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Abstract: 
 
We identify two possible equilibrium configurations for a non-renewable resource duopoly in a 
discrete-time framework. For the purpose of illustration, we suppose initial endowments of 
firms that allow for a maximum of two extraction periods. In the first possible equilibrium, the 
duopoly exists for two periods, while in the second possible equilibrium, the duopoly lasts only 
for one period and the firm with the higher initial endowment becomes a monopolist in the 
second and last period. As neither equilibrium configuration dominates the other for both firms 
at the same time, it is unclear whether firms acting simultaneously can coordinate on one 
particular configuration. 
 
Keywords: Open-loop equilibrium, closed-loop equilibrium, duopoly, non-renewable resource 
 
Résumé:  
 
Dans le cadre d’un modèle à temps discret, nous identifions deux configurations d’équilibre 
possibles pour un duopole extrayant une ressource non-renouvelable. Pour des fins 
d’illustration, nous supposons que le stock initialement disponible pour chaque firme est tel que 
l’extraction perdure pour un maximum de deux périodes. Dans le premier équilibre possible, un 
duopole opère lors des deux périodes, alors que dans le deuxième équilibre, le duopole opère 
seulement lors de la première période et est suivi par une période où la firme avec un stock 
relativement plus élevé devient un monopole. Comme aucune des deux configurations 
d’équilibre ne domine l’autre, il n’est pas clair que des firmes agissant simultanément peuvent 
se coordonner sur une configuration en particulier. 

Mots clés: Équilibre à boucle ouverte, équilibre à boucle fermée, duopole, ressource non-
renouvelable 
 
Classification JEL: Q30, D43 
 



1 Introduction

The analysis of extraction strategies in oligopolistic resource markets has been an ongoing

endeavour for now over 30 years starting with the analysis of a cartel-fringe, open-loop

market structure by Salant (1976). As Gaudet (2007) notes, such interest from the economic

profession was motivated by the foundation in 1960 of the Organization of the Petroleum

Exporting Countries (OPEC) and the following oil crisis in the 1970’s. Trying to understand

the extraction pattern (and related price) of natural resources, the economic literature has

covered since then the analysis of the Cournot and Stackelberg market structure in a closed-

loop setting, where each agent conditions its extraction decision on its own resource stock.1

Open-loop and closed-loop Nash equilibria have been characterized analytically for the

case of particular demand and cost structures, while more general settings can so far only

be dealt with numerically (Salo and Tavonen, 2001). Whether open-loop or closed-loop

strategies apply depends on the players’ ability of commitment at the beginning of the

game. However, such commitment may seem particularly unrealistic when the environment

of the players changes (e.g. a changing carbon tax penalizing fossil fuel extraction).

Having said that, following the terminology by Dockner et al. (1985), when a game is

“state-separable,” or in the terminology by Dockner et al. (2000) a “linear state game,”

open- and closed-loop strategies will coincide when the terminal time horizon is exogenously

given. Although such an exogenous terminal time is not necessarily a realistic assumption

in resource extracting oligopolies, it becomes an underlying implicit assumption when a

particular market structure is assumed to prevail until the exhaustion of the resource. This

observation applies to the discrete-time model of Hartwick and Brolley (2008) who assume

initial resource stocks of players to be such that exhaustion of the resource occurs in the same

period. They find that a player’s closed-loop strategy is independent of its competitor’s, or

equivalently, that closed-loop and open-loop strategies coincide.

1A good review on how market structure in particular, as well as extraction costs, durability aspects and
uncertainty affects the Hotelling rule of resource pricing can be found in Gaudet (2007).
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In this paper, we also adopt the discrete time modelling framework and characterize ex-

plicitly the initial stocks of two players such that exhaustion of each player’s resource stock

occurs in the same period. Our simple “state-linear” modelling framework guarantees that

open- and closed loop strategies coincide. Our main finding is that there exist combinations

of asymmetric, initial resource stocks that could sustain two different equilibrium configu-

rations: (i) a duopoly up to a common, finite time period and (ii) a duopoly followed by

a monopoly exhausting its resource pool at a later point of time. While the player with a

relatively low initial stock prefers the duopoly market structure, the player with a relatively

high initial stock prefers to turn into a monopolist before complete exhaustion of his resource

pool occurs.

