2007), we estimate the model in

1More precisely, Manski studies a social interactions model which, in terms of identification, has the same properties as
a model where individuals interact in groups and each individual is included in his peer group (see Bramoullé et al. 2009).
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two ways: through generalized instrumental variables (IV) and, under stronger parametric conditions,
through conditional maximum likelihood robust to non-normal disturbances (pseudo CML).

Our results are mixed though consistent with the model. We do provide evidence of some endoge-
nous and contextual peer effects. Based on pseudo CML estimates, we find that the endogenous peer
effect is positive, significant and quite high in Math (0.83). Moreover it is within the range of previous
estimates (see Sacerdote 2011 for a recent survey). However, the effect is smaller and non significant
in History (0.64), French (0.30), and Science (�0.23).2 Endogenous peer effects estimates obtained
from IV methods are highly imprecise with our data even in Math. The higher precision of our pseudo
CML estimates is consistent with results in Lee (2007) showing that CML estimators are asymptoti-
cally more efficient than IV estimators. As regards contextual peer effects, we find evidence that some
of them matter, based on both pseudo CML and IV estimators. For instance, results from pseudo CML
indicate that interacting with older students (a proxy for repeaters) has a negative effect on own test
score in all subjects except Math (not significant).

It is remarkable that even with large average group size relative to the number of groups, we are
able to identify some peer effects. However there is also much dispersion in group sizes within our
samples. We suspect that this helps identification. We study this issue systematically through Monte-
Carlo simulations. We find that indeed increasing group size dispersion has a positive impact on the
precision of estimates.

The remainder of the paper is organized as follows. We discuss past research in section 2 and
present our econometric model and the estimation methods in section 3. We describe our dataset in
section 4. We present our empirical results in section 5 and run Monte Carlo experiments in section 6.
We conclude in section 7.

2 Previous research

In this section, we give a brief overview of the recent literature on student achievement and peer effects,
and we explain how our study complements and enhances current knowledge on peer interactions in
academic outcomes.3

As discussed above, measuring peer effects is complex as it raises three basic interrelated problems:
the determination of reference groups, the problem of correlated effects and the reflection problem.
The choice of reference groups is often severely constrained by the availability of data. In particular,
there are still few databases providing information on the students’ social networks; the Add Health

2The effect of individual characteristics, such as gender, age, and socioeconomic background, on test scores are precisely
estimated by either method, and these estimates generally conform to expectations.

3For two recent comprehensive surveys on peer effects in education, see Sacerdote (2011) and Epple and Romano (2011).
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dataset is an exception, see e.g. Calvo-Armengol et al. (2009) and Lin (2010).4 For this reason, many
studies focus on the grade-within-school level (e.g., Hanushek et al. 2003, Angrist and Lang 2004).
Other studies analyze peer effects at the classroom level (e.g., Kang 2007, Ammermueller and Pischke
2009). The administrative data we use in this study do not provide information on classes or teachers.
Therefore, we assume that for each subject the relevant reference group for a student taking the test
contains all other students in the same school who have completed all courses in the subject matter by
June 2005. Thus, given that the reference group is likely to include students from other classes, one
should probably expect peer effects to be smaller than at the classroom level.5

Two main strategies have been used to handle the problem of correlated effects. A first strategy has
been to exploit data where students are randomly or quasi-randomly assigned within their groups (e.g.,
Sacerdote 2001, Zimmerman 2003, Kang 2007). Results on the impact of contextual effects using
randomly assigned roommates as peers are usually low though significant. However, Stinebrickner
and Stinebrickner (2006) have argued that these studies tend to underestimate true peer effects as the
true influence of roommates is unclear. A second strategy uses observational data to estimate peer
effects. This approach is usually based on two assumptions. First, fixed effects allow to take correlated
effects into account. With cross section data, these effects are usually defined at a level higher than
peer groups. Otherwise, peer effects are absorbed in these effects and cannot therefore be identified.
For instance, Ammermueller and Pischke (2009) introduce school fixed effects to estimate peer effects
at the class level for fourth grader in six European countries. Contrary to this approach, our model
allows to include fixed effects at the peer group level even with cross-section data. This is so because
each student within a group has his own reference group (since he is excluded from it). The second
assumption is that one observes exogenous shocks to peer group composition which allow to identify
a composite (endogenous + contextual) peer effect. The strategy uses either cross-section or panel
data. With cross-section data, demographic variations across grades but within schools are usually
exploited (see Bifulco et al. 2010). With panel data, demographic variations across cohorts but within
school-grades are usually exploited (see Hanushek et al. 2003).

The reflection problem is handled using two main strategies. In most papers, no solution for this
difficult problem is provided. Rather, researchers estimate a reduced-form linear-in-means model, and
no attempt is made to separate the contextual and endogenous peer effects. Only composite parameters
are estimated (Sacerdote 2001, Ammermueller and Pischke 2009). Note however that a number of
these papers (often implicitly) assume that there are no contextual effects. In this case, the composite
parameter(s) allow(s) to identify the endogenous peer effect. In a second strategy, one uses instruments
to obtain consistent estimates of the endogenous peer effect (e.g., Evans et al. 1992, Gaviria and
Raphael 2001). The problem here is to choose suitable instruments. For instance, Rivkin (2001)

4Bramoullé et al. (2009) determine conditions under which endogenous and contextual peer effects are identified when
students interact through a social network known by the modeler and when correlated effects are fixed within subnetworks.
See also section 3.4.2. in this paper.

5In fact, at the end of secondary level, classes and teachers are usually different depending on the subject matter taught.
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argues that the use of metropolitan-wide aggregate variables as instruments in the Evans et al. (1992)
study exacerbates the biases in peer effect estimates. In our paper, we provide some results based on
instrumental methods. However, our instruments are naturally derived from the structure of the model.

In short, various strategies have been proposed to address the three basic issues that occur in the
estimation of peer effects. But most rely on strong assumptions that are difficult to motivate and
may not hold in practice. Some of them require panel data while others rely on experiments that
randomly allocate students within their peer group. This makes the results in Lee (2007) particularly
interesting, as they show that both endogenous and contextual peer effects may be fully identified even
with observational data in cross-section.