2 The Model

We assume a discrete-time model with a linear inverse demand function p(qt) = a − bqt,

where qt is the total quantity on the market in period t. The presence of a choke price a

makes the resource unessential, such that extraction will end in finite time. There are two

firms (players), i = 1, 2, serving the market. Let qit be the production of firm i, which is

assumed to have a linear cost function C(qit) = cqit, where c ≥ 0. Parameters satisfy a > c,

which implies that the resource is valuable and that reserves are completely extracted. Firm

i’s initial stock of the non-renewable resource is given exogenously by si1 and the law of

motion is sit+1 = sit − qit. We do not allow for resource storage. Once a firm has completely

extracted its resource pool, it exists the market.

2.1 The monopoly

For later reference, we first address the benchmark case of a monopoly extracting the re-

source. The total quantity on the market is the monopolist output qt = qit. The firm’s profit

in period t is π(qt) = (p(qt)− c)qt. The firm seeks to maximise the sum of discounted profits

subject to the law of motion and the constraint on extraction in period t, qt ≤ st. The
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inter-temporal profit maximisation problem for the monopoly is then given by

max
{qt}Tt=1,T

T∑
t=1

δt−1π(qt)

s.t. st+1 = st − qt, s1 given,

qt ≤ st,

where δ ∈ [0, 1] is the discount factor and T the endogenously determined last period of

extraction. For convenience, we solve the problem in its recursive form. Let V (st) denote

the value function at time t depending on the stock st. The recurrence equation is:

V (st) = max
0≤qt≤st

π(qt) + δV (st+1)

s.t. st+1 = st − qt, s1 given.

We distinguish between interior and corner solutions, where a corner solution may apply in

the final period of extraction t = T . For an interior solution, in particular when the firm

is not in its last extraction period, i.e. t < T , the necessary condition for optimality is

∂π(qt)/∂qt + δ ∂V (st+1)/∂qt = 0. Substituting the law of motion into the value function and

making use of ∂st+1/∂qt = −1, the necessary condition for optimality can be written

∂π(qt)

∂qt
= δ

∂Vt+1(st+1)

∂st+1

. (1)

Equation (1) states that the marginal profit associated to the last unit extracted in period t is

equal to the opportunity cost of doing so, which is the discounted marginal value associated

to having that unit available for extraction in period t+ 1. Applying the envelope theorem

to the recurrence equation (Obstfeld and Rogoff, 1996), we get:

∂Vt(st)

∂st
=
∂π(qt)

∂qt
, (2)

stating that the marginal value of extracting one more unit of stock must, at each period,

be equal to the marginal profit of that same increment on the market. Combining equations

(1) and (2), it follows that :

∂π(qt)

∂qt
= δ

∂π(qt+1)

∂qt+1

. (3)
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Equation (3) has a straightforward economic intuition: the monopoly firm equalises the

discounted marginal profit at every period of extraction. For t = 1, ..., T , we thus have

∂π(q1)

∂q1
= δ

∂π(q2)

∂q2
= δ2

∂π(q3)

∂q3
= ... = δT−1π′(qT ) (4)

Note that, in current value terms, the marginal profit increases, implying that the monopolist

discriminates intertemporally within subsequent markets.