3 Econometric model and estimation methods

3.1 Econometric model

We review and adapt the structural model suggested by Lee in the context of our application. Lee’s
model builds on and extends the standard linear-in-means model of peer effects (Moffitt 2001) to
groups with various sizes. The set of students {i = 1, ...M} is supposed to be partionned into groups
of peers indexed by r = 1, ..., R. Let M

r

be the r

th group of peers, of size m

r

. All students in
the same group have the same number of peers since they interact with all others in the group. We
assume that student i who belongs to group r is excluded from his own reference group. Let M

ri

be
student i’s group of peers, of size m

r

� 1. A peer is any fellow student whose academic performance
and personal characteristics may affect i’s performance. Let y

ri

be the test score obtained by student
i. Let x

ri

be a 1 ⇥ K vector of characteristics of i and X

r

be the m

r

⇥ K matrix of individual
characteristics. For expository purposes, the model is first presented with a unique characteristic (K =

1), defined by his family socio-economic background. Another departure from the linear-in-means
model is the inclusion of a term ↵

r

that captures all group invariant unobserved variables (e.g., same
learning environment, similar preferences of school or motivation towards education). The error term
✏

ri

reflects other unobservable characteristics associated with i.

We do not change any other assumption of the linear-in-means model. In particular, we assume
that a student’s performance to the standardized test may be affected by the average performance in
his group of reference, by his family socioeconomic background, and by the average socioeconomic
background in his group. Formally, the basic structural equation is given by:

y

ri

= ↵

r

+ �

P
j2Mri

y

rj

m

r

� 1
+ �x

ri

+ �

P
j2Mri

x

rj

m

r

� 1
+ ✏

ri

, E(✏
ri

| Xr,mr

,↵

r

) =0, (1)

where � captures the endogenous effect, � the individual effect and � the contextual effect. Observe
that eq. (1) can be derived from the first-order conditions of a choice-theoretic non-cooperative (Nash)
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model where each student’s performance is obtained from the maximisation of his quadratic utility
function which depends on his individual characteristics, his performance and his reference group’s
mean performance and mean characteristics.

Importantly, we assume strict exogeneity of m
r

and {x
ri

: i = 1, ...,m
r

} conditional on the un-
observed effect ↵

r

, i.e., E(✏
ri

| Xr,mr

,↵

r

) =0. This exogeneity assumption can notably accommo-
date situations where peer group size is endogenous. Suppose that, everything else equal, brighter
students attend smaller schools, i.e., schools where the cohort of students eligible to take the province-
wide test in the subject matter (our peer groups) is small. In this case, peer group size m

r

may well
depend on unobserved common characteristics of the student’s group, ↵

r

: E(↵
r

| Xr,mr

) 6=0. Our
model allows for this type of correlation. However, conditional on these common characteristics, peer
group size m

r

is assumed to be independent of the student’s idiosyncratic unobserved characteristics:
E(✏

ri

| Xr,mr

,↵

r

) =0. We maintain this assumption throughout our analysis.

To eliminate group-invariant correlated effects, we next apply a within transformation to eq. ( 1).
In particular, as we noted above, when the effect of group size is separable from peer and individual
effects, it is captured by ↵

r

. The model can address the problem of selection or endogenous peer group
formation. For instance, school choice may depend on some unobserved factors specific to a school
( e.g., reputation, unobserved quality) and determine the type of students who are attracted by these
schools. The advantage of the within transformation is that we compare students of the same type.
This transformation also allows to control for common environment effects. Resources available at
the school level (e.g., teaching, physical infrastructure) may affect the performance of all the students.
Again, by comparing students within the same school, we can abstract from these effects. The within
reduced form equation for students in the r

th group can be written as:

y

ri

� ȳ

r

=
� � �

mr�1

1 + �

mr�1

(x
ri

� x̄

r

) +
1

1 + �

mr�1

("
ri

� "̄

r

) (2)

where means ȳ
r

, x̄

r

and ✏̄

r

are computed over all students in the group. Now assume that �� + � 6= 0.
Only one composite parameter can be recovered from the reduced form for each group size m

r

. At
least three sizes are thus necessary to identify the three structural parameters �, � and �.6

3.2 Interpretation of identification

The fact that the parameters of the structural within eq.(2) may be fully identified is quite surprising,
and deserves some elaboration. Indeed, under the alternative assumption that means are inclusive,
that is, i 2 M

ri

, peers are the same for everyone in a group M

ri

= M

r

, and peer effects cannot be
separated out from group fixed effects. So somehow assuming that the individual is excluded from his
own peer group allows to solve two difficult identification problems: distinguishing true peer effects

6It is easy to show that when �� + � = 0, only � is identified.
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from correlated effects and further distinguishing endogenous from contextual peer effects. Intuitively,
where does identification come from?

Suppose first that the endogenous effect is absent � = 0. Note that each individual has different
peers: i 6= k implies that M

ri

6= M

rk

. A first key observation is that, within a group, individual
attributes x

i

are perfectly negatively correlated with mean peer attributes (
P

j2Mri
x

j

)/(m
r

� 1).7

Thus, students with an ability above average necessarily have peers with a mean ability below average,
and vice versa. If the individual and the contextual effects � and � are positive, this negative correlation
tends to reduce the dispersion in outcomes. In such a group setting, peer effects lower the difference in
achievement between high and low ability students.8 Formally, the impact of the difference in attributes
on the difference in outcomes changes from � to � � �/(m

r

� 1) when introducing peer effects [see
eq. (2)]. So variations in group sizes can be used to identify contextual peer effects. The second key
observation is that this reduction is stronger in smaller groups. The variance in mean peer attributes is
simply higher in smaller groups, reflecting the relatively larger effect of excluding one individual from
the mean. And as group size increases, mean peer attributes converge to the group mean, and peer
effects have increasingly less bite on how differences in covariates affect differences in outcomes.

Next, consider the reflection problem. Observe that outcomes are subject to a similar negative
correlation: within a group, students with grades above average necessarily have peers with grades
below average. So if � > 0, endogenous peer effects lead to a further reduction in outcome dispersion.
However, simultaneity now implies that this decrease in impact is non-linear in the peer coefficient:
from � � �/(m

r

� 1) to (� � �/(m
r

� 1))/(1 + �/(m
r

� 1)) [see eq. (2)]. The difference in the
shapes of impact reduction can then be used to identify endogenous from contextual peer effects.

Finally, this understanding is useful to assess the robustness of the identification strategy to changes
in the econometric model. In particular, it is easy to see that if x

i

< x

k

then the distribution of attributes
in i’s peer group M

ri

first-order stochastically dominates the distribution in M

rk

. So identification is
likely to hold, in general, if we replaced the mean in equation (1) by the median, the variance, or many
other moments of the distribution.9

3.3 Treatment of missing values

One problem we face in our sample is that we do not always observe the scores of all students within a
group. For instance, some students may postpone test-taking to the next session due to illness. We next
extend our model to allow for this possibility. Our setting is one where the total number of students
(including those who postpone test-taking) in each group is known, but we only observe the test scores

7To see this, observe that
P

j2Mri
xj = (

P
j2Mr

xj)�xi. So if xi < xk then 1
mr�1

P
j2Mri

xj >

1
mr�1

P
j2Mrk

xj .
8In contrast if � > 0 and � < 0, this negative correlation helps amplify the dispersion in outcomes.
9Of course, one has to address a basic modeling question first, that is, whether the implied model is coherent. A model

has this property when a specific nonlinear structure generates a unique solution for outcomes.
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of subsamples N

r

of size n

r

of each group M

r

, with n

r

 m

r

and
RP

r=1
n

r

= N . We assume that a

student’s decision to postpone exam-taking is random or depends on the observable strictly exogenous
variables, conditional on the fixed group effect. We show how to adapt Lee’s analysis to this more
general setting. Let L

r

be the complement of N
r

, i.e. , L
r

= M

r

� N

r

.10 The structural equation
becomes:

y

ri

= e↵
r

+ �

P
j2Nri

y

rj

m

r

� 1
+ �x

ri

+ �

P
j2Nri

x

rj

m

r

� 1
+ ✏

ri

, E(✏
ri

| Xr,mr

,↵

r

) = 0, (3)

where i now denotes an observed individual in the sample (but not any one in the rth group) and
e↵
r

= ↵

r

+ �

P
j2Lr

yrj

mr�1 + �

P
j2Lr

xrj

mr�1 is the new group fixed effect. Under our assumptions, estimators
are consistent, even if we do not observe test scores for all students in each group. Moreover, effects
stemming from unobserved individuals are the same for all the individuals observed in the sample from
the rth group. They are therefore picked up by the group fixed effect. Using the within transformation,
one obtains the same equation as (2) but where means ȳ

r

, x̄

r

and ✏̄

r

are computed only over all observed
students in the group.

3.4 Estimation methods

3.4.1 CML Estimator

We consider estimation under both pseudo Conditional Maximum Likelihood (or CML) and Instru-
mental Variables (or IV) identification conditions.

To present pseudo CML and IV estimators, it is easier to express eq. (3) in matrix notations. We
now allow for any number of characteristics, so that � is a K ⇥ 1 vector of individual effects and �

a K ⇥ 1 vector of contextual ones. Recall that in this setting, students are affected by all others in
their group and by none outside of it. This means that the observed social interactions can be modelled
as a N ⇥ N block-diagonal matrix G = Diag(G1, ...,G

R

), such that for all r, G
r

is comprised of
elements g

rij

= 1
mr�1 if i 6= j and g

rii

= 0. In other terms, G
r

= 1
mr�1(◆nr ◆

0
nr

� I

nr), where ◆
nr is a

n

r

⇥ 1 vector of ones and I

nr the identity matrix of dimension n

r

. Eq. (3) can be re-written in matrix
form as follows:

y

r

= ◆

nr e↵r

+ �G

r

y

r

+X

r

� +G

r

X

r

� + ✏

r

, (4)

where E(✏
r

| X
r

,G

r

, e↵
r

)=0.

Applying the operator matrix J

r

= I

nr � 1
nr
◆

nr ◆
0
nr

allows us to obtain deviations with respect to
the mean for the observed group members. Pre-multiplying eq. (4) by J

r

eliminates the group fixed
effect and yields :

J

r

y

r

= �J

r

G

r

y

r

+ J

r

X

r

� + J

r

G

r

X

r

� + J

r

✏

r

(5)
10If Nri denotes the group of peers of student i, we also have Lr = Mri �Nri.
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Elementary linear algebra tells us that J
r

G

r

= � 1
mr�1Jr

. Letting J

r

A

r

= A

⇤
r

, we obtain

m

r

� 1 + �

m

r

� 1
y

⇤
r

= X

⇤
r

(m
r

� 1)� � �

m

r

� 1
+ ✏

⇤
r

which is equivalent to eq. (2).

To derive the pseudo CML estimator, we assume (possibly wrongly) that the ✏
ir

’s are i.i.d. N(0,�2).
It follows that, given X

r

, m
r

, and n

r

, the pseudo density of y⇤
r

is a multivariate normal distribution
with mean X

⇤
r

(mr�1)���

mr�1+�

and variance (� mr�1
mr�1+�

)2J
r

.11 The pseudo log likelihood function to be
maximized can then be expressed as follows:

lnL = c+
RX
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r
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r

� 1 + �)� N �R

2
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�
�
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�

� 1

2�2
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r

� 1
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r
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r

� 1)� � �
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r

� 1

◆0✓
m

r

� 1 + �

m

r

� 1
y

⇤
r

�X

⇤
r

(m
r

� 1)� � �

m

r

� 1

◆
,

where c is a constant. This log likelihood function excludes any fixed effects. It is a conditional
log likelihood function as it is conditional on the sufficient statistics y

r

, (as well as on the X

r

’s, the
m

r

’s, and the n
r

’s), for r = 1, ...R. Under the assumption that the ✏
ir

’s are correctly specified and i.i.d.
N(0,�2), Lee (2007) shows that the CML estimators of �, �, � and � are consistent and asymptotically
efficient under regularity conditions and provided there is sufficient variation in group sizes.

Even if the assumed density of y⇤
r

is misspecified, the pseudo CML estimator is consistent provided
that the conditional mean of the y

⇤
r

’s is correctly specified. This is the case since the normal density
belongs to the Linear Exponential Family (see Gourieroux et al. 1984). Of course, the estimator is
no longer asymptotically efficient. Moreover, one has to compute the robust covariance matrix using
the sandwich formula J

�1
IJ

�1, where J is minus the expectation of the Hessian matrix and I the
expectation of the outer-product-of-the-gradient matrix. A further advantage of this computation is
that it allows us to see whether an apparent precision of CML estimators is driven by the normality
assumption used in Lee (2007).