In the case of a corner solution, the equalization of the discounted marginal profits does

not necessarily hold between the last period of extraction, T , and T + 1. In particular, the

marginal value of extracting the remaining stock at T , sT , can be greater or equal to the

marginal value of postponing extraction to the subsequent period:

qT = sT ⇔
∂π(sT )
∂sT

≥ δ
∂V (sT+1 = 0)

∂sT+1

(5)

The inequality in condition (5) arises due to the discrete time modelling: accounting for

cumulative previous extraction, it may be profit maximizing to incur a higher marginal profit

at T than postponing an incremental unit of resource to T + 1. The envelope theorem must

still hold at T + 1, when sT+1 = 0 and qT+1 = 0. This implies that ∂V (sT+1 = 0)/∂sT+1 =

∂π(qT+1 = 0)/∂qT+1 = a− c, where the last equality follows from the specification of linear

demand and linear costs. Condition (5) can now be written explicitly:

qT = sT ⇐⇒ sT ≤ (1− δ)a− c
2b
≡ (1− δ)Q. (6)

This condition states that the monopoly firm stops producing in period T and extracts all its

remaining stock sT , whenever it falls below the critical threshold (1−δ)Q. The parameter Q

corresponds to the profit-maximizing quantity sold by a monopolist in a static context (i.e.

in the absence of any resource constraint). In our context of resource extraction, it can also

be interpreted as the quantity sold by a “myopic” monopolist, who does not account for the

opportunity cost of selling today instead of tomorrow.

In order to characterize the series of production decisions, we make use of condition (4)

and derive the following recurrence equation :

qt = (1− δ)Q+ δqt+1 (7)
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This can be manipulated further to find an expression for qt as a function of Q and the

last-period extraction qT :

qt = (1− δT−t)Q+ δT−tqT (8)

As the resource is completely exhausted, total extraction must equal initially available stocks.

Using (8), we must have:

s1 =
T∑
t=1

qt = Q

(
T − 1− δT

1− δ

)
+

1− δT

1− δ
qT (9)

From equation (9), we express the last-period production qT as a function of model param-

eters, s1, δ and Q and obtain:

qT =
1− δ

1− δT
(s1 −Q(T − 1)) +Q

1− δ
1− δT

. (10)

We extend our analysis by using the last-period condition on extraction (6), i.e. qT ≤

(1− δ)Q. The maximum possible quantity of the last-period extraction is qT = (1− δ)Q. In

conjunction with (9), we obtain another condition on the firm’s initial stock.

s1 = Q

(
T − 1− δT

1− δ

)
+

1− δT

1− δ
(1− δ)Q

= Q

(
T − δ − δT+1

1− δ

)
(11)

≡ G(T )

The function G(T ) represents an upper bound on the initially available stock, s1, to be

completely exhausted in T periods. A similar condition for a lower bound also exists. If

complete exhaustion occurs in period T , the last quantity extracted, qT , has to be strictly

greater than zero. Thus, if qT > 0, then, by equation (9), s1 > Q

(
T − 1− δT

1− δ

)
. It can be

shown that

Q

(
T − 1− δT

1− δ

)
= Q

(
T − 1− δ − δT

1− δ

)
≡ G(T − 1). (12)

Hence, we have proposition 1:
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Proposition 1 In order to exhaust its initial resource endowment in T periods, the monopoly’s

stock s1 must be strictly bounded from below and bounded from above, such that

G(T − 1) < s1 ≤ G(T ). (13)

2.2 The Duopoly

This section investigates the case of two competing firms operating in the market. First, we

analyse the necessary conditions for a dynamic Cournot duopoly in order to last T periods.

Second, we analyze the case where a duopoly is followed by a monopoly firm serving the

market.

2.2.1 Equal Periods of Exhaustion

A Cournot competing firm takes the behaviour of its rival into account when maximizing

profits. In this section, we derive the conditions under which both firms will exhaust their

reserves at the same period, where T 1 = T 2 = T . We note this final period again T ,

although it is different from the monopoly’s final period of extraction. The inter-temporal

profit maximisation problem for firm i = 1, 2 is given by:

max
{qit}Tt=1,T

Πi =
T∑
t=1

δt−1π1(q1t , q
2
t )

s.t. sit+1 = sit − qit, si1 given,

where firm i’s profit in period t is given by πi(q1t , q
2
t ) = p(q1t + q2t )q

i
t − C(qit). Writing this

problem recursively, where V i(s1t , s
2
t ) denotes firm i’s value function depending on stocks

(s1t , s
2
t ), we have:

V i(s1t , s
2
t ) = max

0≤qit≤st
π(q1t , q

2
t ) + δV (s1t+1, s

2
t+1)

s.t. sit+1 = sit − qit, si1 given.

Using the same techniques as in section 2.1, we can derive a set of conditions for firms 1 and

2 characterising their output decisions and final time of extraction. Dealing with the interior

problem, each player will, as in the monopoly case, equalise properly discounted, marginal
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profits in subsequent periods, and account for foregone opportunities of current extraction.

Formally, for any period t ≤ T − 1 and for firm i = 1, 2, i 6= j, the following conditions must

hold simultaneously:

∂πi(qit, q
j
t )

∂qit
= δ

∂πi(qit+1, q
j
t+1)

∂qit+1

. (14)

For each firm to stop producing in period T , the marginal profit of each firm at T will

have to be greater or equal to the discounted marginal profit in the following period. This

means that for a firm to exhaust its remaining resource stock, the value of a last incremental

extraction in t = T has to be at least equal to the discounted marginal value of extracting

nothing in t = T + 1. In order for both firms to exhaust their resource at the same period,

this must hold for both at T . Formally, at T :

∂πi(q
i
T , q

j
T )

∂qiT
≥ δ

∂πi(0, 0)

∂qi
.

Noting that ∂πi(qit, q
j
t )/∂q

i
t = a− c− 2bqit − bq

j
t , these terminal conditions can be rewritten

by using expression Q defined in (5) as:

qiT = siT ⇔ siT ≤ (1− δ)Q− 1

2
sjT (15)

Before the final period of extraction, t < T , extraction of firm i = 1, 2, i 6= j, is given by

equation (14) can be written explicitly as:

(qit − δqit+1) +
1

2
(qjt − δq

j
t+1) = (1− δ)Q (16)

These can be interpreted as reaction functions. First, the quantity extracted by a player at

t depends positively on its own extraction in t + 1. Moreover, it is negatively related to its

rival’s extraction in period t and positively related to its rival’s production in t+ 1.

Subtracting (16) evaluated for i = 1 and j = 2 from (16) evaluated for i = 2 and j = 1

defines a set of admissible extraction quantities in in subsequent periods t and t+ 1:

q1t − δq1t+1 = q2t − δq2t+1 = (1− δ)2

3
Q (17)
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The expression 2
3
Q is the static duopoly Cournot equilibrium quantity. From (17), we can

express qit as a function of subsequent extraction quantities by developing the recurrence

equation:

qit = (1− δ)2

3
Q+ δ

(
(1− δ)2

3
Q+ δ(...+ δqiT )

)
= (1− δT−t)2

3
Q+ δT−tqiT . (18)

Extraction qit is thus a weighted average of the static duopoly Cournot equilibrium quantity,

2
3
Q, and the last period extraction, qiT . As firm i gets closer to exhaustion, more weight is

given to extraction at T as limt→T δ
T−t = 1. Since firms exhaust all their resource stock,

summing on qit for t = 1, ..., T must equalise respectively the initially available stock si1, i.e.:

si1 =
T∑
t=1

qit =
2

3
Q(T − 1− δT

1− δ
) +

1− δT

1− δ
qiT (19)

This last identity for the initially available stock allows us to express the extraction in the

final period T as a function of the initially available stock:

qiT =
1− δ

1− δT
[si1 −

2

3
Q(T − 1)] +

2

3
Q
δ − δT

1− δT
(20)