3.4.2 2SLS and Generalized 2SLS estimators

Alternatively, the structural equation (4) can be estimated by instrumental (IV) methods. To see how
the methods work, define a N ⇥ N block-diagonal matrix J = Diag(J1, ...,J

R

). Concatenating eq.
(5) over all groups yields:

Jy = �JGy + JX� + JGX� + J✏. (6)

where y (resp. X) is obtained by stacking the vectors y
r

(resp. the matrices X
r

), for r = 1, ..., R.

11Note that only nr � 1 elements of ✏⇤r are linearly independent.
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The reduced form of the model is:

Jy = (I��G)�1(JX� + JGX�) + (I� �G)�1
J✏. (7)

Identification can be given a natural interpretation in terms of instrumental variables. If i /2 M

ri

and
there are at least three different group sizes, E[JGy|X,G] is not perfectly collinear to (JX,JGX)

and the model is identified [see Bramoullé et al. (2009) for more details]. Moreover JG2
X can be

used as a matrix of valid instruments for JGy.12

One advantage of an IV approach over pseudo CML is that it requires less structure. Specifically,
we do not assume that the specified density function of the y

r

’s, potentially partially misspecified, is
normal. Also we do not use the structure on the error terms for identification purpose. Thus, identifi-
cation in this case is semi-parametric, or “distribution-free”. Of course, this comes at a price: the IV
estimator is asymptotically less efficient than the pseudo CML, since the latter imposes more structure
on the distribution of error terms.

In addition, we can derive a Generalized IV estimator as proposed in Kelejian and Prucha (1998),
and discussed in Lee (2007). Assuming homoskedasticity, it yields an asymptotically optimal (best)
IV estimator and reduces to a two-step estimation method in our case. More precisely, our first step
consists in estimating a 2SLS as described above, by using as instruments S = (JX,JGX,JG

2). The
second step consists in estimating a G2SLS estimator using as instruments b

Z = ( dJGy,JX,JGX),
where d

JGy is computed from the reduced form ( 7) premultiplied by G and using the first-step esti-
mates.

4 Data

We gathered for this analysis original data from the Québec Government MERS. These administrative
data provide detailed information on individual scores on standardized tests taken in June 2005 on four
subjects (Math, Sciences, French and History) by fourth and fifth grade secondary school students.
They also include information on the age, gender, language spoken at home and socioeconomic status
of students. Sampling has been done in two steps. The population of interest is the set of all fourth
and fifth grade secondary school students who are candidates to the MERS examinations in June 2005.
This population is comprised of 152,580 students in total. In the first step, a 75% random sample
of secondary schools offering fourth and fifth grade classes in the 2004-2005 school year have been
selected. In the second step, all fourth and fifth grade students in these schools have been included.
Overall, we have 194,553 individual test scores for 116,534 students.13

12In fact, JrGr = � 1
mr�1Jr and JrG

2
r = 1

(mr�1)2
Jr , hence instruments are built here by premultiplying characteristics

(in deviation) by group-dependent weights and by stacking them across groups.
13There are more individual test scores than students as some students take test in more than one subject matter.
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There are many advantages to the use of our data. First, all 4th and 5th grade students must take
tests on these four subjects to qualify for secondary school graduation. This means that our results
do not pertain to a selected sample of schools. In particular, both public and private school students
have to take these tests. Another advantage is that the tests are standardized, i.e., designed and applied
uniformly within the province of Québec. We use test results gathered by the MERS, so there is less
scope for measurement error with these data than with survey data on grades. Finally, although survey
data may have provided information on a larger set of covariates, sample sizes in our study are larger
than in typical school surveys.

Given the lack of information on the structure of relevant social interactions, we assume that the
peer group for a student taking a test is comprised of all other students in the same school who are
qualified to take the test in June 2005. Two test sessions are offered for those who completed course-
work in the Spring semester. We thus consider as belonging to the same group all those who belong to
the same school and who take a subject test in one of the two consecutive sessions of June and August
2005. We know the number of students in each of these groups. But we only observe test scores for the
set of students who took the test in June. Therefore we do not always observe the scores of all students
within a group. We offered a correction for this problem in our discussion of the econometric model,
and our empirical results below incorporate this correction. In any case an overwhelming majority of
the students do take the tests in June, so the correction has little effect on the results.

We use for this study French, History, Science and Math test results as reported in the MERS
administrative data. Students in a regular track take History and Science tests in Secondary 4. The
French test is commonly taken in Secondary 5. Finally, we focus on students who take the Math test in
Secondary 5 (Math 514). This completes their mathematical training for secondary school. Note that
the MERS administers a unique test to all secondary school students in French, History and Science. In
contrast, it administers different tests in Math, depending on academic options chosen early on by the
students. We report here results for students following the regular mathematical training (Math 514).
We focus on this test in our analysis.

We provide descriptive statistics in Table 1. For each subject, the dependent variable in our econo-
metric model is the test score obtained in the provincial standardized test. The average score is between
70% and 75% in French, Science and History tests. It is lower and about 62% in Math. In samples
for which the regular track for the test is Secondary 5 (resp. Secondary 4), the average age of stu-
dents is close to 16 (resp. 15). Most students taking French and Math (98% and 96%) are enrolled in
Secondary 5. Most of those taking Science and History are enrolled in Secondary 4 (92% and 96%).
Between 52% and 55% of students are female, and between 11% and 13% of students speak a language
at home which is different from the language of instruction (Foreign variable).14 Between 30% and
34% of students come from a relatively high socioeconomic background and between 40% and 42%

14The language of instruction is French in most schools, and English otherwise.
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from a medium one. We use an index of socio-economic status provided by the MERS. This index is
computed from data from the 2001 census. It uses information on the level of education of the mother
(a weight of 2/3) and the job status of parents (weight of 1/3). Low socio-economic status corresponds
to the three lowest deciles of the index (high socio-economic status to the three highest deciles).

We observe test scores and characteristics of students taking the same test in June 2005. Sample
sizes are 41, 778 for French, 54, 981 for Science, 15, 771 for Math, and 55, 057 for History. We also
observe the number of students who completed coursework but postpone test-taking to August 2005.
There are 118 students postponing French, 186 postponing History, 195 postponing Science, and 160

postponing Math. We observe between 314 and 382 peer groups depending on the subject matter
considered. The average group size is between 50 (Math) and 146 (Science). The ratio between the
number of groups and the average group size varies between 2.36 (French) and 7.23 (Math). These
numbers are relatively small, which suggests that our estimates could be subject to weak identification
problems. The group size standard deviation is quite large, however, varying between 50 (in Math) and
about 135 (in Science and History). We expect such dispersion in group sizes to help identification.
We analyze these issues in more details in Section 6.

5 Empirical Results

5.1 CML and pseudo CML estimates

Table 2 reports the results of maximum likelihood estimation with unrobust (CML) and robust (pseudo
CML) standard errors. The model estimated is the linear-in-means model with group fixed effects,
individual impacts, and endogenous and contextual peer effects. We find that the estimated endogenous
peer effect lies between �0.24 and 0.83. Using unrobust standard errors (in brackets), the endogenous
effect is significantly different from zero and positive for Math (b� = 0.82), and History (b� = 0.65).
It is not significant for French (b� = 0.33) and for Science (b� = �0.23). Based on robust standard
errors, it is no longer significant for History (p-value= 10,82%) but still significant for Math. One thus
concludes that regarding this peer effect, inference appears to be driven by normality for one subject
(History). In general standard errors are larger using pseudo CML than CML, but their differences are
not so important.

Two reasons may explain why the endogenous peer effects in Math is significant in our sample.
First, the standard error of the estimates is smaller in Math than in other subjects. This is consistent
with the fact that the average group size relative to the number of groups is close to three times smaller
in Math than in other subjects. Second, our endogenous effect estimate is much larger in Math (0.82).
How does this result compare with other studies? Sacerdote (2011) has recently provided a survey of
studies of endogenous peer effects in test scores for primary and secondary schools based on linear-
in-means models (see his Table 4.2.). Interestingly, in most reported studies (5 over 6) which analyze
achievement in both Math and Reading, the endogenous peer effect is larger in Math. In addition, this
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effect is often very high and exceeds the value we have estimated. Thus Hoxby (2000) reports a 1.7
to 6.8-point increase in own score in relation with a 1-point increase in mean score of peers in some
specifications. Betts and Zau (2004) show a 1.9-point increase in association with a 1-point increase
in mean math score of peers. On the other hand, Hanushek et al. (2003) obtain a Math peer effect
of 0.4.15 So our estimate lies on the average to high side of the range of previous estimates. Observe
finally that our results in Math are larger than those usually obtained in studies based on randomized
experiments (e.g., Sacerdote 2001, Zimmerman 2003). One possible explanation is that peers used in
these papers are often people from the same dorm. These individuals do not necessary represent those
who exercise significant influence on students’ scholar achievement.

The relatively large endogenous peer effect in Math may reflect the fact that mathematics provide
more opportunities for interactions among students. And, probably more than in other subjects, it may
also reflect general effects such as disruption. For instance, it is likely that success in Math requires
much concentration in class from the average student. Now suppose that there is a student (with low
grade in Math) in class who is characterized by his propensity to disrupt learning by bad behavior or
asking poor questions. His behavior may have large negative effects on his peers’ scholar achievement
(e.g., see Lazear 2001) and thus generates strong endogenous peer effects.

Regarding the individual characteristics, most of them have a significant effect on test scores, and
the signs of these effects essentially conform to expectations. All test scores decrease significantly with
age. Since older students have often repeated a grade, being younger is a natural proxy for ability. Test
scores are significantly higher for female students than for male students, except for History where male
students perform significantly better than female students. This is broadly consistent with results from
previous studies. For instance, results from the 2000 Program for International Student Assessment
(PISA) show that Québec female students perform better than males on reading literacy tests but that
the differences in performance on mathematics and science tests are smaller and not significant (see
Québec Government 2001). Similarly, in our analysis, the difference in performance is quantitatively
large in French but much smaller in the other disciplines. The performance of foreign students is, non
surprisingly, significantly lower than for non-foreign students on the French test, but higher for Science
and History and not significantly different for Math. Secondary 5 students tend to perform significantly
better on all tests than Secondary 4 students, which reflects the positive impact of an additional year of
schooling on test scores. Finally, students from a higher socioeconomic category perform significantly
better in all tests.

As far as contextual variables are concerned, a few of them have a significant impact on student
performance. Average age of other students has a negative and significant effect on all test scores
except Math where it is positive but not significant. These results also conform our expectations.
When the number of repeaters rises (as reflected by an increase in mean age of our peers at a given

15Kang (2007, p. 475) also provide a survey of endogenous peer effects in achievement in mathematics which is broadly
consistent with results reported in Sacerdote (2011).
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grade level), this will tend to reduce own test score. Proportion of other students enrolled in Secondary
5 have a large positive and significant effect on own score in French. Peers’ socioeconomic background
has little effect on own schooling performance. The proportion of female students among peers has a
positive and significant effect in Math. When significant, the magnitude of contextual effects is always
larger than the magnitude of individual effects. This is not surprising as it captures the effect of a unit
change in the characteristic of every other student in the group.16

5.2 Reflection problem

One way of addressing the simultaneity problem without exploiting group size variations is to exclude
at least one contextual variable from the outcome equation and to use it as an instrument for average
test score. We estimate a model similar to the one presented in Table 2 but excluding contextual
effects that are not individually significant in the pseudo CML specification (i.e., for which the null
that � = 0 is not rejected); see Table 1 of the Supplementary Data Appendix.17 Using likelihood
ratio tests, we reject the null that these �’s are jointly equal to zero for French but not for the other
subjects. This suggests that the exclusion restrictions may be valid for these latter samples. Therefore,
the pseudo CML estimators provided in Table 1 of the Supplementary Appendix should be consistent
and asymptotically more efficient than those provided in Table 2 for the Science, Math and History
tests. Results however appear to be robust to these new specifications. Observe finally that we could
not have known this a priori without an estimation of the full model.

Overall, this shows the interest of Lee’s solution to the reflection problem. Estimating a model with
both endogenous and contextual peer effects is needed to recover the different types of peer effects at
work.