Using equation (20) for i, j = 1, 2, i 6= j, we can express firm i’s extraction in the final

period, qiT
(
qjT , s

i
1, s

j
1

)
, as a function of its own stock, its rival’s stock and the period of last

extraction, T . From (15), we know that q1T + 1
2
q2T ≤ (1− δ)Q. Then:

q1T +
1

2
q2T =

1− δ
1− δT

(
s11 +

1

2
s21 −Q(T − 1)

)
+Q

δ − δT

1− δT
≤ (1− δ)Q

For later use, we calculate with the help of (19) the following expression:

s11 +
1

2
s21 = Q

(
T − 1− δT

1− δ

)
+

1− δT

1− δ
(q1T +

1

2
q2T ) (21)

It is possible to specify an upper bound for s11 + 1
2
s22. The highest possible value q1T + 1

2
q2T is

(1− δ)Q; substituting it in (21) and rearranging leads to:

s11 +
1

2
s21 ≤ Q

(
T − δ − δT+1

1− δ

)
≡ G(T )
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where G(T ) was defined in (13). Similarly, since q1T + 1
2
q2T > 0 a lower bound for s11 + 1

2
s21 is

given by:

s11 +
1

2
s21 > Q(T − 1− δT

1− δ
)

This leads to the following proposition:

Proposition 2 The final period of exhaustion is identical for both firms i, j = 1, 2, i 6= j, if

their initial stocks satisfy:

G(T − 1) < si1 +
1

2
sj1 ≤ G(T ) (22)

Proposition 2 allows us to define an area in the space of initial stocks (s11, s
2
1) for which

exhaustion occurs in period T for both firms. We illustrate Proposition 2 for T = 2.

• Case when T = 2

Evaluating G(T ) and G(T − 1) for T = 2 in equation (22), we have for i, j = 1, 2, i 6= j:

Q(1− δ) < si1 +
1

2
sj1 ≤ Q(1− δ)(2 + δ) (23)

The shaded area in Figure 1 identifies admissible stock levels where both firms will produce

for two periods. The dotted lines refer to the strict inequality constraints in equation (23)

while the plain lines represent the inequality constraints. These lines cross on the 45◦ line.

For initial stocks equal to 2
3
Q(1−δ) defined in equation (17), firms will find it more profitable

to extract within only one period. Given δ ∈ [0, 1), this critical value is smaller than the

static Cournot output of a firm, 2
3
Q. This is because a firm accounts for the opportunity

cost of extraction.

We calculate for later use each firm’s intertemporal profit, making use of the optimal

extraction policy determined earlier. In particular, the extraction in the last period is given

by (20) evaluated at T = 2, while extraction in the initial period can be obtained by using

the law of motion qi1 = si1 − qi2, and we obtain:

qi1(s
i
1) =

2

3
Q

1− δ
1 + δ

+
δ

1 + δ
si1. (24)
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Figure 1: Possible initial resource stocks for symmetric duration of extraction
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Having qi1(s
i
1) and qi2(s

i
1) at hand, we calculate the total value associated with extraction:

V i
D(si1, s

j
1) =

b

1 + δ

((
2

3
(1− δ)Q

)2

− δsi1(si1 + sj1 − 4Q)

)
, (25)

where the subscript D stands for duopoly. When δ = 0, firm i puts no importance on future

profits and V i
D(si1, s

j
1) is equal to the static one-period Cournot profit. If firm i’s initial

resource stock is greater than firm j’s, its intertemporal profit will also be greater.

2.2.2 Asymmetric Periods of Exhaustion

We now turn to the possibility that firms exhaust their resource stock at different time

periods. In particular, we study the case where firm 1 exhausts all its initial resources in

the first period while firm 2 continues its extraction for another period of time. In t = 1,

firms compete à la Cournot, while in t = 2, firm 2 is the only remaining firm and will behave

as a monopolist. In what follows, we derive the conditions on the firms’ initial stocks and

represent them graphically in space (s11, s
2
1).

For firm 1 to extract all its stock within the first period in a dynamic Cournot duopoly,

its marginal profit in t = 1 has to be greater or equal to the discounted marginal profit in

t = 2, given that firm 2 is still on the market, i.e. q22 ≥ 0. Formally,

∂π1(q
1
1, q

2
1)

∂q11
≥ δ

∂π1(0, q
2
2)

∂q21
⇐⇒ s11 ≤

2

3
(1− δ)Q. (26)

Firm 1’s stock must thus be smaller or equal to 2
3
(1 − δ)Q, which is a vertical line in the

space (s11, s
2
1).

For firm 2 to extract for two time periods, it will equalise its discounted marginal profit

throughout the game,

∂π2(q
2
1, s

1
1)

∂q21
= δ

∂π2(q
2
2, 0)

∂q22
, (27)

which will implicitly defines optimal extraction q21. Given our model assumptions, this con-

dition rewrites:

q21 − δq22 = (1− δ)Q− 1

2
s11, (28)
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which can be interpreted as a reaction function: q21 is proportional to the quantity that firm

2 produces in period 2, while it is inversely proportional to firm 1’s extraction. Since firm

2 exhausts its stocks at T = 2, we must have s21 = q21 + q22. Combining this condition with

(28), we have

q21 =
1− δ
1 + δ

Q+
δ

1 + δ
s21 −

1

2

1

1 + δ
s11 (29)

q22 = s22 = −1− δ
1 + δ

Q+
1

1 + δ
s21 +

1

2

1

1 + δ
s11 (30)

These equations give the precise link between the production of firm 2 in both periods as

well as each player’s initial stock. An increase in firm 2’s stock will increase its production

in period 1 and 2, but an increase in its competitor’s initial stock will induce a transfer of

extraction from period 1 to period 2.

We know from section 2.1 that a monopoly will stop producing in period T , if the marginal

profit from extracting the remaining stock is greater than the discounted marginal value given

s2T+1 = 0. Here, for q22 = s22, the following stopping criterion must be satisfied:

s22 ≤ (1− δ)Q (31)

Combining expressions (30) and (31), we obtain:

s21 +
1

2
s11 ≤ (2 + δ)(1− δ)Q (32)

which represents an upper bound on firm 2’s initial stock s21 to stop producing in period 2.

In space (s11, s
2
1), we will have a downward sloping line with intercept (2 + δ)(1 − δ)Q and

slope −1
2
. We must also verify that player 2’s production in each period is positive. To

derive the associated conditions, we use (29) and (30). Thus :

q21 > 0 ⇐⇒ δs21 −
1

2
s11 > −(1− δ)Q (33)

q22 > 0 ⇐⇒ s21 +
1

2
s11 > (1− δ)Q (34)

We can verify that condition (33) is not binding. Rearranging it, we need s21 > 1
2δ
s11 −

(1−δ)
δ
Q to hold. We have previously shown that s11 ∈ [0, 2

3
(1 − δ)Q], which implies s21 ∈

13



(
−(1− δ)

δ
Q,−(1− δ)

δ

2

3
Q

)
, but this is non-binding because we assumed s21 non-negative.

Condition (33) can be repesented in space (s11, s
2
1) by a downward sloping linear function

with intercept (1− δ)Q and slope −1
2
.

For firm 1 to stop producing in the first period, it must not be more profitable to keep

a small amount of stock and put it on the market after firm 2 has exhausted its stock in

period 2. The following must then be satified, for n ≥ 2.