5.3 2SLS and G2SLS estimates

Tables 3, and Table 2 of the Supplementary Appendix provide the 2SLS and G2SLS estimation results
of the linear-in-means model of peer effects with group fixed effects, individual impacts, and endoge-
nous and contextual peer effects. In contrast to the CML and pseudo CML estimates of Table 2, none
of the endogenous effects is statistically significant. This is consistent with Lee’s (2007, p. 345) result
that the asymptotic efficiency of IV estimators is smaller than that of the CML. Estimated individual
effects are quite similar to the corresponding CML estimates. Some contextual effects are similar while
others are different. For instance, the proportion of other students in Secondary 5 still has a large and
positive effect on own French score as well as no significant effects for the other subjects. In contrast,
average age among peers now has a positive and significant effect on own score for most subjects,
rather than a negative one. This could be explained by differences in small sample properties of both
methods, possibly aggravated by the imprecision in the estimation of the endogenous peer effect.

16We have also estimate a second-order pseudo CML in which restrictions are directly incorporated in the variance term
and estimated. Results are quite similar with those presented in Table 2.

17This Appendix is available on the Journal of Applied Econometrics’ website.

14



Table 3 also reports two standard test results giving information on instrumental variables proper-
ties. We first look at Sargan tests on the validity of instruments and the over-identification restrictions
of the model. We do not reject the null for Science, Math and History, but we reject it for French. While
this may indicate a problem of model specification in this last case, one must be cautious in interpret-
ing the test given the likely low convergence of peer effects IV estimates. We then compute Stock
and Yogo test statistics on weak identification. Based on the definition that a group of instruments is
weak when the bias of the IV estimator relative to the bias of ordinary least squares exceeds a certain
threshold b, say 5%, one rejects the null that the instruments are weak for all subject matters. Finally,
Hausman tests have been performed to test the equality of pseudo CML and G2SLS estimators. Under
the null, both of these estimators are consistent, but pseudo CML estimators are asymptotically more
efficient; under the alternative, G2SLS estimators are consistent whereas pseudo CML estimators are
not. For each subject, we could not reject the null. This suggests the absence of specification errors in
the model.

6 Monte Carlo simulations

In this section, we study through simulations the effect of group sizes and their distribution on the
precision and bias of our estimates. Lee (2007) shows that the CML and IV estimators may converge
in distribution at low rates when the ratio between the the number of groups and the average group size
is small. Since this ratio varies between 2.36 and 7.23 in our samples, a problem of weak identification
could in principle emerge. However, the standard deviation of the distribution of group sizes is also
relatively large (see Table 1), and we suspect that this may help identification. To study these issues,
we realize two simulation exercises. First, we vary group sizes in a systematic manner and study how
this affects the bias and precision of estimators. To focus on the approach which provides the most
reasonable findings in our empirical analysis, we report results on the model using CML.18 We look at
uniform distributions, vary the size of the distribution’s support and partly calibrate simulation param-
eters on our data. Second, we look at bias and precision of estimates for fully calibrated simulations,
when group sizes are exactly the same as in the data. Overall, while our analysis confirms Lee’s earlier
results, we also find a strong positive impact of the dispersion in group sizes on the strength of iden-
tification. Especially, conditional maximum likelihood performs well on fully calibrated simulations.
This suggests that the bias due to small sample issues is likely low in the results presented in Table 2.

For each simulation exercise, we keep the number of observations fixed around 42, 000, and run
1, 000 replications. We first consider average sizes of 10, 20, 40, 80 and 120. We pick group sizes
from the following intervals with decreasing length:

18In an earlier version of the paper, we also provided results for IV estimates. Basically, the results are qualitatively the
same for IV as those for CML but, as expected, the magnitude of the bias and the loss in precision are always larger for IV
than for CML.
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• Average size of 10 : [3, 17], [5, 15], [7, 13] and [9, 11],

• Average size of 20 : [3, 37], [8, 32], [13, 27] and [18, 22],

• Average size of 40 : [3, 77], [12, 68], [21, 59], [30, 50] and [39, 41],

• Average size of 80 : [3, 157], [18, 142], [33, 127], [48, 112] and [63, 97],

• Average size of 120 : [3, 237], [28, 212], [53, 187], [78, 162] and [103, 137].

For each of the intervals described above, we proceed in the following manner:
- pick a group size from a uniform distribution for which the support is defined by the minimum and

maximum value of the interval;
- truncate this value by eliminating its decimal portion;
- repeat step 1 and 2 as long as the total number of observations is below or equal to 42, 000.

To reduce computing time, we assume that students have the same characteristics except for age and
gender. We assume that age follows a normal distribution and gender follows a Bernoulli distribution.
We calibrate the moments of these distributions on the sample of students taking the French test:
average age is 16, variance of age is 0.25, and proportion of girls is 0.55. Values of the structural
parameters �, � and � are set close to the estimated coefficients for the French test: � = 0.35, �

age

=

�8, �
gender

= 3.8, �
age

= �40, �
gender

= �25.

We assume that the values of ✏ in the structural equation are drawn randomly from a normal distri-
bution with mean zero and variance �2 = 1. We generate the endogenous variable y from the reduced-
form equation in deviation form.

Looking at Table 4, we first compare simulation results across average group sizes and then we
examine how estimators perform for a given average group size as dispersion in group size decreases.
Separate horizontal panels in Table 4 pertain to different values of average group size. We report the
average estimated coefficient and standard error for the endogenous effect (first vertical panel), the
contextual effect associated with age (second vertical panel) and the contextual effect associated with
gender (third vertical panel). We find that even for the largest average group size (i.e., 120), CML may
perform well in terms of bias and precision (first line in the last horizontal panel of Table 4). The biases
of CML get in general larger as average group size increases. The CML estimate of the endogenous
effect attains a plateau at the value 1. This is consistent with the fact that the CML estimator tends
towards the naive OLS estimator as group sizes become larger. In general, peer effects are also less
precisely estimated in large groups than in small groups.

Our main new result concerns the effect of group size dispersion. When we fix the value of the
average group size and reduce the length of the interval from which group sizes are picked, we find that
the bias of CML typically increases while the precision typically decreases. In Table 4, this amounts to
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looking at each horizontal panel separately. Observe however that since we roughly pick group sizes
from a uniform distribution holding average group size fixed, reducing the interval’s length affects the
two parameters of the size distribution (i.e., the minimum and maximum value of its support) and a
number of its moments. In particular, this leads to a reduction in variance and to an increase in the size
of the smallest groups. In general, both the variance and the size of smallest groups may matter and
the strength of identification may depend on the size distribution in complex ways. We leave a deeper
investigation of this issue to future research.

We next fully calibrate the simulations’ parameters on the data. We use observed group sizes in
the French sample, calibrate the model parameters {�, �

age

, �

gender

, �

age

, �

gender

} and moments of the
explanatory variables as previously, and set the variance of the error term in the structural equation
equal to the estimated variance in the French sample (�̂2 = 154.7). Simulation results which now
report both CML and IV estimates are reported in Table 5. The CML estimator has small bias and
standard error, while the IV estimator is not precisely estimated and the bias is large. These results
confirm for CML what we obtained from picking group sizes at random; they show that dispersion in
group sizes help identification. Besides, this suggests that small sample bias may be relatively high in
the IV estimates of Tables 3, and of Table 2 of the Supplementary Appendix but relatively low for the
CML estimates of Table 2.

7 Conclusion

This paper provides an analysis of social interactions in scholar achievement when students interact
through groups. Based on a linear-in-means approach with group fixed effects (Lee 2007), we make
two main contributions regarding the identification and estimation of peer effects. First, we provide a
new intuition for identification. We show that full identification of the model relies on three key prop-
erties: (1) Since the individual is excluded from his peer group, above average students have below
average peers (with respect to any attribute). Therefore, when individual and peer effects are positive,
peer effects then tend to reduce the dispersion in outcomes. (2) This reduction is stronger in smaller
groups, reflecting the larger effect of excluding one individual from the mean. (3) Contextual and en-
dogenous peer effects generate reductions of different shapes, which allow to identify both of them.

Second, as regards the estimation of peer effects, the model is applied to original administrative
data providing individual scores on standardized tests taken in June 2005 in four subjects by fourth
and fifth grade secondary school students in the Province of Québec (Canada). Based on a pseudo
conditional maximum likelihood approach, our results indicate that students significantly benefit from
their peers’ higher test scores in Math but not in other subjects such as Science, History and French.
Two reasons may explain these results. First, this is likely to reflect the fact that Math provides more
opportunities for interactions among students. Second, in our sample, the average group size (relative
to the number of groups) is close to three times smaller in Math that in other subjects. As suggested by
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Lee (2007), accurate estimation of peer effects requires relatively small groups. This is also confirmed
by our Monte Carlo simulations. These results should be warning applied researchers in the future
against using data in which the size of groups is too large. Besides, our simulations indicate that, for
a given average group size, increasing group size dispersion improves the precision of peer effects
estimates. In fact, our results suggest that, conditional on estimating on the whole sample, even data
on larger groups may provide useful information for estimation purposes. The basic intuition is that
data on very large groups can be used to provide more precise individual effects estimators. In turn,
this indirectly provides more efficient estimates of the peer effects from data on smaller groups. So,
future estimations of Lee’s model may benefit from data with relatively small average group size but
relatively large group size dispersion, including both small and large groups. In terms of public policy,

the fact that the endogenous peer effects appear to be very large in Math suggests that a reform that
improves the amount and quality of Math learning is likely to yield very high returns in terms of scholar
achievement. This is so since such a reform will not only have direct effects on student performance
in Math but also strong indirect effects through the additional external benefits generated by the social
multiplier. Remarkably, our analysis also shows that the indirect peer effects of the reform will reduce
performance inequalities in Math across students. This is the case because low-ability students have
better peers (since their peers exclude them) and high-ability students have worse peers (for the same
reason). Moreover, the strong negative effects of the average age of peers on scholar achievement
(except in Math) suggest that resources invested by the government to reduce the number of repeaters
may have an important indirect positive impact on student performance. One limitation of Lee ’s linear-
in-means approach is that it imposes that average test score over all schools are not influenced by a
reallocation of students across schools (see Sacerdote 2011). Therefore, the model does not have much
to say about issues such as optimal school composition by race or ability.

Our research could be extended in many directions. It would be interesting to evaluate the validity
of this approach by using data where group membership is experimentally manipulated and group
sizes are heterogenous (as in Sacerdote 2001). One could also analyze how group size variations may
help to identify peer effects when the outcome is a discrete variable (e.g., pass or fail). Brock and
Durlauf (2007) have studied peer effects identification with discrete outcomes but they ignore group
size variations. A third potentially fruitful direction of research would be to analyze a nonlinear version
of Lee’s approach. Thus, student achievement could depend on the mean and standard deviation of
peers attributes. Overall, we think that this first empirical application confirmed the interest of the
method. Many more applications in different settings are needed, however, in order to gain a thorough
understanding of the method’s advantages, limitations, and applicability for public policy.
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Table 1: Descriptive statistics

Course Variable Mean S.D.
French Score 72.647 14.086
(Sec. 5) Age 16.142 0.488

Socio-ec. Index - -
Perc. High 0.328 0.469
Perc. Med. 0.409 0.492

Gender (Female=1) 0.549 0.500
Foreign 0.111 0.310
Secondary 5 0.985 0.120
Number of observations 41778
Number of groups 314
Size of true groups 133.4 115.7
Size of observed groups 133.1 115.4

Science Score 74.689 17.671
(Sec. 4) Age 15.255 0.610

Socio-ec. Index - -
Perc. High 0.338 0.470
Perc. Med. 0.402 0.490

Gender (Female=1) 0.527 0.499
Foreign 0.127 0.333
Secondary 5 0.077 0.267
Number of observations 54981
Number of groups 378
Size of true groups 146.0 134.2
Size of observed groups 145.5 133.7

Math † Score 62.088 15.83
(Sec. 5) Age 16.272 0.574

Socio-ec. Index - -
Perc. High 0.303 0.460
Perc. Med. 0.400 0.490

Gender (Female=1) 0.540 0.498
Foreign 0.111 0.314
Secondary 5 0.957 0.202
Number of observations 15771
Number of groups 361
Size of true groups 50.7 49.9
Size of observed groups 49.9 49.7
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Table 1: Descriptive statistics (continued)

Course Variable Mean S.D.
History Score 70.156 17.280
(Sec. 4) Age 15.230 0.580

Socio-ec. Index - -
Perc. High 0.337 0.473
Perc. Med. 0.403 0.491

Gender (Female=1) 0.533 0.499
Foreign 0.127 0.333
Secondary 5 0.044 0.205
Number of observations 55057
Number of groups 382
Size of true groups 144.6 134.8
Size of observed groups 144.1 134.5