∂π1(s
1
1, q

2
1)

∂q11
> δn

∂π1(0, 0)

∂q21
(35)

Q(1− δn)− s11 − q21 > 0 (36)

We can use expression (29) for q21 to simplify the previous condition, such that:

3 + 4δ

2δ
s11 + s21 < 2

Q

δ
(1 + 3δ − 2δn − 2δn+1) (37)

In space (s11, s
2
1), this constraint is a downward sloping linear function. It will be binding

if, for s11 ≤ 2
3
(1 − δ)Q, it is at some point smaller than s21 + 1

2
s11 ≤ (2 + δ)(1 − δ)Q by

condition (32). We note that the intercept is, for n ≥ 2 and δ ∈ (0, 1], always greater than

(2 + δ)(1− δ)Q, i.e.

2
Q

δ
(1 + 3δ − 2δn − 2δn+1) ≥ 2

Q

δ
(1 + 3δ − 2δ2 − 2δ3)

≥ Q(1− δ)(2 + 8δ + 4δ2)

> (2 + δ)(1− δ)Q

Using constraint (32) when s11 = 2
3
(1− δ)Q, s21 is equal to 2

3
Q(2.5− δ − 3

2
δ2). For the same

s11, constraint (37) is binding if s21 = Q(1 − δ)(2 + 8δ + 4δ2) − 3+4δ
2δ
s11 <

2
3
Q(4 − δ − 3δ2).

However, s21 = 2
3
Q(4 − δ − 3δ2) ≥ 2

3
Q(2.5 − δ − 3

2
δ2) for δ ∈ (0, 1]. Thus, the constraint is

not binding. We thus obtain the following proposition:

Proposition 3 The bounded set of admissible initial stocks of firm 1 and 2 is defined by the

following equations:

1. s21 + 1
2
s11 ≤ (2 + δ)(1− δ)Q

14



Figure 2: Possible initial resource stocks for asymmetric duration of extraction

2. s21 + 1
2
s11 > (1− δ)Q

3. s11 ≤ 2
3
(1− δ)Q

Figure 2 shows the conditions stated in Proposition 3 in space (s11, s
2
1).

For later reference, we can calculate the intertemporal profit for each firm. For firm 1,

which in the case analyzed here extracts only in t = 1, this resumes to its profit in the first

period:

V 1
Asy(s

1
1, s

2
1) =

b s11
1 + δ

(
Q(3δ + 1)− 1

2
s11 − δ(s11 + s21)

)
(38)

For firm 2, the extraction of which lasts two periods, the intertemporal profit is given by

V 2
Asy(s

1
1, s

2
1) =

b

1 + δ

(
(δ − 1)2Q2 + (δ − 1)Qs11 + 4δQs21 +

(
1

2
s11

)2

− δs11s21 − δ(s21)2
)

(39)
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Figure 3: Possible initial resource stocks for symmetric and asymmetric duration of extrac-
tion

3 Comparison of the asymmetric and duopoly market equilibria

In this section we analyse whether the symmetric and asymmetric equilibria characterized in

propositions 2 and 3 could result for a given combination of the two firms’ initial stock. We

do this graphically in Figure 3, where the overlap of admissible sets of initial stocks shown

in Figures 1 and 2 for propositions 2 and 3 to hold is represented as a shaded area. As we

can see, there exist combinations of initial stocks where the firm with the low initial stock

is characterized by si1 ≤ (2/3)(1 − δ)Q, such that no configuration of a market equilibrium

can be excluded from the outset unless both firms are better off under one particular market

structure at the same time.

For i = 1, 2, we define ∆V i = V i
D − V i

Asy. If ∆V i > 0, the symmetric duopoly yields

16



higher profits for firm i, whereas, if ∆V i < 0, the asymmetric case is more profitable for

firm i. In what follows, we assume for the asymmetric case that firm 1 has smaller stocks

and extracts in the first period only, while firm 2 has relatively higher stocks and extracts

for two periods. We calculate:

∆V 1 = V 1
D − V 1

Asy

=
b

2(1 + δ)

((
s11 − (1− δ)Q

)2 − (1

3
(1− δ)Q

)2
)

(40)

which is only a function of s11. Thus only the stock of the firm with the “smaller” stock (here

firm 1) determines which market structure is more profitable. In can be shown that V 1 is a

convex function of s11, reaching a minimum at (1− δ)Q and that ∆V 1 ≥ 0 as long as:

s11 ∈
[
0,

2

3
(1− δ)Q

]
∪
[

4

3
(1− δ)Q,∞

)
.