† Math refers to Math 514 (Secondary 5 regular course).
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Table 2: Peer Effects on Student Achievementa

Conditional Maximum Likelihood and Pseudo Conditional Maximum Likelihood

French Science Math History
Endogenous effect 0.296 -0.231 0.827** 0.641

(0.605) (0.414) (0.319) (0.399)
[0.327] [0.234] [0.249] [0.272]

Contextual effects
Age -39.435** -19.493* 0.838 -31.607**

(12.798) (10.237) (9.874) (13.655)
[10.987] [8.893] [7.382] [9.471]

Socio-ec. Index (High) 16.613 8.941 29.310* -6.367
(15.096) (21.637) (15.422) (17.505)
[17.530] [22.454] [15.580] [18.947]

Socio-ec. Index (Medium) -4.765 22.156 18.246 -6.713
(14.907) (18.648) (13.334) (19.207)
[16.870] [17.783] [13.726] [18.565]

Gender (Female=1) -24.870 14.852 15.558* -11.837
(15.927) (13.425) (9.006) (12.633)
[14.393] [12.178] [9.491] [12.413]

Foreign -26.699* -8.844 -2.654 29.148*
(14.828) (13.737) (12.802) (15.304)
[15.861] [16.953] [12.143] [18.007]

Secondary 5 167.926** -0.334 -6.080 24.041
(54.842) (25.048) (39.168) (24.027)
[41.179] [19.956] [26.056] [21.166]

(continued on the next page)
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Table 2: Peer Effects on Student Achievement (continued)a

Conditional Maximum Likelihood and Pseudo Conditional Maximum Likelihood

French Science Math History
Individual effects

Age -7.998** -8.293** -4.868** -7.942**
(0.239) (0.269) (0.330) (0.253)
[0.162] [0.151] [0.271] [0.151]

Socio-ec. Index (High) 1.423** 1.609** 2.112** 2.019**
(0.308) (0.297) (0.496) (0.322)
[0.245] [0.268] [0.500] [0.261]

Socio-ec. Index (Medium) 0.670** 0.785** 1.189** 0.795**
(0.266) (0.260) (0.464) (0.272)
[0.220] [0.230] [0.435] [0.234]

Gender (Female=1) 3.807** 0.319 1.018** -1.641**
(0.196) (0.200) (0.325) (0.207)
[0.162] [0.158] [0.301] [0.159]

Foreign -2.596** 2.095** -0.081 0.806**
(0.314) (0.380) (0.513) (0.384)
[0.279] [0.278] [0.548] [0.284]

Secondary 5 10.519** 1.653** 6.474** 3.126**
(1.258) (0.560) (1.096) (0.537)
[0.676] [0.328] [0.767] [0.399]

Log-likelihood -162548.552 -226078.181 -62420.961 -226216.108

Notes:
CML unrobust standard errors in brackets. Pseudo CML robust standard errors in parentheses.
** indicates 5% significance level, based on robust s.e.
* indicates 10% significance level, based on robust s.e.
aThe dependent variable is the score on June 2005 provincial secondary exams.
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Table 3: Peer Effects on Student Achievementa

2SLS Estimation with Group Fixed Effectb

French Sciences Math History
Endogenous effect 1.378 -0.509 -0.037 0.787

(1.468) (0.764) (0.477) (0.980)
Individual effects

Age -7.690** -7.962** -4.606** -7.609**
(0.197) (0.167) (0.228) (0.163)

Socio-ec. Index (High) 1.373** 1.754** 1.836** 2.041**
(0.242) (0.250) (0.423) (0.248)

Socio-ec. Index (Medium) 0.661** 0.826** 1.069** 0.803**
(0.221) (0.219) (0.365) (0.221)

Gender (Female=1) 3.871** 0.333** 0.965** -1.553**
(0.164) (0.159) (0.265) (0.157)

Foreign -2.514** 2.128** -0.005 0.716**
(0.282) (0.270) (0.496) (0.276)

Secondary 5 9.516** 1.415** 6.674** 2.910**
(0.781) (0.327) (0.741) (0.390)

Contextual effects
Age 4.205 13.496** 6.713** 8.552**

(4.845) (3.050) (1.712) (4.036)
Socio-ec. Index (High) 7.364 30.997* 15.962** -6.246

(17.305) (16.678) (7.641) (15.620)
Socio-ec. Index (Medium) -7.103 26.344* 13.501* -8.047

(16.813) (13.908) (7.555) (14.598)
Gender (Female=1) -21.310* 15.637 13.237** 0.567

(12.261) (12.202) (5.808) (11.708)
Foreign -15.732 -2.232 -0.065 19.385

(12.571) (11.449) (7.189) (12.903)
Secondary 5 40.184 -17.370 7.825 2.537

(36.380) (14.470) (21.360) (23.060)
Sargan Test 23.52 0.54 1.40 5.35
[ p-value ] [0.00] [1.00] [0.97] [0.50]
Stock and Yogo Test 706.84 1055.92 464.43 660.40
[ Critical Value for b=0.05
at sign. level of 5%] [18.37] [18.37] [18.37] [18.37]

Notes:
Robust standard errors in parentheses
** indicates 5% significance level
* indicates 10% significance level
aThe dependent variable is the score on June 2005 provincial secondary exams.
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Table 5: Simulations Calibrated on French Sample

(1000 replications)

CML 2SLS G2SLS OLS
Endogenous effect 0.391 -0.873 0.495 -33.571

(0.101) (0.852) (167.702) (3.688)
Individual effects

Age -8.002 -7.920 -8.006 -5.758
(0.145) (0.149) (10.021) (0.545)

Gender (Female=1) 3.798 3.822 3.828 4.480
(0.147) (0.139) (1.693) (0.554)

Contextual effects
Age -39.996 -38.085 -39.540 17.373

(9.996) (7.579) (167.394) (76.788)
Gender (Female=1) -25.329 -16.703 -21.857 210.526

(10.733) (10.092) (692.625) (74.714)
Notes: Average standard errors are in parentheses. The group sizes are calibrated
on our French sample. �2 = �̂

2 (calibrated)= 154.704.
True value of parameters: Endogenous effect: 0.35; Individual effects - Age: -8;
Individual effects - Gender: 3.8; Contextual effects - Age: -40; Contextual effects
- Gender: -25.
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