Assuming that s11 <
2
3
(1− δ)Q, firm 1 will always prefer the symmetric duopoly outcome to

the asymmetric market outcome.

For firm 2, which by assumption operates for two periods, we find:

∆V 2 = V 2
D − V 2

Asy

=
b

4(1 + δ)

((
4

3
(1− δ)Q

)2

−
(
s11 − 2(1− δ)Q

)2)
, (41)

which is a concave function of s11, reaching a maximum at 2(1 − δ)Q and which satisfies

∆V 2 ≥ 0 as long as

s11 ∈
[

2

3
(1− δ)Q, 10

3
(1− δ)Q

]
Again, by assumption, s11 <

2
3
(1− δ)Q, such that ∆V 2 < 0 and firm 2 prefers to operate for

two periods.

The former analysis of the intertemporal profits related to each possible equilibrium has

allowed us to conclude that the firm with the relatively smaller initial stocks (firm 1) makes

more profits when it competes à la Cournot for two periods instead of only one, while Firm

2 prefers the asymmetric equilibrium.
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The question arises whether the firm with the relatively higher stock (firm 2) preferring

the asymmetric case can compensate its competitor for its lower profits incurred in the

asymmetric case. A compensation such that each firm is at least as well off as in its own

preferred market structure will exist if the increase in firm 2’s total discounted profits is

greater than the losses incurred by firm 1, i.e. V 2
Asy − V 2

D ≥ V 1
D − V 1

Asy. This last expression

can be written as −∆V 2 −∆V 1 ≥ 0, or:

(s11)
2 ≤

(
2

3
(1− δ)Q

)2

,

which holds for admissible values s11 ∈
[
0, 2

3
(1− δ)Q

]
. Hence, firm 2 could compensate firm

1 to play the asymmetric outcome.

We have thus shown that for particular combinations of initial resource stocks two differ-

ent equilibria may exist. Moreover, given a proper reallocation of profits, both firms could

be as better off in the asymmetric extraction scheme. Such compensation would involve

cooperation between firms, which however violates our working hypothesis in the current

model.

4 Conclusion

In this paper we have analysed how players in an oligopolistic industry non-cooperatively

extract a non-renewable resource from their initial reserve endowments. In a discrete time

setting, we represented the case of two firms serving the market initially given that each

firm’s period of complete exhaustion is determined endogenously depending on its own and

its rival’s initial reserve endowment. For the purpose of illustration, we restricted our analysis

to firms’ initial reserve endowments that allow industry extraction for at most two time

periods.

We were able to identify combinations of the two firms’ asymmetric initial reserve endow-

ments that may generate two different market equilibria. In the first possible equilibrium,

both firms extract the resource for two periods. In the second possible equilibrium, the

low-endowment firm operates for only one period of time, while the high-endowment firm
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operates for two periods and thus becomes a monopolist in the second and last period of

extraction. While the low-endowment firm would prefer the duopoly equilibrium over two

periods of time, the high-endowment firm would prefer to become a monopolist in the sec-

ond period. Consequently, neither equilibrium dominates the other. It is unclear whether

simultaneously acting firms as in our analysis may coordinate on one of the non-cooperative

equilibria found here. In this sense, it is unclear whether an equilibrium exists ex-ante before

extraction commences.

Our analysis showed that there would be room for cooperation as the gain of the high-

endowment firm in the asymmetric equilibrium as compared to the two-period-duopoly

equilibrium allows compensation of the low-endowment firm. However, such cooperative

arrangements are left for future research.
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